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Abstract. Let S be a topologically finite surface, and g be a hyperbolic metric
on S with a finite number of conical singularities of positive singular curvature,

cusps and complete ends of infinite area. We prove that there exists a convex
polyhedral surface P in hyperbolic space H3 and a group G of isometries of H3

such that the induced metric on the quotient P/G is isometric to g. Moreover,
the pair (P, G) is unique among a particular class of convex polyhedra.

Keywords. Hyperbolic generalized polyhedra; equivariant polyhedral real-
ization; complete hyperbolic metrics; Alexandrov Theorem; Hyperbolic–de Sitter
space.

1. Introduction

1.1. Statements. In all the text, S is a compact oriented surface of genus g, and
the surface S is obtained from the surface S by removing (n + p) points and m
closed discs. The surface S is said to be of type (g, n + p, m), and we require that
S can be endowed with a hyperbolic metric, that is:

2g − 2 + n + p + m > 0.

We consider on S hyperbolic metrics with n conical singularities of positive curva-
ture, p cusps and m complete hyperbolic ends of infinite area.

A polyhedron of the hyperbolic space H3 is generalized if some of its vertices
lie “outside” H3 (see Section 2 for precise definitions). An invariant polyhedron ofH3 is a pair (P, G) where P is a polyhedron and G a discrete group of isometries
of H3 such that G(P ) = P . Let g be a metric on S. If there exists an invariant
polyhedron (P, G) such that the induced metric on ∂P/G is isometric to (S, g), we
say that (P, G) realizes the metric g. In this paper we prove:

Theorem A. Each hyperbolic metric on S with conical singularities of positive
singular curvature, cusps and complete ends of infinite area can be realized by a
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2 POLYHEDRAL HYPERBOLIC METRICS ON SURFACES

unique convex generalized hyperbolic polyhedron invariant under the action of a
group of isometries acting freely cocompactly on a totally umbilical surface.

Theorem A can be reformulated as the following three results.

Theorem 1.1. Suppose S has genus 0. Then each hyperbolic metric on S with
conical singularities of positive singular curvature, cusps and complete ends of infi-
nite area can be realized by a unique convex generalized hyperbolic polyhedron (with
a finite number of vertices).

A parabolic group is a discrete group of isometries of H3 acting freely cocompactly
on a horosphere. A parabolic polyhedron is an invariant polyhedron (P, G) where G
is a parabolic group.

Theorem B. Suppose S has genus 1. Then each hyperbolic metric on S with con-
ical singularities of positive singular curvature, cusps and complete ends of infinite
area can be realized by a unique convex generalized hyperbolic parabolic polyhedron.

A Fuchsian group is a discrete group of isometries of H3 acting freely cocompactly
on a totally geodesic plane. A Fuchsian polyhedron is an invariant polyhedron (P, G)
where G is a Fuchsian group.

Theorem B’. Suppose S has genus > 1. Then each complete hyperbolic metric on
S with conical singularities of positive singular curvature, cusps and complete ends
of infinite area can be realized by a unique convex generalized hyperbolic Fuchsian
polyhedron.

Theorem 1.1 is already known (references are given below). It follows that in
this paper we will prove Theorem B and Theorem B’.

Remark. In the statements above, uniqueness must be understood as the unique-
ness among the class of convex polyhedra described in the statements. Otherwise
the statements are false as it is easy to construct other examples of invariant (con-
vex) polyhedra realizing hyperbolic metrics on S. For example one can consider
polyhedra invariant under the action of a group of loxodromic isometries acting
cocompactly on a surface at constant distance from a geodesic for genus 1, or
polyhedra invariant under the action of a quasi-Fuchsian group giving a convex
cocompact metric for genus > 1. Other examples are provided by groups acting
non-cocompactly on the hyperbolic plane. Uniqueness is of course also meant up
to congruences.

1.2. Plan of the paper and sketch of the proof. In the remainder of this
section, we will give references about particular cases of these statements which are
already known, and conclude on some related problems.

To prove theorems B and B’ we will use the so-called Alexandrov method, or
deformation method, or continuity method. It is an adaptation of the method used
by A.D. Alexandrov in the proof of its famous theorem about the induced metric on
the boundary of convex Euclidean polytopes [Ale42]. The general idea is to endow
with a suitable topology both the space of polyhedra and the space of metrics, and
to use topological arguments to prove that the map given by the induced metric on
the polyhedra is a homeomorphism. Actually the topological result lying behind
the proof is the Domain Invariance Theorem, see [Ale05].

In Section 2 we introduce the “hyperbolic-de Sitter space” in order to describe
convex parabolic and Fuchsian generalized polyhedra, that will lead to a parameter-
ization of the spaces of polyhedra. In Section 3 we prove a result about infinitesimal
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rigidity of the polyhedra. It will correspond to the local injectivity of the map “in-
duced metric”, that will be introduced in Section 5. In this section we also need
to prove the properness of this map. In Section 4 we parameterize the spaces of
metrics with the help of the Teichmüller space. Finally in Section 6 we collect all
the results above to get first the proofs of theorems B and B’ and then the proof of
Theorem A.

Remark. Until now, polyhedral realization statements were usually proved us-
ing the Alexandrov method, which relies on a local injectivity statement (some-
times given by a global injectivity statement). There exists a recent method to
prove polyhedral realization theorems, called variational method. We refer to
[BI07, Izm07, FI07a, FI07b] for more details. This method does not require a
local injectivity statement, and furthermore this one is obtained as a corollary of
the proof. In [FI07a], together with Ivan Izmestiev we proved the particular case of
Theorem B considering only conical singularities. We used the variational method
and then got a local injectivity result for this case. The main idea in the present
paper is to note that the local injectivity result needed to prove Theorem B can be
obtained in a simple way as a consequence of the one of [FI07a] (Section 3).

1.3. Known cases and related results. In the case of genus 0, if the metric has
only conical singularities of positive curvature, Theorem 1.1 is the hyperbolic version
of the famous Alexandrov Theorem cited above. The case with only cusps was
proved in [Riv94b]— this reference also contains the uniqueness part of Theorem 1.1.
The proof of Theorem 1.1 is contained in [Sch98]. Actually the results in this
reference are much more general, see below. For genus > 1, the case with only
cusps is done in [Sch04] and the case with cusps and ends of infinite area is done in
[Sch03]. The case with only conical singularities of positive curvature is the subject
of [Fil07b]. These three results are proved using the Alexandrov method, but the
way to prove the local injectivity lies on volume of simplices and the Schäfli formula
in the two firsts and on the so-called infinitesimal Pogorelov map in the other. The
present paper provides another proof of these results. Note that the statement of
Theorem B’ contains the case of hyperbolic (smooth) metrics on compact surfaces.
In this case the Fuchsian polyhedron (P, G) must be seen as degenerated: P is the
totally geodesic plane fixed by G. The theorem then just says that any compact
hyperbolic surface has the hyperbolic plane as universal cover. We don’t prove this
result again here, so we will always assume that n + m + p > 0. Concerning the
torus, I only know the case with conical singularities done in [FI07a].

