
HAL Id: hal-00201803
https://hal.science/hal-00201803

Submitted on 3 Jan 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Failure patterns caused by localized rise in pore-fluid
overpressure and effective strength of rocks

Alexander Rozhko, Yuri Podladchikov, François Renard

To cite this version:
Alexander Rozhko, Yuri Podladchikov, François Renard. Failure patterns caused by localized rise
in pore-fluid overpressure and effective strength of rocks. Geophysical Research Letters, 2007, 34,
pp.L22304. �10.1029/2007GL031696�. �hal-00201803�

https://hal.science/hal-00201803
https://hal.archives-ouvertes.fr


1

Failure patterns caused by localized rise in pore-fluid overpressure and effective strength 1

of rocks 2

3

A.Y. Rozhko1, Y.Y. Podladchikov1, and F. Renard1,24

1Physics of Geological Processes, University of Oslo, PO box 1048 Blindern, 0316 5

Oslo, Norway 6

2LGCA-CNRS-OSUG, University of Grenoble, BP 53, 38041 Grenoble, France7

Abstract.  In order to better understand the interaction between pore-fluid overpressure 8

and failure patterns in rocks we consider a porous elasto-plastic medium in which a 9

laterally localized overpressure line source is imposed at depth below the free surface. 10

We solve numerically the fluid filtration equation coupled to the gravitational force 11

balance and poro-elasto-plastic rheology equations. Systematic numerical simulations, 12

varying initial stress, intrinsic material properties and geometry, show the existence of 13

five distinct failure patterns caused by either shear banding or tensile fracturing. The 14

value of the critical pore-fluid overpressure cp at the onset of failure is derived from 15

an analytical solution that is in excellent agreement with numerical simulations. Finally, 16

we construct a phase-diagram that predicts the domains of the different failure patterns 17

and cp  at the onset of failure. 18
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1.  Introduction22

The effect of the homogeneous pore-pressure increase on the strength of crustal rocks 23

and failure modes has been studied by many authors e.g. [Terzaghi, 1923; Skempton, 24

1961; Paterson and Wong, 2005]. Their results show that, provided that the rocks 25

contain a connected system of pores, failure is controlled by the Terzaghi’s effective 26

stress defined as 27

    ij ij ijp� � �� � �       (1) 28

where ij� is the total stress; p is the pore fluid pressure, and ij� is the Kronecker delta 29

(by convention, compressive stress is positive). 30

However, many geological systems, such as magmatic dykes, mud volcanoes, 31

hydrothermal vents, or fluid in faults, show evidence that pore pressure increase might 32

be localized, instead of being homogeneously distributed [Jamtveit et al., 2004]. 33

Localized pore-pressure variations couple pore-fluid diffusion to rock deformation 34

through the seepage force generated by pressure gradients [Rice and Cleary, 1976]. The 35

seepage force introduces localized perturbation of the effective stress field and may 36

promote various failure patterns. The effect of seepage forces caused by laterally 37

homogeneous pore-pressure increase on failure patterns was recently studied 38

experimentally by [Mourgues and Cobbold, 2003]. In the present study, we explore 39

both numerically and analytically how an essentially two-dimensional, i.e. localized 40

both at depth and laterally, increase in pore-pressure affects failure patterns in porous 41

elasto-plastic rocks. In section 2, we discuss the effect of localized pore pressure 42

increase on tensile and shear failure. Section 3 is devoted to the characterization of the 43

various failure patterns using finite element and finite difference simulations that solve 44
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the gravitational force balance equation and the fluid filtration equation in a poro-45

elasto-plastic medium. In section 4, we predict the fluid pressure at the onset of failure 46

using new analytical solutions. Finally we discuss the geological implications in section 47

5.48

2.  Effect of pore pressure on rock failure 49

In nature, rock failure occurs in two different modes: shear bands and tensile fractures. 50

Laboratory triaxial experiments show that the Mohr-Coulomb criterion (eq. 2) provides 51

an accurate prediction for shear failure [Paterson and Wong, 2005]: 52

   sin( ) cos( )m C� � � ��� �       (2) 53

where 2 2( ) / 4xx yy xy� � � �� � �  is the stress deviator, 
2

xx yy
m p

� �
�

�
� � �  is the mean 54

effective stress, C  is the rock cohesion and �  is the internal friction angle. 55

On the other hand, Griffith’s theory provides a theoretical criterion for tensile failure of 56

a fluid-filled crack [Murrell, 1964]:  57

   m T� � ��� �          (3) 58

where T�  is the tensile strength of the rock. This criterion has also been verified 59

experimentally [Jaeger, 1963].  60

In Figure 1, we show how a homogeneous or localized increase of pore-fluid pressure 61

influences rock failure. There, lm  is the Mohr-Coulomb envelope (eq. 2) and kl  is the 62

tensile cut-off limit (eq. 3). The Mohr circle indicates the initial state of stress, with 63

zero pore-fluid overpressure. As the pore-fluid pressure increases homogeneously by an 64

amount p , the radius of the Mohr circle remains constant and the circle is displaced to 65
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the left until it touches the failure envelope (blue curve). Depending on the location 66

where the circle touches the failure envelope, the formation of shear bands or tensile 67

fractures takes place. In both cases, when pore-fluid pressure increase is homogeneous, 68

the orientation and onset of failure patterns can be predicted [Paterson and Wong,69

2005]. Shear bands form at an angle of 
4 2
	 �

�  to the direction of maximum 70

compressive stress; tensile fractures develop perpendicularly to the direction of 71

maximum tensile stress. 72

We explore a more complex scenario, where the pore-fluid increase is localized into a 73

narrow source, so that seepage forces modify locally the stress-state. As shown on 74

