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Remote Stabilization via Communication

Networks with a Distributed Control Law

Emmanuel Witrant, Carlos Canudas-de-Wit, Didier Georges Mazen Alamir

Abstract

In this paper we investigate the problem of remote stahitmavia communication networks
involving some time-varying delays of known average dyreni his problem arises when the control
law is remotely implemented and leads to the problem of ktalg an open-loop unstable system with
time-varying delay. We use a time-varying horizon predittodesign a stabilizing control law that sets
the poles of the closed-loop system. The computation of thizdn of the predictor is investigated and
the proposed control law explicitly takes into account aimesion of the average delay dynamics. The
resulting closed loop system robustness with respect tcesameertainties on the delay estimation is
also considered. Simulation results are finally presented.

Index Terms

Networked control systems, stabilization with time-vagyidelays, state predictor.

I. INTRODUCTION

The networked control systems constitute a new class ofr@osystems including specific
problems such as delays, loss of information and data psod&® problem studied in this paper
concerns the remote stabilization of unstable open-losfesys. The sensor, actuator and system
are assumed to be remotely commissioned by a controllenrteathanges measurements and

control signals through bossless communication network (all lost packets are re-emittedg W
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assume that the communication network has its own dynamnsihat an estimator or a model
for the average induced time-delay is available. As an exanpe CUMSUM Kalman filter
proposed in [1] can be used to estimate the delay from somesureraents of the round-trip time
or of a single channel delay. Another possibility is to estienthe delay from some established
model, such as those proposed in [2], [3], which are derieedbical networks where the transfer
protocol (TP) is set by the users and where a router (whichpcasibly inform the emitters of
the instantaneous queue length) manages the packets.

Some experimental results [4], [5], [6] on control over netks illustrate the fact that latency
and jitter have a crucial effect on the closed-loop perfaroes, while practical solutions can
be used to reduce the effect of packet losses to an accepable Our work is then focused
on the compensation of the delays induced by the network aittontrol law that explicitly
takes into account an estimation of these delays. We canaldge that the remotely controlled
system may be unstable, as the teleoperation of open-losfahle systems with time-varying
delays has been scarcely studied yet. Airplane drone aeeparated vehicles are examples of
open-loop unstable and remotely controlled systems.

An interesting survey on time delay systems is proposed JinwWliere different control laws
are compared. The control approach developed in this papeased on the design of a state
predictor. Compared to other latency compensation mettmdash as the one proposed in [8]
(based on output feedback and GPS synchronization), trentattye of a control strategy based
on the use of a state predictor is to allow for a “pole-placetthen the closed-loop system.

The state predictor is used in [9], [10], [11] to achieve atdimpectrum assignment on systems
with delayed output, state or input. The previous works amegalized in [12] with the concept
of system reduction (infinite to finite spectrum assignmente problem of time-varying delays
is studied more specifically in [13], which predictor is inded in aH > control scheme in [14].
The explicit use of the latency dynamics in the computatibthe predictor’s horizon is detailed
in [15], [16], where we supposed that a network model waslabis. These results are first
summarized to describe the ideal case and then extendee twafie where only an estimation
of the network latency is available to set the control lawisTiB done thanks to an appropriate
investigation of the closed-loop system robustness wipeet to some latency estimation errors.

This paper is organized as follows. The control problem waed is formulated as the

problem of stabilizing a time-delay system with a state [wted which has a time-varying
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horizon in section Il. The computation of the horizon andék@icit use of the average network
dynamics is investigated in section Ill. The robustnessefresulting control setup with respect
to some uncertainties on the network model is presentedeirséition, along with a simulation

example.