Hyperideal convex polyhedra with finite number of vertices (that is with all
vertices lying “outside” H3) were studied in [BB02], in order to characterize them
by their dihedral angles. This kind of characterization is studied for Fuchsian
hyperideal convex polyhedra in [Sch03] and [Rou04]. Partial results on uniqueness
were found in [Riv94a, Riv96, BB02]. Such problems are in a certain sense “dual”
to the results proved here, and strongly related to the Andreev Theorem [And70a,
And70b, Thu97, Hod92, RHD07]. We refer to these references for more details.

1.4. Some open questions. The study of convex polyhedra in hyperbolic space
is related to the study of hyperbolic 3-manifolds with convex boundary. Particular
case of Theorem 1.1 when the metrics have only cone singularities (i.e. Alexandrov
Theorem) is a part of the following question:
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Question 1. Let M be a compact connected 3-manifold with boundary, and let M
admit a complete hyperbolic convex cocompact metric. Can each hyperbolic cone
metric on ∂M with singularities of positive curvature be uniquely extended to a
hyperbolic metric on M with convex polyhedral boundary?

A similar question can be asked for metrics with“ideal”or“hyperideal”boundary.
We refer to [Sch03, Sch04] for precise definitions and statements. Theorem B’
provides an example of a weaker statement for all these configurations in the case
of “Fuchsian manifolds”. Theorem B can be seen as the most simple extension of
those questions to non-compact manifolds. The analogous of Question 1 in the case
of manifolds with smooth strictly convex boundary was done in [Sch06].

Another way to extend Theorem A would be to study analogous polyhedra in
Lorentzian space-forms. The closer to this paper would be to study them in the
“hyperbolic-de Sitter space” (see Section 2 for a definition). Our proof of the local
injectivity (Section 3) remains true in this wider case. Then it would remain to
parameterize spaces of polyhedra and spaces of metrics, that is a bit more deli-
cate than in our hyperbolic case, as the induced metric on such polyhedra can be
Riemannian, Lorentzian or degenerated on different faces and edges. For closed
polyhedral surfaces with a finite number of vertices, this is done in [Sch98, Sch01].
Closed polyhedral surfaces with a finite number of vertices in Minkowski space are
studied in [Sch01]. It seems that it does not exist yet similar results in the anti-de
Sitter space. Space-like convex Fuchsian polyhedra in Minkowski and anti-de Sitter
spaces are studied in [Sch04, Sch07, Fil07a]. It is possible that there exists convex
Fuchsian polyhedra in these spaces for which the induced metric is not everywhere
space-like (for example it may contain light-like edges). Convex parabolic polyhedra
can be defined in the anti-de Sitter space, but they can’t be space-like.

1.5. Acknowledgments. I want to thank Igor Rivin, Idjad Sabitov, Jean-Marc
Schlenker and Marc Troyanov for usefull comments and suggestions related to this
paper.

2. Spaces of polyhedra

2.1. HS-polyhedra. We denote by R4
1 the Minkowski space of dimension 4, that

is the space R4 endowed with the bilinear form 〈·, ·〉1 represented by:

J :=




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


 ;

it is a flat complete Lorentzian manifold. The hyperbolic space can be seen as the
upper-branch of the unitary two-branched hyperboloid:H3 = {x ∈ R4

1| ‖x‖
2
1 = −1, x4 > 0};

and the de Sitter space is the unitary one-branched hyperboloid:

dS3 = {x ∈ R4
1| ‖x‖

2
1 = 1};

both endowed with the induced metric. De Sitter space is a complete simply con-
nected Lorentzian manifold of constant curvature 1 diffeomorphic to S2 × R. We
refer to [O’N83] for more details about Lorentzian geometry. The geodesics of the
hyperboloids are given by their intersection with the vector planes of R4

1.
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Let us project homeomorphically the hyperboloids of R4
1 along lines onto the

Euclidean unit sphere S3. We denote by H+ the image of upper-part of the two-
branched hyperboloid (the usual hyperbolic space), and by H− the image of the
the other branch of the hyperboloid. The spheres S+ and S− in S3 delimiting
respectively H+ and H− are the images of the light-cone under the projection (S+

corresponds to the usual boundary at infinity of the hyperbolic space). The image
under the projection of the de Sitter space is exactly S3 less the closures of H+ andH− for the topology of the sphere.

We call hyperbolic-de Sitter space, and denote by H̃S
3
, the sphere S3 less the

spheres S+ and S− endowed with the hyperbolic and de Sitter distances induced
by the projection described above. Actually it is possible to define this space as a
“metric” space, i.e. to define a “distance” between a point in de Sitter space and a
point in hyperbolic space, but we don’t need it. See [Sch01, Sch98] for more details.

The spheres S+ and S− are the two components of the boundary at infinity ∂∞H̃S
3
.

The intersection of a surface with the boundary at infinity is called the boundary at
infinity of the surface. In this model, the geodesics correspond to the great circles,
and for the de Sitter geodesics, the like-type of a geodesic depends if it intersects
or not H+ (or H−, that is the same): it is space-like if it does not intersect H+, it is
time-like if it intersects H+ and light-like if it is tangent to S+ (or S−, that is the
same).

We denote by H̃S
3

+ the upper half part of H̃S
3

(its intersection with {x4 > 0}
in Minkowski space). There exists a more usual model of H̃S

3

+, called the Klein

projective model, and given by the projection x 7→ x/x4 in R4
1 of H3 and dS3

+ (the

half upper part of dS3) onto the hyperplane {x4 = 1}, which is identified with the

Euclidean space R3. This is equivalent to project H̃S
3

+ onto {x4 = 1}.
Isometries of both hyperbolic and de Sitter spaces are restriction to the hy-

perboloids of the linear isometries of R4
1, which form the Lorentz group L. The

Lorentz group is the the group of isometries of H̃S
3
. Note that the antipodal map

is an isometry of H̃S
3
. We will consider two kinds of such isometries:

• null-rotations, whose restriction to hyperbolic space correspond to parabolic
isometries. Each of them (pointwise) fixes a unique light-like vector of R4

1.
• boosts, whose restriction to hyperbolic space correspond to hyperbolic isome-

tries. Each of them leaves invariant two light-like vectors as well as the
time-like plane containing them.