Figure 1c-d, the radius of the initial Mohr circle does not remain constant, as for the 75

homogeneous pore-fluid pressure increase case. For a localized fluid pressure increase 76

equal to p , the radius of the Mohr circle is changed by an amount of p�
 , and the 77

center of the circle is displaced to the left by an amount of p�
 . The two 78

dimensionless parameters �
  and �
  are derived below both by numerical and 79

analytical means and given by (eqs. 14-15).80

3.  Numerical model and numerical results 81

We consider a 2D porous medium embedded in a box of length L  and height h L��82

(Figure 2a). At the bottom of this box, we define a pore-fluid over-pressure source of 83

width w h�� . We consider plane-strain deformation in a material with constant and 84

homogeneous intrinsic properties. We solve numerically the fluid filtration equation 85

and the force balance equation, using a poro-elasto-plastic rheology relationship 86
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between the stress and the strain rates. At initial conditions the deformation of the 87

material and the pore-fluid overpressure are equal to zero everywhere in the system. 88

The initial mechanical state is chosen below the failure limits everywhere in the system. 89

The initial vertical stress V�  (along y axis) is equal to the weight of the overburden. 90

The initial horizontal stress H�  is proportional to the vertical stress: 91

   V

H V

g y
A

� �

� �

� �

�
,        (4) 92

where �  is the total density of the rock including pore fluid, g is the gravitational acceleration, 93

y�  is the depth and A  is a constant coefficient. The initial shear stress is zero everywhere. 94

The top boundary ( 0y � ) has a free surface condition, with zero overpressure ( 0fp � ). The 95

lateral and bottom walls are fixed, with free-slip condition (including the pore-fluid source), 96

and impermeable (excluding pore-fluid source). The boundary conditions on lateral walls 97

represent far-field fluid pressure and mechanical state undisturbed by the localized fluid 98

pressure at the center of the model, which is achieved by using large enough horizontal extent 99

of the models, max( , )L h w . Perturbations of stress and displacement are negligibly small at 100 

the lateral boundaries, thus either fixed stress or fixed displacement lateral boundary conditions 101 

lead to the similar numerical results. At time 0t � , the fluid pressure is slowly increased 102 

everywhere on the source segment ( ( )fp p t� ), until failure nucleates and propagates. The 103 

process of fluid overpressure build up at a small segment of lower boundary is unspecified but 104 

assumed slow compared to the characteristic time for establishing a steady-state distribution of 105 

the fluid pressure. This quasi-static slowly driven evolution of the pressure field in a domain 106 

with constant permeability is governed by the Laplace equation 107 
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   2 0fp
 � .        (5) 108 

The gravitational force balance equation formulated for the total stress is given by 109 

   
0

0

xyxx

yy yx

x y

g
y x

��

� �
�

���
� �� � ��

�� �� � � �� � ��

      (6) 110 

The initial state of the stress defined in (eq. 4) fulfills this relationship. 111 

Using the general approach for poro-elasto-plastic deformation [Rice and Cleary, 1976;112 

Vermeer, 1990], the full strain rate tensor is given by 113 

   pe pl
ij ij ij� � �� �� � �         (7) 114 

where the superscripts pe  and pl  denote the poro-elastic and the plastic components, 115 

respectively. The poro-elastic constitutive relation can be written as: 116 

   2 2
1 2

pe pe f
ij ij kk ij ij

vG G p
v

� � � � � �� � �
�

    (8) 117 

where �  is the Biot-Willis poro-elastic coupling constant [Paterson and Wong, 2005], 118 

v  is the drained Poisson’s ratio, and G  is the shear modulus. The plastic strain rates 119 

are given by 120 

   
0  for  0 or ( 0  and  0)

  for  0 and  0

pl
ij

pl
ij

ij

f f f
q f f

�

� �
�

� � � �

�
� � �

��

��

��
    (9) 121 

Here, we chose the yield function in the form max( , )tension shearf f f� , where tensionf  and 122 

shearf  are yield functions for failure in tension and in shear, respectively, defined as: 123 

   
sin( ) cos( )

tension m T

shear m

f
f C

� � �
� � � �

�� � �
�� � �

     (10) 124 
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The parameter �  in (eq. 9) is the non-negative multiplier of the plastic loading 125 

[Vermeer, 1990], and q  is the plastic flow function, defined as follows for tensile 126 

(associated flow rule) and shear failure (non-associated flow rule), respectively: 127 

   
sin( )

tension m

shear m

q
q �

� �
� �

�� �
�� �

       (11) 128 

where �  is the dilation angle (� �� ). Note that the total stress is used in (eqs. 6,8),129 

whereas the Terzaghi’s effective stress (eq. 1) applies in the failure equations (9-11).130 

Substitution of stresses (eq. 8) into the force balance equation (6) renders gradient of 131 

the fluid pressure, commonly referred as seepage forces, as a cause of the solid 132 

deformation. 133 

Solving this set of equations, we aim to predict the localization and quasi-static 134 

propagation of plastic deformations into either shear bands or tensile fractures. The 135 

term tensile fracture is used here to describe the inelastic material response in the 136 

process zone area that accompanies fracture onset and propagation [Ingraffea, 1987]. 137 

In order to check the independence of the simulation results on the numerical method, 138 

we have developed two codes (finite element and finite difference). Extensive 139 

numerical comparisons indicate that the results converge to the same values when 140 

increasing the grid resolution. The poro-elastic response of codes was tested using a 141 

new analytical solution (see Auxiliary Materials). The plastic response of the code was 142 

tested by stretching or squeezing of lateral walls. The numerical results were consistent 143 

with both numerical [Poliakov et al., 1993] and laboratory experiments of rock 144 

deformation [Paterson and Wong, 2005]. 145 
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In the case when the lateral walls are fixed, but the localized pore-fluid overpressure 146 

increases, the simulations show that the rock starts swelling poro-elastically (Figure147 