[I. PROBLEM FORMULATION

Before dealing with a particular transmission protocol ayiics, we aim at exploring how the
control design can be elaborated for a system where thentiasi®n delay is considered as an

autonomous stable system. More precisely, we consideersgsof the form:

#(t) = Ax(t)+ Bu(t—7(t), (0)= = 1)
y(t) = Ca(t) (2)
() = f(0),uat), 2(0) =2 (3)
T(t) = h(z(t),ua(?)) 4)

wherex € R" is the internal statey € R is the control inputy € R™ is the system output,
and A, B, C are matrices of appropriate dimensions. The p@aitsB) and (A4, C) are assumed
to be controllable and observable, respectively, duhay be unstable. The signaj(¢) and the
functions f(-) and h(-) are assumed to be some known continuous functions in thisnadm
case. These hypothesis will be relaxed later on the papetigqedV), where only the estimated
dynamics are taken into account. Equation set (3)-(4) dessrthe internal delay dynamics
representing the transmission channel. We assume thablatlans of model (3)-(4), have the
following properties for allt > 0

Tmaz > T(t) >0 (5)

1—v>17(t) (6)

wherer,,.. > 0 is an upper bound of the time-variation oft) and1 > v > 0 is an arbitrarily
small constant determined by the delay dynamics. These ¢wdittons on the delay are a direct
consequence of the fact that we consider reliable trangnisetworks. To understand this, first

note that the time-delay considered is the latency expegiby the transmitted signal and may

be different from the delay measured on the network. Frosghbint of view,7 = 1 means that
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Fig. 1. Time-delay on the actuator (a) and measurement ¢bpks.

the signal considered is blocked in the communication |mdefinitely since the latency grows
as fast as the current tinte which contradicts the lossless data property.

The control setup is presented on Figure 1(a). This speadiation of the delay, between the
control setup and the system, is motivated by the fact thait mbthe destabilizing effect and
technical difficulties to solve the problem come from thisagidocation. Indeed, if we consider
an induced delay, (t) located between the system and the control setup, as ine~igby, then

we can set the control law
t
u(t) = —K |emx(t —7(t)) + 6At/ 6_AeBu(9)d9}
t—T1
= —Kux(t)

wherer (t) is estimated or directly measured. Keeping track of therobimiput during the time

[t — 7, t], the resulting closed-loop system has the dynamics
t(t) = (A— BK)x(t)

and the remote stabilisation problem reduces to a traditipole placement problem. An error
in the predictor computation only introduces a consideratin the robustness with respect to
some disturbances on the input signal. A setup with two deilaystudied in an observer-based

control scheme in [15] but will not be presented here.

A. Control design

Due to the inherent time-variation of the delay considereckhit is not possible to design a
controller that imposes an invariant closed-loop spectiastead, under certain weak conditions,

we are able to set the eigenvalues dimae-varying shifted system, or equivalently we transform
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the time-invariant delayed unstable open-loop systeno, anstable time-varying linear system.
The control design proposed here is similar to the one usgBirin an adaptive control context.
The system transformation is done by replacing the currer@ # by the shifted time coordinate
t+4d(t) in (1), which results in

2 (t40(t)) = Ax(t + 0(t)) + Bu(t + 6(t) — 7(t + (2))), (7)
where 2/(-) is the derivative ofz(-) with respect to its argument ant¢) is a bounded and
positive time-depending function. Definingt) as

o) =T1(t+ (1)) (8)

and considering first the problem of state feedback stalitin, the eigenvalues of the time-

varying shifted system (7) are set with the control input
ot +06) = e [x(t) + et / v e Bu(0 — T(e))de]
u(t) = —Kuz(t+0(t)). t 9)
The resulting closed-loop equation is then
2(t+0(t) = (A— BK)x(t+6(t)) = Aqx(t + 0(t)) (10)

where A, is the closed loop state matrix, that can be made Hurwitz lgy dbntrollability
hypothesis on th¢A, B) pair.

B. Sability analysis

The stability analysis of the time-varying system (10) ahd tesulting constraints on the
dynamics ofé(t) is detailed in the following Lemma, which proof is given ing]1

Lemma 2.1: Assume thaBd(t) satisfying (8), such that the control law (9) applied to eyst
(7) leads to the closed-loop form (10). Then if the followicgnditions hold:

i) All the real parts of the eigenvalues df, are in the open left hand side of the complex