We also consider the associated invariant surfaces:

• horospheres are the connected surfaces of H̃S
3

leaved invariant by all the
null-rotations fixing a same light-like vector ℓ.

• caps are the connected surfaces of H̃S
3

leaved invariant by all the boosts
fixing a same time-like hyperplane PH2 .

As well as the groups acting on them:

• a parabolic group is a discrete group of isometries of H̃S
3

acting freely co-
compactly on a horosphere. It contains only null-rotations.

• a Fuchsian group is a discrete group of isometries of H̃S
3

acting freely
cocompactly on a cap. It contains only boosts.
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Moreover we include in the definitions of horospheres and caps the parts of the

boundary at infinity of H̃S
3

leaved invariant by the corresponding isometries.

Definition 2.1. • A convex polyhedron in a space-form M is an intersection
of half-spaces of M . The number of half-spaces may be infinite, but the
intersection is asked to be locally finite: each face must be a polygon with a
finite number of vertices, and the number of edges at each vertex must be
finite.

• A convex HS-polyhedron is a subset of H̃S
3 ∪ ∂∞H̃S

3
that corresponds to a

convex polyhedron of S3.
• A convex parabolic HS-polyhedron is a pair (P, G) where P is a convex

HS-polyhedron, G is a parabolic group and G(P ) = P .
• A convex Fuchsian HS-polyhedron is a pair (P, G) where P is a convex

HS-polyhedron, G is a Fuchsian group and G(P ) = P .
• A convex generalized hyperbolic polyhedron P is the intersection of H3

with a convex HS-polyhedron such that all the edges of P meet H3.

The definitions of convex parabolic generalized hyperbolic polyhedron and of
convex Fuchsian generalized hyperbolic polyhedron are then obvious. A convex
generalized hyperbolic polyhedron has three kinds of vertices: finite vertices which
are in H3, ideal vertices (or sometimes infinite) which are on ∂∞H3 and hyperideal
vertices which are outside H3. The hyperideal case contains the ideal case, and
a vertex which is hyperideal but not ideal is called strictly hyperideal. We will
speak about convex umbilical HS-polyhedron when we speak in the same time about
parabolic and Fuchsian polyhedra and about umbilical group when we speak in the
same time about parabolic and Fuchsian groups.

We want to prove that, up to a global isometry, the convex umbilical HS-
polyhedra can be bijectively projected onto the Klein projective model. It means
that there exists a global isometry (of the Lorentz group) which sends them into

H̃S
3

+. It will allow us to parameterize the polyhedra with the help of the Euclidean

coordinates of their vertices. As the polyhedra we consider are convex sets in S3,
they are contained in a half-space, but we must check that the hyperplane delimit-
ing this half-space is space-like. This property is clear for closed convex generalized
hyperbolic polyhedra with a finite number of vertices, it is why such polyhedra
are usually defined directly in the Klein projective model. But it is easy to con-
struct closed convex HS-polyhedron with a finite number of vertices which can’t be
bijectively projected into the Klein projective model. They are studied in [Sch01].

2.2. Parabolic polyhedra. Let G be a parabolic group. A horosphere H leaved
invariant by G is given by the intersection (supposed non-empty) in the Minkowski
space of a unitary hyperboloid with an affine light-like hyperplane of R4

1. If G fixes
the light-like vector ℓ, the affine light-like hyperplane is parallel to the light-like
hyperplane L containing ℓ (actually L is the orthogonal ℓ⊥ of ℓ for the bilinear
form of the Minkowski space). The vector ℓ gives in S3 a point ℓ+ on S+ and a
point ℓ− on S− which are antipodal. The boundary at infinity of a horosphere is
either ℓ+ either ℓ−, depending if the hyperplane giving H lies above or below L.
The boundary at infinity of H is called the center of H . It follows that in the de
Sitter space there exists two families of antipodal horospheres constructed from a
light-like vector ℓ: the ones centered at ℓ+ and the ones centered at ℓ−, see Figure 1.
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ℓ−

ℓ+

ℓ
⊥

H−

dS2

S−

S+

A

B

ℓ

Figure 1. In the spherical projective model, A is a horosphere
of center ℓ+ and B is a horosphere of center ℓ− (drawn with one
dimension less than the text).

Remember that we also consider S+ \ {ℓ+} and S− \ {ℓ−} as horospheres leaved
invariant by G. The following lemma is straightforward as G has no fixed points in

H̃S
3
.

Lemma 2.2. Let G be a parabolic group which fixes ℓ and let x be a point of S3.
Then the accumulating set of Gx in S3 is either ℓ+ either ℓ− if x /∈ ℓ⊥. If x ∈ ℓ⊥,
the accumulating set is constituted by both ℓ+ and ℓ−.

We denote by H̃S
3

ℓ the intersection of the de Sitter space with the (closed) half-
space delimited by ℓ⊥. The half-space is chosen such that it contains the hyperbolic
space H+.

Lemma 2.3. Up to a global isometry a convex parabolic HS-polyhedron (P, G) is

contained in H̃S
3

ℓ .

Proof. The polyhedron (P, G) is the convex hull of the union of finitely many orbits
of the group G. If the polyhedron is constituted with the orbit of one single point,
this one belongs either to a horosphere centered at ℓ+ either to a horosphere centered
at ℓ− either to ℓ⊥, and we are done. We can consider that the polyhedron has at
least as vertices the orbit of two points x and y and we suppose that they are
living on horospheres in different sides of ℓ⊥. As P is convex, there exists a totally
geodesic plane M of S3 such that P is entirely contained in one side of M . As ℓ+

and ℓ− are antipodal, they belong to different sides of M (M can’t be ℓ⊥ because
x and y live in different sides of ℓ⊥). But from Lemma 2.2 there exists points in
the orbits of x and y as near as ℓ+ and ℓ− as we want for the topology of S3. This
contradicts the convexity of P . �

Lemma 2.4. Up to a global isometry a convex parabolic generalized hyperbolic
polyhedron (P, G) can be bijectively projected onto the Klein projective model. Its
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image is a convex Euclidean polyhedron with vertices lying on ellipsoids of center
(1 − r2, 0, 0) and of radii (r2, r, r), where r is a positive real number. The vertices
accumulate on the point of tangency of the ellipsoids with the unit sphere.

Proof. From Lemma 2.3, up to a global isometry (P, G) is entirely contained in

H̃S
3

ℓ . As (P, G) is now required to have all its edges meeting the hyperbolic space,
then it can’t have any vertex on ℓ⊥, as in this case the edge between the vertex and
ℓ+ must be an edge of P . But this edge would be light-like and then P can’t be a
generalized hyperbolic polyhedron.