2b). When the pore-fluid pressure exceeds a critical threshold value cp  at the injection 148 

source, the homogeneous deformation evolves into a pattern where either a tensile 149 

fracture or highly localized shear bands nucleate and propagate in a quasi-static manner 150 

(Figure 2c).151 

Solving equations (5-11), the model selects the failure mode (shear or tensile) and the 152 

propagation direction. Systematic numerical simulations show the existence of five 153 

distinct failure patterns when the pore-fluid pressure exceeds cp  (Figure 3, see 154 

Auxiliary Materials for animations). Deformation patterns I (normal faulting) and II 155 

(reverse faulting) form by shear failure in compressive ( V H� �� ) and in extensional 156 

initial stress states ( V H� �� ), respectively. Patterns III (vertical fracturing) and IV 157 

(horizontal fracturing) are caused by tensile failure in compressive and extensional 158 

initial stress states, respectively. The nucleation of failure for patterns I-IV is located at 159 

the fluid overpressure source. It is located at the free surface for pattern V, which is 160 

also called soil-piping mode in hydrology [Jones, 1971]. After nucleation at the free 161 

surface as tensile fracture in response to swelling caused by the fluid pressure build up, 162 

pattern V develops by downwards propagation of a tensile failure. 163 

4.  Analytical solution and failure pattern phase diagram 164 

We have derived an analytical solution for pre-failure stress distribution caused by 165 

seepage forces sharing the same set of governing parameters as our numerical setup but 166 

a different geometry of the outer free surface boundary [see Auxiliary Materials]. We 167 
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report an excellent agreement between numerical and analytical predictions of the 168 

maximum pre-failure pore-fluid pressure. In order to calculate this critical pore-fluid 169 

pressure cp , we consider the stress and failure conditions at the fluid source (patterns I-170 

IV in Figure 3) and at the free surface (pattern V in Figure 3). 171 

It follows from the analytical solution that the center, m� , and the radius, � , of the 172 

Mohr circle do not vary along the fluid source segment. They are related by the 173 

following expressions to the initial (and far field or “global’) stresses and to the fluid 174 

overpressure at the localized source [Auxiliary Materials]: 175 

2
V H p�

� �� 
�
� �         (12) 176 

2
V H

m m p p�
� �� � 
�� � � � �       (13) 177 

where two parameters �
  and �
  control the shift of Mohr circle and radius change, 178 

respectively (Figure 1): 179 

1 2 1 11 1 42 1 2 ln( )h
w

�
� �


�

� �
� ��

� � �� �� � �
� �

,       (14) 180 

1 2 1
44 1 ln( )h
w

�
� �


�
�

�
�

.        (15) 181 

Using �  and, according to the Terzaghi’s law (eq. 1), m m p� �� � �  in the local (i.e.182 

evaluated at the potential failure point) failure criteria allows predictions of failure 183 

pattern and initiation criteria as a function of the “global” and undisturbed by the 184 

localized fluid pressure rise far-field stresses V�  and H� . Equations 12-13 can be 185 
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interpreted as a generalized form of the Terzaghi’s law expressed in terms of the far-186 

field stresses for the case of “local” fluid pressure not necessarily equal to the far-filed 187 

fluid pressure. According to (eq. 15), during the fluid pressure increase, the radius of 188 

the Mohr-circle decreases when 42 2 ln( )
V H p

h
w

� � ��
�  is positive (patterns I and III) and 189 

increases when it is negative (patterns II and IV). In the case when 4ln( ) 1h
w

, the 190 

radius of the Mohr circle does not vary. If the rock is incompressible ( 0.5� � ) or if the 191 

Biot-Willis coupling constant is set to zero, then equations (14-15) recovers the 192 

expected Terzaghi’s limit ( 1�
 �  and 0�
 � ) Indeed, the case when the fluid pressure 193 

gradients are not coupled to solid deformation must be in agreement with the classical 194 

effective stress law well supported by experiments with a homogeneous fluid pressure 195 

distribution [Garg and Nur, 1973; Paterson and Wong, 2005].196 

Thus, after evaluating initial stresses at depth y h� �  using (eq. 4) and substitution of �197 

and m� �  from (eqs. 12-13) using (eqs. 14-15) into the shear and tensile failure 198 

conditions (eqs. 2-3), the critical pore-fluid pressure cp  is calculated. Similarly, using 199 

the analytical solution and equation (4) at the free surface we obtain 0H� �  and the 200 

tensile failure condition: 2 c
Tp�
 �� . for failure pattern V. 201 

Based on the above calculations, we obtain a generalized expression for failure criteria 202 

for all failure patterns as a linear combination of initial stresses evaluated at appropriate 203 

depth: 204 

    !( ) c
b H V V H fk k k k p� �� � � �� � � � �      (16) 205 
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By rearranging, we obtain a unified expression for the critical pore-fluid pressure cp :206 

    !( )b V H V Hc

f

k k k
p

k
� �� � � �� � � �

�     (17) 207 

where bk , k� , k� , and fk  are constant coefficients (see Table 1) for the various failure 208 

patterns shown on Figure 3. Using these coefficients and equation (17), the phase-209 

diagram for the different failure patterns can be calculated. The minimum value of cp210 

for patterns I-V defines the pore-fluid overpressure at failure nucleation (Figure 4, red 211 

colors). If 0cp " , the rock is at failure without fluid overpressure (Figure 4, white 212 

color). In Figure 4, the vertical axis corresponds to the vertical stress V�  and the 213 

horizontal axis to the stress difference  !V H� �� , both axes being normalized by C ,214 

the cohesion of the rock. Any initial stress state in the model corresponds to a point on 215 

the diagram. The contours in the colored regions plot the dimensionless pressure 216 