plane,

i1) 00 > 0y > 6(t) >0,
iii) oo > p > 0(t) > —1 with p an arbitrarily large positive constant.
then,lim; . [|[xz(t +0(¢))|| =0 V t+ () > d with 6o = 6(0) and for all bounded values of
x(dg). Furthermore, the state(t + 4(¢)) is exponentially stable.
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The stability result of the pervious lemma is applied to tigetem considered thanks to the
following proposition.
Note that the hypothesdsi) and (iii) of the previous Lemma are always satisfied for the
delay models defined by (3)-(4) and satisfying the cond#i@)-(6). Indeed, hypothesig:)
is clearly satisfied from the definition of(¢) and (5) while (i) is obtained from (6). More
precisely, taking the time-derivative of (8) and from thetfthat7(¢) # 1Vt, we can write
- dr(¢)/d¢
i(t) = T=ar(()/dC
Hypothesis(iii) is then satisfied if
dr d
- éfiéfdc =
The left part of this inequality clearly always holds since

dr(¢)/d¢ — 1 < dr(¢)/d¢ & —1 < %

-1<

and the right part is also satisfied since (6) implies
1 1 dr(¢)/d¢ 1—v

v S isarjie M T e < o

finally ensures thap is finite, from the properties af.

1—v

Choosingp =
We can then conclude on the stability of the closed loop syst&h the following corollary,
which summarizes the previous discussion.
Corollary 2.1: The control law (9) applied to the system (1)-(4), where tle¢ay satisfies

(5)-(6), has a bounded solution and the system trajectexpsnentially decrease to zero.

[Il. COMPUTATION OF 6(t) AND USE OF THE TIME-DELAY MODEL

The computation of the control law implies to continuoustyve (8) for §(¢) and to keep a
history of the past control inputs during a time-interi¢at 7(¢), t]. The existence of a solution to
this equation implies that(-) satisfies (5)-(6). It is solved analytically (for specifidaiemodels)
or numerically (time consuming) in [16]. A more conveniendeefficient way to computé(t)

is to use directly the delay dynamics. This is achieved by @iedining the function

~

s(t) = 0(t) — 7(t + 6(¢t)) (11)

February 14, 2007 DRAFT



whereé(t) is the computed estimate 6ft). The idea is to find a variation law farsuch that the
manifold s(t) = 0 is rendered attractive and invariant, consequently enguthiatd converges
asymptotically tod. In order to prevent for the numerical instabilities, thendsnics ofs(¢) is
defined as

$(t) 4+ As(t) =0 (12)

where\ is a positive constant. Taking the derivative of (11) witbpgect to time and substituting

$in (12), we obtain

=7 )1+ +Ao—7(0) =0 (13)

where((t) = t + §(t) and’(-) is the derivative ofr(-) with respect to its argument. From the

previous equation, (12) is satisfiedif(-) # 1 and the variation law(¢) is set with
Sy = ——20 T+ MY (14)
1=7()  1=7(0)

This explicit expression for the dynamics 6ft) then ensures that the approximate) converges

to the desired valué(t), and that the functiors(¢) exponentially converges to zero. The
convergence speed can be set arbitrarily fast by choosisgfficiently small, and we directly
use the delay dynamics () and7'({) are given by (3)-(4)). To illustrate the computation of
5, consider the case wherdt) — =(t): (14) is then set using(() = =(¢) and ' (¢) = #/(¢) =

~ ~

f(2(€), ua(C)).

The influence of the dynamics aft) introduced in (11) on the closed-loop system is studied
with the following lemma, which is a synthesis of the resyltesented in [17].

Lemma 3.1: Consider the closed-loop system described by

~

2'(t+0) = Agz(t +96) + BK[z(t + ) —xz(t +0)], (0) =z (15)

with ¢ obtained from (14). If
. 7(t) satisfies the properties (5)-(6),

o A, IS a Hurwitz matrix,
1 —
A< — VA ,
2[6(0) = 7(6(0))]
then the trajectories of(¢ + 0) are asymptotically stable.