If P is not entirely contained in the interior of H̃S
3

+, consider a vertex x of P

belonging to dS3 \ dS3
+ and taken among the most far vertices from the equator ofS3. Consider a boost B along the line passing through ℓ+ and x, such that ℓ+ is the

attractive point, and such that B sends x to a point in the interior of H̃S
3

+. Such

a B exists as x lies in the interior of H̃S
3

ℓ . It is clear that the isometry B sends P
to a convex parabolic generalized hyperbolic polyhedron contained in the interior

of H̃S
3

+ which can be bijectively projected in the Klein projective model. All the
vertices of its image are lying on the images of horospheres. A direct computation
shows that these images have the announced shape. �

The following lemma is then obvious:

Lemma 2.5. Let (P, G) be a convex parabolic generalized hyperbolic polyhedron of
center ℓ+. The orthogonal projection of ∂P onto any horosphere H of center ℓ+

along the lines starting from ℓ+ is a homeomorphism.

2.3. Fuchsian polyhedra. Let G be a Fuchsian group leaving invariant a totally
geodesic surface PH2 of H3. Up to global isometries, we will always consider that PH2

is given in the Minkowski space of dimension 4 by the intersection of the hyperbolic
space with the hyperplane {x1 = 0}. In the Klein projective model PH2 is sent
to the horizontal plane, and its boundary at infinity is the horizontal circle on the
sphere. We will also denote by PH2 the hyperplane defining the surface in H3 as

well as the intersection of the hyperplane with H̃S
3
. The group G also fixes the

vector t(1, 0, 0, 0) ∈ R4
1 and then the corresponding point c1 of dS3 (as well as its

antipodal c2), and it also fixes all the time-like affine hyperplane parallel to PH2 inR4
1.
In H+ and H− the caps fixed by G, called hyperbolic caps, are the totally umbil-

ical surfaces at constant distance from PH2 and their induced metric has constant
negative sectional curvature. In the Klein projective model they correspond to the
part of ellipsoids of radii (1, 1, r), r < 1, contained in one side of PH2 . Caps of dS3

are of three kinds (see Figure 2):

• light-like caps: they are the intersections between dS3 and the hyperplanes
parallel to PH2 passing through the points c1 and c2. They give the light-
cone of c1 and the one of c2. Their boundary at infinity is the one of PH2 .
In the Klein projective model, c1 is sent to infinity and a component of its
light-cone is sent to the upper-part of the vertical cylinder tangent to the
unit sphere;

• space-like caps: they are the intersection between dS3 and the hyperplanes
parallel to PH2 passing through the points

t
(x, 0, 0, 0), x > 1. For each x
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H− H−

B2

C2

c1

PH2

c1

L2

L1

C1

H+

A1

B1

L1

B1

A2

S−

A4

c2

S+

A3

A2

S+

B3

S−

A1

Figure 2. In the spherical projective model, Ai are (parts of)
hyperbolic caps, Bi are time-like caps, Ci are space-like caps and
Li are light-like caps.

it gives two congruent space-like totally umbilical surfaces at constant dis-
tance from c1, contained inside the light-cone of c1. Their induced metric
has negative sectional curvature. Their boundary at infinity is one compo-
nent of the one of PH2 . In the Klein projective model the one contained in
dS3

+ is sent to the upper half-part of an ellipsoid of radii (1, 1, r), r > 1.
Two others families are given by considering the planes passing through the
points

t
(x, 0, 0, 0), x < −1;

• time-light caps: they are the intersection between dS3 and the hyperplanes
parallel to PH2 passing through the points

t
(x, 0, 0, 0), 0 < x < 1. For

each x it gives a time-like totally umbilical surface at constant distance
from c1, lying outside the light-cone of c1. The induced metric has positive
sectional curvature. The boundary at infinity is the one of PH2 . In the
Klein projective model, the upper half-part of such surface is sent to the
upper half-part of a one-sheeted hyperboloid of radii (1, 1, r), r > 0. One
other family is given by considering the planes passing through the points
t(x, 0, 0, 0), −1 < x < 0.

Remember that we also consider parts of S+ and S− contained in one side of
PH2 as caps.

Lemma 2.6. Let G be a Fuchsian group which fixes c1 and let x be a point of S3

which is not c1 or its antipodal c2. Then the accumulating set of Gx in S3 is the
boundary at infinity of the cap containing x. If x belongs to a light-like cap, the
accumulating set depends on the choice of x as it can also contain c1 or c2.

Proof. By definition all the elements of Gx lie on the same cap. It follows that, if x
is not on a light-like cap, Gx accumulates on a part of the boundary at infinity of
the cap has G has no fixed point on the cap. If x lies on a light-like cap, a sequence
of Gx can also converges to the point fixed by G. It occurs if x lies on a time-like
geodesic plane invariant under the action of an element of G. It is not always the
case as G is discrete.

If x is not c1 or c2, the accumulating set of Gx can be seen as the closure of the
set of the points on S+ and S− fixed by the elements of G. Up to antipodals, this
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set does not depend on the choice of the point x. If x belongs to H+ or H−, such
set is known as the limit set of G, and this one is the entire boundary at infinity of
PH2 as G is cocompact, see e.g. [Kat92]. �

Lemma 2.7. Up to a global isometry a convex Fuchsian HS-polyhedron (P, G) is
entirely contained in the convex hull in S3 of the future cone of c1.

Proof. We first prove that (P, G) is entirely contained in one side of PH2 . Actually
the proof is the same as in the parabolic case. If the polyhedron is constituted
with the orbit of one single point which belongs to a cap we are done as each cap
is entirely contained in one side of PH2 . It the point belongs to the boundary at
infinity it is easy to see that it also remains in one side of PH2 . We can suppose that
the polyhedron has at least as vertices the orbit of two points x and y, living on
caps in different sides of PH2 . As P is convex, there exists a totally geodesic plane
M of S3 such that P is entirely contained in one side of M . The plane M can’t be
PH2 because x and y live in different sides of PH2 . But for the topology of S3, there
exists points in the orbits of x and y as near as PH2 as we want, because the orbits
accumulate on the intersection of PH2 with one of the boundaries at infinity. This
contradicts the convexity of P .

Now we can use another projective model for the hyperbolic-de Sitter space: it

is the projection of the part of H̃S
3

delimited by PH2 and containing c1 onto the
hyperplane parallel to PH2 and passing through c1. The target space is naturally
isometric to R3

1. The point c1 is sent to the origin, its light-cone to the light-cone
of R3

1. A half-part of H+ (resp. H−) is sent onto the interior of the upper-branch
(resp. lower-branch) of the unitary two-sheeted hyperboloid. The de Sitter space
is sent outside these hyperboloids. We now know that, up to a global isometry,
(P, G) can be bijectively sent onto this model. The map from one model to the
other sends convex sets to convex sets. This model is easily seen from Figure 2.