2*c c

T

p p�

�

�  at failure onset. If the value of the localized pore-fluid pressure is smaller 217 

than *cp , then the system is stable. However, if it is equal or larger, then the porous 218 

material fails with a predictable pattern-onset, that depends on the position in the phase 219 

diagram. 220 

White thick lines on Figure 4 define the topology of transition boundaries between 221 

different failure patterns ( c c
i jp p�  where i  and j  are patterns I-V in (eq. 17) and 222 

Table1, i j#  ). Their equations can be calculated using equation (17) and the 223 

parameters given in Table 1. If a point in the failure diagram lies on one of these 224 
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transition lines, the yield functions for the two corresponding domains are both equal to 225 

zero, implying that both failure modes could occur. 226 

5.  Conclusion 227 

We present an analytical and numerical analysis of the effect of a localized pore-fluid 228 

pressure source on the failure pattern of crustal rocks. The main results are the 229 

following: 230 

- Depending on the initial conditions, the geometry, and the material properties, 231 

five different patterns of failure can be characterized, either with tensile or shear 232 

mode. 233 

- The critical fluid pressure at the onset of failure could also be determined for all 234 

failure patterns and an analytical solution for cp  is given in equation (17) and 235 

Table 1.236 

These results can be used in many geological applications, including the formation of 237 

hydrothermal vent structures triggered by sill intrusion [Jamtveit et al., 2004], the 238 

aftershocks activities caused by motions of fluids inside faults [Miller et al., 2004], or 239 

the tremors caused by sediments dehydration in subduction zones [Shelly et al., 2006]. 240 

Finally, our simulations did not allow studying any transient effects in the fluid 241 

pressure during fracture propagation. It has also been shown that fluid lubrication 242 

[Brodsky and Kanamori, 2001] could have strong effect on the dynamics of rupture 243 

propagation. We are currently neglecting these additional effects, which could be 244 

integrated in an extended version of our model. 245 

246 
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Figure captions 289 

290 
Figure 1.  Effect of homogeneous (a, b) vs. localized (c, d) pore-fluid pressure increase 291 

on the failure. lm  is the Mohr-Coulomb failure envelope (2); kl  is the tensile cut-off 292 

boundary (3). The Mohr circles for initial stress conditions are represented in green. 293 

The Mohr circles after a pore-fluid increase p  are represented in blue (at failure). 294 

Arrows show the transformation of the Mohr circle after pore-fluid pressure increase. 295 

The rock fails either in shear mode, or in tension, when the Mohr circle meets the 296 

failure envelopes kl  or lm , respectively. Note that for localized pore-fluid pressure 297 

increase, the radius of the Mohr circle is changed (increase or decrease) by an amount 298 

p�
  and the center is displaced to the left by an amount p�
 . The two dimensionless 299 

parameters �
  and �
  are given in equations 14-15.300 
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301 

Figure 2.  Geometry of the plane-strain model (a) and representative stages of 302 

deformation before (b) and during failure (c). The color coding represents the pore-fluid 303 

pressure normalized to the pressure at the onset of failure cp . The horizontal layering 304 

represents passive markers of the deformation. 305 
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306 

307 

Figure 3.  Possible failure patterns caused by the localized pore-fluid pressure increase. 308 

Either shear bands (I, II) or tensile fractures (III, IV, V) can develop. Fracture nucleates 309 

either on the fluid source at depth (I, II, III, IV) or on the free surface (V). Horizontal 310 

passive marker layering, arrows, and color coding (contours of strain deviator$ )311 

indicate the displacement and intensity of the deformation. (See Auxiliary Materials for 312 

animations and for numerical parameters used in simulations). 313 
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314 

Figure 4.  Phase diagram of failure-onset patterns. On the vertical axis the non-315 

dimensional vertical stress is plotted, while on the horizontal axis the non-dimensional 316 

stress-difference between vertical and horizontal stresses is plotted. Stresses are given 317 

at the fluid source at depth. The colored region represents the admissible stress state at 318 

which the rock is stable, while the outer region represents the unstable combination of 319 

stresses. The colors plot the non-dimensional critical fluid pressure. The bold white 320 

lines represent the topology of transitions between the different failure modes. 321 

Interestingly, failure patterns IV and V may occur both in extensional and in 322 

compressive initial stress state.323 

324 
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Table 1.  Critical pore-pressure  !( )b V H V Hc

f

k k k
p

k
� �� � � �� � � �

�  at the onset of 325 

failure, corresponding to the various failure patterns (I-V) shown on Figure 3. The 326 

coefficients also define the domains in the phase diagram of Figure 4.327 

328 

fk k� k� bk

I 2( sin( ) )� �
 � 
� 2 cos( )C � sin( )� 1

II 2( sin( ) )� �
 � 
� 2 cos( )C �� sin( )�� 1

III 2( )� �
 
� 2 T� 1 1 

IV 2( )� �
 
� 2 T�� -1 1 

V 2 �
 T� 0 0 

329 
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Auxiliary Materials: 

Failure patterns caused by localized rise in pore-fluid overpressure and effective 

strength of rocks 

A.Y. Rozhko1, Y.Y. Podladchikov1, and F. Renard1,2

1 Physics of Geological Processes, University of Oslo, PO box 1048 Blindern, 0316 Oslo, 
Norway

2 LGCA-CNRS-OSUG, University of Grenoble, BP 53, 38041 Grenoble, France 

In Section A of the Auxiliary Materials, we demonstrate the analytical solution and 

derive equations (12-17) of Section 4 in the article. Section B is devoted to the 

comparison of the analytical solution to the numerical tests. Finally, some animations of 

the results shown in Figure 3 are presented in Section C.