The condition to be convex can be rephrased as: the convex hull of the orbit of
a vertex can’t contain any other vertex. Suppose P has a vertex on a time-like cap
of dS3. In the model described above such a cap is represented as a one-branched
hyperboloid. As the orbit of the vertex go to infinity (PH2 is sent to infinity in this
model), the convex hull of the orbit of the vertex is the entire space. It follows that
P can’t have a vertex on a time-like cap. Then —up to an isometry— the vertices
are inside or on the light-cone of c1. For the same argument than above they must
be all inside or on the same component of the light-cone. �

Lemma 2.8. Up to a global isometry a convex Fuchsian generalized hyperbolic
polyhedron (P, G) can be bijectively projected into the Klein projective model. Its
image is a convex Euclidean polyhedron with vertices lying on the intersection of
the ellipsoids of center 0 and radii (1, 1, r), where r is a positive real number, with
the open upper half-space.

Proof. From the Lemma 2.7 we just need to check that P can’t have any vertex on a
light-like cap. Suppose that there exists such a vertex x. As in the Klein projective
model the accumulating set of Gx is the horizontal circle, P must contain the convex
hull of this circle together with x. In particular it contains the piece of line along
which x is projected onto the horizontal circle. This line belongs to the light-cone
of c1 and P is contained inside this light-cone: the line is an edge of P , but it is
light-like, then it can’t meet the hyperbolic space, that contradicts the fact that
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P is a generalized hyperbolic polyhedron. A direct computation shows that the
images of hyperbolic and space-like caps have the announced shape. �

The following is then obvious.

Lemma 2.9. Let (P, G) be a convex Fuchsian generalized hyperbolic polyhedron.
The orthogonal projection of ∂P onto PH2 along the lines orthogonal to PH2 is a
homeomorphism.

2.4. Polyhedral embedding. An equivariant polyhedral embedding of S in H̃S
3

is a pair (φ, ρ) where

• φ is a polyhedral embedding of the universal cover S̃ of S into H̃S
3

• ρ is a representation of the fundamental group Γ of S into L
such that φ is equivariant under the action of Γ:

∀γ ∈ Γ, ∀x ∈ S̃, φ(γx) = ρ(γ)φ(x).

An equivariant polyhedral embedding of S in H3 is the restriction to the hy-

perbolic space of an equivariant polyhedral embedding of S in H̃S
3
, which is such

that all the edges of the image of S meet the hyperbolic space. The equivariant
polyhedral embedding is convex if its image is a convex set. It is parabolic if ρ(Γ) is
parabolic and Fuchsian if ρ(Γ) is Fuchsian. It is umbilical if it is parabolic or Fuch-
sian — this is determined by the genus of S. It is clear that the image of a convex
parabolic (resp. Fuchsian) polyhedral embedding bounds a convex parabolic (resp.
Fuchsian) generalized hyperbolic polyhedron (P, G). Conversely, due to lemmas 2.5
and 2.9, the canonical embedding of ∂P in H3 together with the action of G gives
a convex umbilical polyhedral embedding of S.

We denote by P(n, m, p) the set of convex umbilical polyhedral embeddings of
S in the hyperbolic space constituted with the orbits of n finite vertices, p ideal
vertices and m strictly hyperideal vertices, modulo isotopies of S and isometries ofH3. More precisely, the equivalence relation is the following: let (φ1, ρ1) and (φ2, ρ2)
be two elements of P(n, m, p). We say that (φ1, ρ1) and (φ2, ρ2) are equivalent if
there exists

• a homeomorphism h of S isotopic to the identity, such that if ht is the
isotopy (i.e. t ∈ [0, 1], h0 = h and h1 = id), then ht fixes pointwise the
ideal boundary of S for all t,

• a hyperbolic isometry I,

such that, for a lift h̃ of h to S̃ we have

φ2 ◦ h̃ = I ◦ φ1.

As two lifts of h only differ by conjugation by elements of Γ, using the equiv-
ariance property of the embedding, it is easy to check that the definition of the
equivalence relation doesn’t depend on the choice of the lift.

As lemmas 2.4 and 2.8 say that the image of a convex umbilical polyhedral
embedding of S can be drawn in the Euclidean space we have:

Lemma 2.10. Endowed with the topology given by the Euclidean coordinates in the
Klein projective model of the vertices in a fundamental domain, the space P(n, m, p)
is a non-empty open subset of the manifold R6g−6+3(n+m) × (S2)p.
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Proof. It is easy to construct an element of P . One could start with the convex
hull of the orbit of points on the unit sphere in the Klein projective model, and
slightly push some points as well as their iterates outside or inside the ball, in such
a manner that a point and its iterates all belong to the same cap or horosphere.
Then we take the convex hull of all the points obtained in this way. If the move
is sufficiently small, all the points are extremal points for the convex hull, and the
resulting polyhedron is invariant by construction.

Let (P, G) be a convex umbilical polyhedron. It is determined by the coordinates
in Euclidean space of vertices of P contained in a fundamental domain for the action
of G and the data of this fundamental domain. The positions of the vertices give
parameters living in Rn+m × (S2)p. The fundamental domain corresponds to an
element of the Teichmüller space of S, that gives (6g − 6) parameters (in the case
of the torus, an element of the Teichmüller space is determined by the position of
one vertex). It is clear that for any little change of the parameters we stay in P :

• finite and strictly hyperideal vertices belong to open sets of R3, ideal vertices
belong to open sets of S2 (as described in lemmas 2.4 and 2.8);

• convexity is an open condition;
• Teichmüller space is an open set (one can consider for example the topology

given by the fundamental domains. If S has genus > 1 these ones can be
described using the so-called “canonical polygons”, see [ZVC80, Bus92] or
[Fil07b]);

• the condition that the edges meet the hyperbolic space is an open condition.

�

3. Infinitesimal rigidity

The results of this section will be used to prove Lemma 5.1.
A Killing field of a (Riemannian or Lorentzian) space-form M is a vector field of

M such that the elements of its local 1-parameter group are isometries. An infini-
tesimal isometric deformation of a polyhedral surface in a space-form of dimension
3 is the data of

• a triangulation of the polyhedral surface given by a triangulation of each
face, such that no new vertex arises,

• a Killing field on each face of the triangulation such that two Killing fields
on two adjacent triangles are equal on the common edge.

An infinitesimal isometric deformation is called trivial if it is the restriction to
the polyhedral surface of a global Killing field. Let (φ, ρ) ∈ P(n, m, p) and (φt, ρt)
be a path in P(n, m, p) with (φ, ρ) = (φ0, ρ0) such that the induced metric is
preserved at the first order at t = 0. Up to global isometries we consider that the
representations always fix the same objects.