A.  Analytical Solution 

In this section we calculate the seepage forces caused by coupling pore-fluid diffusion 

with rock deformation. The procedure for calculating these forces can be divided into six 

successive steps: 

1) The definition of the system of equations for mechanical equilibrium; 

2) the general solution of this system of equations in Cartesian coordinates using the 

complex potential method for poro-elasticity; 

3) the introduction of the curvilinear coordinate system associated with the conformal 

mapping transformation, which allows finding the solution for complex geometry; 

4) the calculation of the general solution of the equilibrium equations for steady-state 

poro-elasticity in curvilinear coordinate system; 

5, 6) and finally, after defining the boundary conditions, the calculation of the particular 

solution. 

A1. System of equations for steady-state poro-elastic deformation 

Following the common approach of [Biot, 1941; Rice and Cleary, 1976], the equations 

for steady-state fluid filtration in a poro-elastic solid are given by: 
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- The stress balance equations for the total stress tensor � ij , without volume forces: 

0xyxx

x y
�� ��

� �
� �

 and 0yy xy

y x
� �� �

� �
� �

     (S1) 

- The steady-state fluid filtration governed by the Laplace equation for fluid pressure fp :

2 2

2 2 0fp
x y

� �� �
� �� �� �� �

       (S2) 

- A constitutive relation between the total stress � ij and the strain � ij :

1 2
2 2 1

f
ij m ij m

ij ij
p

G G
� � � � � �� �

�
� � �

� �
�

     (S3) 

where �ij is the Kronecker delta and the intrinsic material properties are the shear 

modulusG , the drained Poisson’s ratio � , and the Biot-Willis poro-elastic constant�

[Paterson and Wong, 2005].

A2. Complex Potential Method for steady-state poro-elasticity 

Two-dimensional problems in elasticity can be solved using a complex potential method 

(CPM), developed by Kolosov [1909] and Muskhelishvili [1977]. This method has been 

generalized for thermo-elasticity by Lebedev [1937] and others. In this method the 

general solution for the displacements and stresses is represented in terms of two 

analytical functions (potentials) of a complex variable and another complex function for 

temperature distribution [Goodier and Hodge, 1958; Timoshenko and Goodier, 1982]. 

This general solution automatically satisfies the force balance equation and generalized 

Hooke’s law for thermo-elasticity, provided that the function of temperature distribution 

satisfies to the heat conduction equation. The nontrivial part of this method is in 

satisfying the boundary conditions of the specific problem, which is done by conformal 

mapping. 

The equations for poro-elasticity and thermo-elasticity are identical for steady-state fluid 

filtration and heat flow problems. Therefore it is possible to use the complex potential 

method, developed for thermo-elasticity, to solve steady-state poro-elastic problems. 

According to the CPM, the general solution of equations (S1-S3) can be written in the 

form (by convention, compressive stress and strain are positive) [Goodier and Hodge,

1958; Timoshenko and Goodier, 1982; Muskhelishvili, 1977]: 
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% &4 Re ( ) 2 ( , )xx yy
fz p z z� � ' ��� � � �      (S4) 

% & ( , )2 2 ( ) ( ) 2
f

yy xx xy
p z zi z z z d z

z
� � � ' ( � ��� �� � � � � �

�)    (S5) 

2 ( ) ( ) ( ) ( ) ( , )f
x yG u iu z z z z p z z d z*' ' ( ��� � � � � )    (S6) 

Where the plane-strain parameters �  and *  are defined as: 1 2
2 1
� ��

�
�

�
�

 and 3 4* �� � .

The integrals in (eqs. S5-S6) are indefinite (without the integration constant) and the 

superscript “ ' “ denotes differentiation, i.e. ( )( ) zz
z

'' �� �
�

.

In equations (S4-S6), � �z x iy  is the complex variable, x and y  are the usual Cartesian 

coordinates, 1i ��  is the imaginary unit, and the overbar denotes complex conjugation, 

i.e. z x iy� � . ( )z'  and ( )z(  are the complex potentials, which are analytic functions of 

the complex variable z , and are derived from the biharmonic Airy function 

[Muskhelishvili, 1977]. ( , )fp z z  is the solution of Laplace equation (S2), given as a 

function of two complex variables z and z . By introducing the transformation of 

coordinates
2

z zx �
�  and 

2
z zy

i
�

� , the Laplace equation (S2) can be rewritten in the 

form [Timoshenko and Godier,1982; Lavrent’ev and Shabat, 1972]:  
2

( , ) 0fp z z
z z
�

�
� �

.        (S7) 

The fluid filtration pressure creates stresses at the boundaries of the solid. The boundary 

value problem, with given stresses or displacements in curvilinear boundaries, can be 

solved by finding the complex potentials ( )z' and ( )z(  using Muskhelishvili’s method. 

A3. Conformal transformation and curvilinear coordinates 

Conformal mapping is a transformation of coordinates that allows for solving a problem 

with a simple geometry (Figure S1a) and transforming its solution to a more complex 

geometry (Figure S1b). The properties of conformal mapping can be found in [Lavrent’ev

and Shabat, 1972].
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The transformation of a circular domain into an elliptical one is given in a unique way by 

the Joukowsky transform: 

1( )
4
wz +

+
� �           (S8) 

where w  is the width of pore-fluid pressure source as defined in Figure 2 (and Figure

S1b, red line). The complex variable +  is defined through polar coordinates �  and ,  as 

follows (Figure S1a):
ie ,+ �� .         (S9) 

In Figure S1a, *1 � �" "  and 0 2, 	" " ; the internal ( 1� � ) and external ( *� �� )

boundaries are shown by the red and brown curves, respectively. 

We use the polar coordinates �  and ,  in the + -plane, as a non-dimensional system of 

coordinates for the z -plane. The properties of this coordinate system are considered 

below. Any circle const� �  and radius const, �  in the + -plane (Figure S1a) are 

transformed into an ellipse and a hyperbola in the z-plane, respectively (Figure S1b). The 

foci of the ellipse and the hyperbola on the z-plane coincide (Figure S1b). As the 

conformal mapping preserves angles, the two lines const, �  and const� �  are 

perpendicular in the z-plane. Therefore, the polar coordinates �  and ,  can be 

considered as a curvilinear coordinate system in the z-plane. 

Figure S1.  Conformal mapping procedure using the Joukowsky transform and systems 
of Cartesian and curvilinear coordinates. Here w  is the length of pore pressure source 
(red line segment) shown on Figure 2a.
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The Cartesian and curvilinear coordinates on the z-plane are related through: 

2

2

1(1 )cos( )
4

1(1 )sin( )
4

wx

wy

� ,
�

� ,
�

� �

� �
       (S10) 

The Cartesian coordinates of the pore-pressure source (Figure S1b, red line) are given by 

substitution of the circle 1� �  (Figure S1a, red circle) into (eq. S10):

cos( )
2
0

wx

y

,�

�
         (S11) 

The external boundaries *� ��  are represented as brown curves on Figure S1. If 

* 1� �� , the relations (S10) become: 

* 2
*

* 2
*

1cos( )
4

1sin( )
4

wx O

wy O

� ,
�

� ,
�

� �
� � � �

� �
� �

� � � �
� �

 for * 1� �� ��     (S12) 

By neglecting the terms 2
*

1O
�

� �
� �
� �

and taking *
4h
w

� � , the relationship (S12) becomes 

cos( )
sin( )

x h
y h

,
,

�
�

         (S13) 

These equations describe the external boundary, which is given by a circle with radius h ,

for the case when 4 1h
w

��  (Figure S1b, brown curve). We derive the analytical solution 

for this case where 4 1h
w

�� .

A4. General solution of plane poro-elasticity in curvilinear coordinates 

According to Muskhelishvili [1977], the stress and the displacement components in the 

Cartesian and Curvilinear coordinate systems are related by:  

�� ,,� � � �� � �xx yy         (S14) 

 !
2

2

( )2 2
( )yy xx xyi i,, �� �,

� - +� � � � � �
+ - +

�
� � � � �

�
    (S15) 
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and

( )
( )

( ) � ,

- +�
+ - +

�
� � �

�x yu iu u iu        (S16) 

where

1( ) ( )
4
wz- + +

+
� � �          (S17) 

Note that, if 1� � in equations (S15-S16), one obtains using (eq. S17):

2

2 1
( )
( )

� - +
+ - +

�
� �

�
 and 

2  for 0<( ) sin ( )
for < 2sin( )( )

i
i

i
, 	- + ,�

	 , 	+ ,- +
� ��

� � �� �� �
   (S18) 

The equations for stresses (S4-S5) and displacements (S6) in the curvilinear coordinate 

system become: 

 !4 Re ( ) 2 ( , )fp�� ,,� � + � + +� � � . �       (S19) 

2 2

2 2

2 2 ( , )2 ( ) ( ) ( ) ( ) ( )
( ) ( )

fpi d,, �� �,
+ + + +� � � - + + - + + � - + +
� � +- + - +

�/ 0� � �� � � � . � 1 �2 3� � �)
           (S20) 

( ) ( )2 ( ) ( ) ( ) ( ) ( , ) ( )
( ) ( )

fG u iu p d� ,
+ - + - +*' + ' + ( + � + + - + +
� - + - +

� ��
� �� � � � �� �� �� �

)   (S21) 

where

( ) ( )( ) and ( )
( ) ( )

' + ( ++ +
- + - +

� �
. � 1 �

� �
       (S22) 

Using the properties of conformal mapping ( ( ) 0- +� #  and ( ) 0- + # ), the Laplace 

equation (S7) becomes: 
2 ( , ) 0

fp + +
+ +

�
�

� �
        (S23) 

A5. Boundary conditions  

The boundary conditions for the fluid are: 

*

=   for  1
= 0  for 

f

f

p p
p

�

� �

�

�
        (S24) 

and the boundary conditions for the solid are: 
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*

0 and  0 for 1

0 and 0  for 
xy yu

�, ��

� �

� � � �

� � �

� � �
      (S25) 

Note here that if 1� � , and using (eqs. S14-S18), one obtains 0xy�,� �� � �  and 

0yu u� � 4 � .

We define the pore-fluid pressure source inside the continuous medium (Figure S1b, red 

line) as a line segment with constant fluid pressure. The external boundary (Figure S1b,

brown line) has zero pore pressure. We use mixed boundary conditions for the pore 

pressure source 1� �  as in (eq. S25) because the medium is continuous everywhere and 

0y �  is a symmetry line. The external boundary *� ��  is free from load. 

A6. Solution 

We finally present the analytical solution derived using Muskhelishvili’s method. We do 

not show the derivation here, since it is quite lengthy, but we demonstrate that our 

solution fulfills to the boundary conditions. 