We denote

Z(φ(x)) :=
d

dt
φt(x)|t=0 ∈ Tφ(x)H3

and

ρ̇(γ)(φ(x)) =
d

dt
ρt(γ)(φ(x))|t=0 ∈ Tρ(γ)φ(x)H3.

The vector field Z has a property of equivariance under ρ(Γ):

Z(ρ(γ)φ(x)) = ρ̇(γ)(φ(x)) + dρ(γ).Z(φ(x)).
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This can be written

(1) Z(ρ(γ)φ(x)) = dρ(γ).(dρ(γ)−1ρ̇(γ)(φ(x)) + Z(φ(x)))

and dρ(γ)−1ρ̇(γ) is a Killing field of H̃S
3
, because it is the derivative of a path in

SO(2, 1) (we must multiply by dρ(γ)−1, because ρ̇(γ) is not a vector field). We
denote this Killing field by ~ρ(γ). Equation (1) can be written, if y = φ(x),

(2) Z(ρ(γ)y) = dρ(γ).(~ρ(γ) + Z)(y).

A parabolic deformation is an infinitesimal isometric deformation Z on a para-
bolic polyhedron which verifies Equation (2), where ~ρ(γ) is a parabolic Killing field,

that is a Killing field of H̃S
3

which restriction to each horosphere fixed by ρ(Γ) gives
a Killing field of R2.

A Fuchsian deformation is an infinitesimal isometric deformation Z on a Fuch-
sian polyhedron which verifies Equation (2), where ~ρ(γ) is a Fuchsian Killing field,

that is a Killing field of H̃S
3

which restriction to each space-like and hyperbolic
caps fixed by ρ(Γ) gives a Killing field of H2.

A parabolic polyhedron is parabolic infinitesimally rigid if all its parabolic de-
formations are trivial and a Fuchsian polyhedron is Fuchsian infinitesimally rigid
if all its Fuchsian deformations are trivial.

We want to prove

Theorem C. Convex parabolic generalized hyperbolic polyhedra are parabolic in-
finitesimally rigid.

Theorem C’. Convex Fuchsian generalized hyperbolic polyhedra are Fuchsian in-
finitesimally rigid.

Actually Theorem C’ is already known, because it is directly deduced from other
known cases (convex Fuchsian polyhedra in Minkowski space [Sch07], convex Fuch-
sian polyhedra with finite vertices in hyperbolic space [Fil07b] or in de Sitter space
[Fil07a]) using the so-called“infinitesimal Pogorelov maps”. We refer to [Fil07a] for
a complete discussion about Fuchsian infinitesimal rigidity.

We need to prove Theorem C. It will be deduced from

Theorem 3.1. [FI07a] Convex parabolic polyhedra with finite vertices in H3 are
parabolic infinitesimally rigid.

Proof of Theorem C. We consider horospheres with center the light-like vector ofR4
1

ℓ :=




0
0
1
1


 .

We denote by H0 the light-like hyperplane containing ℓ. It is the hyperplane tangent
to the light-cone along the vector ℓ. We denote by Ht the affine light-like hyperplane
parallel to H0 and passing though the point (0, 0, 0, t), t > 0. We denote by Hh

t

the horosphere of H3 obtained as the intersection of H3 and Ht, and by Hs
t the

horosphere of dS3 obtained as the intersection of dS3 and Ht.
As the totally geodesic subspaces of both H3 and dS3 are defined by the in-

tersections of the spaces with hyperplanes of R4
1, a convex generalized hyperbolic

polyhedron is uniquely defined by a convex (polyhedral) cone in R4
1. Moreover if
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the polyhedron is invariant under isometries the Lorentz group, the corresponding
cone is also invariant under the action of the extension of these isometries to the
Minkowski space. It follows that we can speak about parabolic convex (polyhedral)
cones of the Minkowski space of dimension 4. A cone is called hyperbolic if it lies
entirely inside the future cone of the origin of R4

1 (i.e. the intersection of the cone
with H3 is a convex hyperbolic polyhedron with finite vertices). Each horosphere
Hh

t (resp. Hs
t ) gives a convex (smooth) cone which is (a half-part of) the set of

zeros of the quadratic form qh
t (resp. qs

t ), where:

qh
t :=




t2 0 0 0
0 t2 0 0
0 0 t2 + 1 −1
0 0 −1 1 − t2


 ; qs

t :=




t2 0 0 0
0 t2 0 0
0 0 t2 − 1 1
0 0 1 −t2 − 1


 .

We will denote in the same way the quadratic forms qs
t and qh

t and the cones given
by the set of their zeros. As a convex parabolic HS-polyhedron (P, G) is constituted
as the union of finitely many orbits, there exists a cone qs

l , 0 < l < 1, such that the
cone of P lies in the interior of qs

l . We introduce the following linear transformation
of R4:

A :=




l 0 0 0
0 l 0 0

0 0 l2√
l2+1

0

0 0 − 1√
l2+1

√
l2 + 1




which sends the cone qs
l to the light-cone of R4

1. Note that A preserves the direction
of ℓ as well as H0. Hence A sends horospheres of center ℓ to horospheres of center
ℓ, and it sends obviously convex cones to convex cones. The following properties
are directly checked by matrix multiplications:

• A sends a cone qs
t , t > l, to a cone qh

r ;
• A sends a cone qh

t to a cone qh
r ;

• A sends the light-cone of R4
1 to a cone qh

r .
• let B be a null-rotation fixing ℓ. Recall that it has the form, with x and y

real numbers (see e.g. [Nab03]):

B :=




1 0 −x x
0 1 −y y

x y 1 − x2+y2

2
x2+y2

2

x y −x2+y2

2 1 + x2+y2

2


 .

Then

C := ABA−1

is a null-rotation fixing ℓ.

It follows that A sends (P, G) to a convex parabolic hyperbolic cone.

A Killing field of H3 or dS3 is the restriction to these spaces of a unique Killing
field of R4

1. Let Z be a vector field of R4
1. We denote by dZ the differential of Z

at the point x. The vector field Z is a Killing field if and only if, for all vector X
based at x:

〈dZ(X), X〉1 = 0.
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We define the vector field Z̃ as being at the point x̃ := Ax the vector NZ(x),
where

N := J tA−1J.

If X̃ = AX is a vector based at x̃, we have:

〈dZ̃(X̃), X̃〉1 =
t
dZ̃(X̃)JX̃ =

t
(NdZ(X))JAX =(3)

= tdZ(X)JA−1JJAX = 〈dZ(X), X〉1.

It follows that the map Z 7→ Z̃ sends an infinitesimal isometric deformation of
a convex polyhedral cone to an infinitesimal isometric deformation of a convex
polyhedral hyperbolic cone (its image by A), and one is trivial when the other

is. Hence to prove Theorem C it remains to check that Z 7→ Z̃ sends parabolic
deformations to parabolic deformations, as we know by Theorem 3.1 that parabolic
deformations of convex parabolic hyperbolic cones are trivial. Let Z be a parabolic
deformation of a convex parabolic cone. It verifies, for some null-rotation B:

Z(Bx) = B(Z(x) + K(x))

where K(x) is a parabolic Killing field, and we want to prove that there exists a

parabolic Killing field K̃ such that:

Z̃(Cx̃) = C(Z̃(x̃) + K̃(x̃)).

A direct computation shows that

CN = NB

and then we get, with x = A−1x̃:

Z̃(Cx̃) = NZ(Bx) = NB(Z(x) + K(x))

= CN(Z(x) + K(x)) = C(Z̃(x̃) + NK(x)).

We define the vector field K̃ at the point x̃ as NK(x). By (3) we know that

K̃ is a Killing field as K is. It remains to check that, for all x̃, K̃(x̃) is tangent
to the horosphere of center ℓ passing through x̃. Horospheres have the property
that all geodesics starting from their center intersect them orthogonally. It follows
that it suffices to check that K̃(x̃) is orthogonal to the plane spanned by x̃ and ℓ.
The vector K(x) satisfies this property, then it is orthogonal to both x and ℓ. A

computation analogous to Equation (3) shows that K̃ is also orthogonal to both x̃
and ℓ (ℓ is an eigenvector of A).

�

Remarks. A similar proof might work for spherical and Fuchsian polyhedra.
The property of the map Z 7→ Z̃ to send Killing field on Killing field is just a

particular expression of the Darboux–Sauer Theorem, which says that“infinitesimal
rigidity is a projective property” [Dar93, Sau35, Sab92]. See also e.g. [CW82].

In this proof we never used the condition that the edges of the polyhedral sur-
face intersect the hyperbolic space. Actually we proved the parabolic infinitesimal
rigidity for a convex parabolic HS-polyhedra. In particular we proved the parabolic
infinitesimal rigidity for convex parabolic polyhedra in de Sitter space.
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4. Spaces of metrics

We denote by M̃(n, p, m) the space of hyperbolic metrics on S with n conical
singularities with positive singular curvature, p cusps and m complete hyperbolic
ends of infinite area. Cusps and conical points are marked in the following sense:

if, for a metric of M̃(n, p, m), the neighborhood of x ∈ S is isometric to the neigh-
borhood of the apex of a convex cone then any hyperbolic metric on S for which

the neighborhood of x is isometric to a cusp does not belong to M̃(n, p, m), and

vice-versa. We define M(n, p, m) as the quotient of M̃(n, p, m) by the isotopies of
S which fix pointwise the ideal boundary of S.We want to prove:

Lemma 4.1. The space M(n, p, m) is a connected and simply connected manifold
of dimension 6g − 6 + 3(n + m) + 2p.

Note that M(0, p, m) is the Teichmüller space Tg(p, m) of a surface of finite
topological type (g, p, m). In this case the lemma above is well-known (see e.g.
[Abi80, Nag88]). If the metric has conical singularities, we can use the following
theorem, which is a particular simple case of the results of [HT90, HT92]:

Theorem 4.2. Hyperbolic metrics on a topologically finite surface with a finite
number of conical singularities singularities, cusps and complete ends of infinite
area are uniquely determined by the conformal structure of the surface and the
values of the cone-angles.

It follows that M(n, p, m) is in bijection with the product of Tg(n + p, m) and
]0, 2π[n (the values of the cone-angles — there is no Gauss–Bonnet condition on
them as we are restricted to positive singular curvature). We endow M(n, p, m)
with the topology induced by the bijection, what obviously gives Lemma 4.1.

There exists another way to prove Lemma 4.1, which is used in [Sch98] for the
case of the sphere (without cusps), but the arguments does not depend on the genus.
See also [Riv94b] for a related construction in the case of the sphere with cusps.
Analogous arguments in a close context where used for example in [Riv86, RH93,
Sch04]. The idea lies on the fact that M(n, p, m) is locally parameterized by the
edge lengths of triangulations of the metrics. Then it is not hard to continuously
“smooth” the cone-angles, and the conclusion follows from the connectedness and
simply connectedness of M(0, p, m).

5. The map “induced metric”

5.1. Local injectivity. Let (φ, ρ) ∈ P(n, m, p). The induced metric on φ(S) is
isometric to a hyperbolic metric smooth everywhere except at the vertices, which
provide cone angles of positive curvature (two faces sharing an edge can be unfolded
in the plane and then the induced metric is not singular at the edges). By lemmas
2.5 and 2.9 the induced metric on φ(S)/ρ(Γ) belongs to M(n, p, m). We denote by
I the map from P to M obtained in this way. The determining fact, which uses
the results of Section 3, is:

Lemma 5.1. The map I is a local homeomorphism.

Proof. The map I is obviously continuous. Moreover theorems C and C’ gives the
local injectivity of I. This last fact is very classical, see e.g. [Glu75]. It is used for
example in [Fil07b]. �
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5.2. Properness. We will prove that I is proper in the following way: if (φk, ρk)k

is a sequence in P(n, m, p) such that (I(φk, ρk))k converges in M(n, m, p), then
there exists a subsequence of (φk, ρk)k converging in P(n, m, p). We must prove the
convergence of the sequence of representations and the convergence of the sequence
of coordinates of the vertices in R3. In all the proof below, we always assume that
convergence is up to the extraction of a subsequence and we denote φk(S) by Pk.