The solution of Laplace equation (S23) with the boundary conditions (S24) is given by,

 !
2
*

ln
( , )

ln( )
fp p p

++
+ +

�
� �         (S26) 

This equation can be simplified, using (eq. S8) as follows 

 !
*

ln
( )

ln( )
fp p p

�
�

�
� �         (S27) 

The boundary conditions (S24) are fulfilled by (eq. S27). This equation (S27) gives the 

solution for pore fluid pressure. 

We calculate the complex potentials, which define the solution of problem, as the 

following: 

 !
2

*

1( )
16 ln

p w� +' +
+ �

�
�        (S28) 

 !*ln
( )

4
p w�( +

+ �
�         (S29) 

The explicit expression for the stress components can be found after substitution of (eq.

S26), and (eqs. S28-S29) into (eqs. S19-S20) using (eq. S22), and after simplifications: 
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2 2

2 4

* *

( 1)( cos(2 ))
ln 1

ln( ) 1 2 cos(2 )

p
��

� � � ,
� �

� � � , �

� �
� � � �

� �

� � � �
� � � �
� � � �

   (S30) 

2

2 4
* *

( 1)(cos(2 ) 1)
ln 1

ln( ) 1 2 cos(2 )
p

,,

� � ,
� �

� � � , �
� �

� � � �
� �

� �� �
� �� �

� �� �
   (S31) 

2

2 4
*

( 1) sin(2 )
ln( ) 1 2 cos(2 )

p
�,

� ,
� �

� � , �
�

� �
� �

     (S32) 

The explicit expression for the displacements can be found after substitution of (eqs. S26, 

S28-S29) into (eq. S21), using (eqs. S16, S22), and after simplifications we obtain: 

*

* *cos( ) 1
4 ln 1 4 ln 3

32 ln( )
2

x

p
u w

G
� ,

* � *
� �

� �
� � �

� � � �
/ 0� � � �� � � �� �� � �5 6� � � �� � � �� �

� �� � � �� � � �2 3

          (S33) 

 !
*

*

sin( ) 1
4 ln 1

32 lny

p
u w

G
� ,

* �
�

�
� �

� � �
� �� � � ��� �� � � �

� �� �� �
    (S34) 

In equations (S33-S34), we present the analytical solution for the displacements along x

and y  axes. This solution is parameterized through curvilinear coordinates �  and , .

The solution for displacements along �  and ,  axes is too long to be reproduced here. 

One can find this displacements using (eqs. S33-S34) along with (eq. S16).

Applying the boundary conditions (S25) to equations (S32, S34) shows that the solution 

is fulfilled at the pore overpressure source 1� �  (Figure S1, red curve). The non-zero 

stress components at the pore overpressure source are calculated using (eqs. S30-S31)

along with (eqs. S14-S15) and (eq. S18):

 !*

for 1
lnyy

p
p��

�
� � � �

�
� � � �       (S35) 

 for =1xx p,,� � � �� �        (S36) 

According to equation (1) of the article and equations (S27) and (S35-S36), the effective 

stress at the pore overpressure source becomes 

 !*

 for  1
lnyy

p
p p�

� � �
�

� � � ��       (S37) 
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  for  =1xx p p� � �� � �        (S38) 

At the external boundary *� ��  (Figure S1, brown curve), we obtain 2
*

1
���

�
� �

� � �
� �

O

and 2
*

1O�,�
�

� �
� � �

� �
, since * 1� �� . The boundary conditions (S25) at *� ��  are also 

fulfilled.  

The circumferential stress at the free surface is given by: 

2
* *

1
ln( )

p
O,,� �

� �
� � �

� �
� �
� �

 ( *for =  and =
2xx,,
	� � � � ,� )  (S39) 

According to equation (1) of the paper and equations (S27) and (S39), the non-zero 

component of effective stress at the free surface is given by 

*ln( )xx

p
� �

�
� � �         (S40) 

A7. Critical pore pressure 

We now propose an analytical study in order to derive equation (17) of the paper for the 

fluid pressure cp  at the onset of failure. To do this, we add the initial state of stress given 

by equations (4) to the stress of state which is exerted by the fluid overpressure increase 

(obtained in the Section A6). This is possible due to the additivity of linear poroelasticity 

[Rice and Cleary, 1976]. Both the numerical simulations and the analytical solution show 

that failure initiation takes place either at the fluid source or at the free surface. 

Therefore, in order to calculate cp , we consider the stress and failure conditions below, 

first at the fluid source (patterns I-IV in Figure 3), and second at the free surface (pattern 

V in Figure 3).

Using equations (S37-S38) at ( *
4h
w

� � ) and (eq. 4) (at depth y h� � ) for failure patterns 

I-IV, the Terzaghi’s effective stress tensor at the fluid source segment becomes:  

xx H p p� � �� � � � ,         (S41) 



10

4ln( )
yy V

pp p h
w

�� � �� � � � � ,       (S42) 

0xy� � � .         (S43) 

The analytical solution given in equations (S41-S45) indicates that the stress components 

on the fluid source do not depend on x (Figure 2a).