5.2.1. Fuchsian case. We begin with the Fuchsian case as it is the most familiar.
The properness is proved in [Fil07b] if the metric has only conical singularities, in
[Sch04] if it has only ideal vertices, and in [Sch03] if it has only strictly hyperideal
vertices. Actually the arguments we need here are all contained in these references.
For convenience we repeat them. The proof can be decomposed in three steps.

i) The sequence of representations converges. To the sequence (φk, ρk)k is asso-
ciated a sequence (tk)k in the Teichmüller space Tg of S, with (S, tk) isometric to
(PH2/ρk(Γ)). Suppose that the sequence of representations diverges. This implies
that the sequence (tk)k diverges and it is a well-known fact of Teichmüller theory
that in this case there exists a closed geodesic on S whose lengths go to infinity
for the metrics tk. But the orthogonal projection of the polyhedra onto PH2 is
contracting, that means that on Pk/ρk(Γ) the lengths of the same curve on the Pk

go to infinity, that is impossible as the sequence of induced metric converges.
ii) The distance to PH2 is uniformly bounded. As (ρk)k converges the lengths of

any closed curve in S for the metrics tk remain bounded from below by a positive
constant c. Then the lengths of the same curves on the Pk are bounded from below
by c times the inverse of the factor of contraction of the orthogonal projection.
Suppose that the polyhedra go far from PH2 . This factor will becomes arbitrary
large, and then the lengths of the curves will go to infinity that is impossible. This
proves that the distance to PH2 is uniformly bounded from above. It is also bounded
from below as the Pk are convex polyhedral caps above the plane PH2 , and as the
values of the cone-angles on the Pk are uniformly bounded.

iii) The sequence of the coordinates of the vertices converges. First we need to
“normalize” the sequence of polyhedra in order to avoid trivial divergences of the
sequence of polyhedral embeddings (typically we want to avoid one vertex to be
sent onto its iterates). It suffices to compose the φk with hyperbolic isometries such
that a point xk on Pk always stay on the same line orthogonal to PH2 . It follows by
ii) that for a k sufficiently large we can assume that xk remain fixed for all k, and
we now denote this point by x. Moreover all the vertices in a same fundamental
domain than x are lying inside a Euclidean cylinder orthogonal to PH2 . Otherwise
the projection onto PH2 of the fundamental domain will give a diverging sequence
of representation, that contradicts i).

Hyperideal vertices don’t collapse. Suppose that v1 and v2 collapse. Then choose
a closed curve γ on the surface going through the point corresponding to x such
that v1 and v2 belong to different components of the complement of γ. In H3 γ
gives curves γk on the polyhedra joining x to one of its iterate, itself being a fixed
point. When v1 goes near v2 (for the Euclidean topology), the geodesic joining
them becomes closer to the ideal boundary, and then the γk must approach the
boundary at infinity, that obliges their lengths to go to infinity, that’s impossible.

The Euclidean coordinates of finite vertices have a converging subsequence as
they must be at bounded hyperbolic distance from x. Moreover they can’t collapse.
Otherwise suppose that two vertices are arbitrarily close in R3. As they remain in
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a compact of H3, they also must be arbitrarily close in H3. But that is impossible
because their distances on the polyhedra are uniformly bounded and because the
polyhedra are convex.

The last thing to prove is that the Euclidean distance between strictly hyperideal
vertices vk and PH2 are uniformly bounded from above. Otherwise the de Sitter
distances between vk and c1 go to 0, but this is impossible. To see this we use the
model described in the proof of Lemma 2.7, where c1 corresponds to the origin in
the Minkowski space of dimension 3. We see a sequence of (closure of) fundamental
domains on Pk for the action of ρk(Γ) as a sequence (Dk)k of convex isometric
space-like embeddings of the disc, with (n + m + p) singular points. Each Dk must
stay out of the light-cone of its vertices, and inside the light-cone of c1. It follows
that if the vk go to c1, then the Dk will be in an arbitrarily neighborhood of a
light-cone for k sufficiently large. But this is impossible: a light-cone (without its
vertex) is a smooth surface, and it cannot be approximate by polyhedral surfaces
with a fixed number of vertices.

5.2.2. Parabolic case. The proof of the properness in the parabolic case is very
close to the one of the Fuchsian case. Let H be an arbitrarily horosphere of the
hyperbolic space, with same center ℓ as the convex parabolic polyhedra (φk, ρk).
We normalize (φk)k as follows. We choose a point s on S and we compose φk with
a parabolic isometry (fixing ℓ) such that the orthogonal projection of φk(s) onto
H always give the same point x. With this normalization we avoid some trivial
divergences has explained in iii) above.

i) The sequence of representations converges. Denote by yk and zk the orthogonal
projections onto H of two iterates of φk(s) under the action of two generators
of the fundamental group of the torus. Together with x they give an Euclidean
parallelogram Qk on H . We project those parallelograms onto a horosphere Hk

concentric to H which is such that the image of Qk has area 1. We keep the notations
Qk, x, yk, zk for the objects projected onto Hk. If the sequence of representations
diverges, we can suppose that the lengths of the Euclidean segments xyk of Hk go
to infinity. As the area is fixed this implies that the lengths of xzk go to 0. For k
sufficiently large, if Pk lies “above” Hk (i.e. some vertices are outside the convex
hull of the orbit of x), then as the orthogonal projection onto Hk is contracting,
the lengths on the Pk of the curves corresponding to xyk will go to infinity, that is
impossible as the sequence of induced metrics converge. If Pk lies “below” Hk then
it is not hard to see that, using the convexity of Pk, the lengths on Pk of the curves
corresponding to xzk are arbitrarily near 0, that is also impossible. It could also
occur that the angle between xyk and xzk degenerates to a flat angle, that is also
forbidden by the convergence of the induced metrics.

ii) The distance to H is uniformly bounded. The argument to prove that the
distance is bounded from above is the same as in the Fuchsian case, as it uses only
the facts that the sequence of representations converges and that the orthogonal
projection is contracting. The argument to prove that the distance in bounded from
below is similar: if the Pk go far from H “below” H , then the projection onto H is
dilating and as the sequence of representations converges, this will imply that there
exists curves on the Pk corresponding to some closed curve on S whose lengths go
to 0.

iii) The sequence of the coordinates of the vertices converges. Recall that we look
at convex parabolic polyhedra up to hyperbolic isometries fixing ℓ which are such
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that the polyhedra can be bijectively projected into the Klein projective model. It
follows that strictly hyperideals vertices can’t “go to infinity”. The other arguments
are similar to the ones used in the Fuchsian case.

6. Proofs of theorems

6.1. Proof of theorems B and B’. We have proved:

X P is a non-empty metric space (Lemma 2.10);
X M is a connected metric space (Lemma 4.1);
X I is a local homeomorphism (Lemma 5.1);
X I is proper (Subsection 5.2).

It follows that I is a finite-sheeted covering map. But M is also simply connected
(Lemma 4.1). It follows that I is a homeomorphism between P and M, that gives
theorems B and B’.

6.2. Proof of Theorem A. There exists only three kinds of totally umbilical
surfaces in the hyperbolic space: they are contained in a sphere, a horosphere or a
totally geodesic plane. If we consider that a cocompact group acts on them, they
must be complete: they are a sphere, a horosphere or a totally geodesic plane. If
the totally umbilical surface is the sphere, the only group acting freely on it is the
trivial one, and we are in the case of Theorem 1.1. If the surface is a horosphere,
the group must be parabolic in the sense we defined it and we are in the case of
Theorem B. If the surface is a totally geodesic plane, the group must be Fuchsian
in the sense we defined it and we are in the case of Theorem B’.
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