Using (eq. S41-S45), the mean Terzaghi’s effective stress m� �  and the stress deviator �

can be calculated: 

42 2 ln( )
H V

m
pp p h
w

� � �� ��� � � � �       (S44) 

42 2 ln( )
V H p

h
w

� � �� �
� � .       (S45) 

Substitution of equations (S44) and (S45) into the failure condition (2) for shear failure or 

condition (3) for tensile failure defines cp  for failure patterns 1-IV. Now, referring to the 

parameters �
  and �
  defined in Figure 1 and to the definition of �  after equation (S6),

one obtains from (eqs. S44, S45):

1 2 1 11 1 42 1 2 ln( )h
w

�
� �


�

� �
� ��

� � �� �� � �
� �

,       (S46) 

1 2 1
44 1 ln( )h
w

�
� �


�
�

�
�

.        (S47) 

According to (eq. S47), during the fluid pressure increase, the radius of the Mohr-circle 

decreases when 42 2 ln( )
V H p

h
w

� � ��
�  is positive (Patterns I and III) and increases when it 

is negative (Patterns II and IV) in the case, if 4ln( ) 1h
w

�  the radius of Mohr circle does 

not change. If the rock is incompressible ( 0.5� � ) or the Biot-Willis coupling constant is 
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set to zero equations (eqs. S46-S46) give 1�
 �  and 0�
 �  therefore the seepage force 

does not have an additional effect on failure in this case.

For pattern V in Figure 3, the initial stresses (eq. 4) are zero (at depth 0y � ). Thus after 

substitution of (eq. S40) into (eq. 3) and simplification we obtain the condition for tensile 

failure at the free surface as the following, 

2 c
Tp�
 �� .         (S48) 

By assuming 2
1 sin( ) T

C �
'

�
�

 we obtain that only tensile failure initiation is allowed at the 

free surface. 

B.  Analytical versus numerical approach 

The numerical simulations show that if the initial state of stress ( V�  and H� ) is taken as 

in the form of equations (4), then the nucleation of failure is allowed either at the pore-

pressure source or at the free surface. We compare cp  predicted with the analytical 

solution ((eq. 17) and Table 1) obtained for the geometry shown on Figure S2a, with cp

calculated with the finite element method for the geometry shown on Figure S2b.

Figure S2. Geometry used in the analytical solution (Figure S1) compared to the 
geometry used in the numerical model (Figure 2a).

We studied cp  numerically as a function of all parameters of the model. The vertical 

stress V�  (Pa or bar) and the depth h  (m) are chosen to be equal to 1 and all the 

parameters listed below are non-dimensional compared to these values. Plots on Figure

S3 compare cp  predicted with the analytical solution ( c
ASp ) to cp  calculated with the 
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numerical simulations ( c
NSp ); the different colors representing the various failure patterns. 

The value of cp  is always within a 20% limit between the two approaches. 

Figure S3.  Critical pore pressure at the onset of failure predicted using the analytical 
solution c

ASp  for the geometry shown on Figure S2a compared to the solution of the 
numerical simulations c

NSp  for the geometry shown on Figure S2b. Each point 
corresponds to a single simulation. The different colors correspond to the different failure 
patterns of Figure 3 

List of parameters and values:

Poisson’s ratio: [1: 4]
10

� �  (where the notation [1: 4] denotes the array[1,2,3,4] ). 

Non-dimensional width of overpressure source: 
-[0:5]2
5

w
h

� .

Non-dimensional horizontal stress: [1: 30]
10

H

V

�
�

� .

Non-dimensional cohesion: 
 ![0:50]ln(1 4) ln(3) ln(1 4)

50
e e

V

C e
�

� � � �
� .

Non-dimensional tensile strength: 1 1 1
, ,

3 7 30
T

V V

C�
� �

/ 0� 5 62 3
.

Friction angle (in degrees): 10 [1: 3]o' � .



13

Fixed non-dimensional parameters: 4L
h

� , 710
V

G
�

� , 0o� �  and 1� � .

C.  Animations of the simulations of Figure 3 

Pattern I: 

0.2H

V

�
�

� , 33o' � , 0o� � , 0.1
V

C
�

� , 1T

V

�
�

� , 0.3� � , 710
V

G
�

� , 4L
h

� , -110w
h

� ,

1� � . The first frame in the animation corresponds to the elastic solution at failure 
onset cp p� , the last frame corresponds to the case when 3.5 cp p� . The pore pressure 
increases linearly with time during the animation. 
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Pattern II:  

3H

V

�
�

� , 33o' � , 0o� � , 0.1
V

C
�

� , 0.1T

V

�
�

� , 0.3� � , 710
V

G
�

� , 4L
h

� , -110w
h

� ,

1� � . The first frame in the animation corresponds to the elastic solution at failure 
onset cp p� , the last frame corresponds to the case when 1.8 cp p� . The pore pressure 
increases linearly with time during the animation. 

Pattern III: 

0.1H

V

�
�

� , 33o' � , 0o� � , 0.8
V

C
�

� , 0.266T

V

�
�

� , 0.3� � , 710
V

G
�

� , 4L
h

� , -110w
h

� ,

1� � .The first frame in the animation corresponds to the elastic solution at failure 
onset cp p� , the last frame corresponds to the case when 4 cp p� . The pore pressure 
increases linearly with time during the animation. 
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Pattern IV: 

5H

V

�
�

� , 33o' � , 0o� � , 4
V

C
�

� , 0.266T

V

�
�

� , 0.3� � , 710
V

G
�

� , 4L
h

� , -110w
h

� ,

1� � .The first frame in the animation corresponds to the elastic solution at failure 
onset cp p� , the last frame corresponds to the case when 3.2 cp p� . The pore pressure 
increases linearly with time during the animation. 

Pattern V: 

0.1H

V

�
�

� , 33o' � , 0o� � , 0.8
V

C
�

� , 810T

V

�
�

�� , 0.3� � , 710
V

G
�

� , 4L
h

� , -110w
h

� ,

1� � . The first frame in the animation corresponds to the elastic solution at failure 
onset cp p� , the last frame corresponds to the case when 16 cp p� . The pore pressure 
increases linearly with time during the animation. 
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