Proof: (Outline) The previous lemma is established from the faat the stability of the

transformed system
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S 2(C) = (A— BK)a(C) + BKA / " o(C+0)d0

—€5

—(BK)? /_ U a(C + 0)do

2es
wherees(t) = 6(t) — 8(t) and ((t) = t + &(t), implies the stability of (15). This transformed

system is obtained using the Leibniz-Newton formula
0
2(C) = (A — BK)2(C) + BK / 2+ 0)d
s
The behaviour of; is then investigated thanks to the Lyapunov-Krasovskicfiomal [18]

V(z(() = z(Q)"Px(C)
1 _1 & /—05 [/Cjex(ﬂ)TS$(M)dM] df

a —€5 ¢ T
T / [ / (1) Sx(u)du} a6
1 =26 J_oe; LJcto

1 — 2¢s

+

with P, S some positive definite matrices, = sup, és(¢) and0 < a < . Taking the time-

derivative of this functional along the system trajecterid (14)-(15) ensures, if the hypotheses
of the lemma are satisfied, the stability of the system cameutl [ |
The previous lemma is now applied to the proposed contrareehin the following theorem.
Theorem 3.1: Consider the system (1) wittd, B) a controllable pair. Assume that the delay
dynamics (3)-(4) is such that (5)-(6) hold for &Jlthen the feedback control law (9) based on
the estimated predictor’s horizoﬁt) which dynamics are described by (14) with
dh, -

() = % (2(¢), ua(C))

dz  » 2 y
21O = EOu0). #(0) =z

and \ satisfying the conditions stated in lemma 3.1, ensuresthigatrajectories of:(t) decrease
asymptotically to zero.

Proof. First note that the time-shifted system
Z'(t +6) = Az(t + §) + Bu(t)

with u(t) = —Kuz(t + §) writes as (15) by adding and subtractiBg<z(t + §) to the previous
dynamic equation. Thanks to Lemma 3.1 and conditions (B)t(@ proposed control law then
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allows for a pole placement on the time-shifted system desdrby the state:(¢ + ) and A,
in (10) is made Hurwitz with a proper choice éf. Therefore, the time-shifted state converges
asymptotically with the proposed control law. Finally, thiability of z(¢) is deduced from the

fact that the system (1)-(2) is linear and its states canivatrge in finite time. [ |

V. ROBUSTNESSANALYSIS

The aim of this section is to study the robustness of the sygtB-(4) stabilized by the
state feedback (9) with respect to some delay uncertainfiesse uncertainties are due to the
difference that may exist between the delay model (3)-(4) #e true delay induced by the

communication channel.

A. Problem formulation

In order to study the robustness of the control setup witpeesto delay uncertainties, we
investigate their influence on the dynamics of the closeqlsystem. The dynamics of the

estimated delay is obtained from

Ht) = f(2(t),ua(t), 2(0) =% (16)
F(t) = he(2(t), uqe(t)) (17)

where f.(-) and h.(-) are some continuous functions,is the internal state of the model and
uge IS an exogenous input to this model, possibly including sorasvork measurements. An
example of such dynamics is provided by the Kalman filter tgslan [1], determined by the
combination of Kalman filtering and CUMSUM change-detettibat sets the delay estimation
strategy. Another possibility is to use some network mqdsleh as the one provided in [2],
which relate the dynamics of the emitters window size andhefrouters queue length to the
network protocol (the TCP case is investigated in the retework).

The estimated delay satisfies the conditighs, > 7(t) > 0 andsup7(t) = 7 < 1.
Considering that such a model exists and is compared to thalasetwork induced delay with
the error parametees, andeé,, defined age,,, €y} = sup,{e(t), é(t)}, wheree(t) = 7(t)—7(t),
the aim of this section is to determine if, for a chosen feelllgmin K, the closed-loop system

remains stable whefe,,, €y} # {0,0}. The predicted state feedback is computed from the
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10

delay model and the resulting closed-loop system writes as
(t) = Ax(t)+ Bu(t—7(t))

ut) = —Ke0 {x(t)

t+8(t)
+ett / e Bu(0 — 7(6))db
t

whered(t) = 7(t + 6(t)) is the prediction horizon computed from (16)-(17)+£ 7 = § # 9).
The controller outputi(t) can be expressed, equivalently, as

~

u(t) = —Kz(t+6(t) + Au(t) (18)
where
) t+5(t)
A, (t) = —KeA(H‘S(t))/ e Y Blu(9 — 7(0))
t
—u(0 — 7(0))]do
The resulting closed-loop system is then defined by the fomak differential equation
2 (t+0(t)) = Ax(t + 6(t)) — BKxz(t + (1)) + BAL(t) (19)

While a direct Lyapunov-Krasovskii analysis (similar teetbne used in the previous section)
of this problem is very conservative [19], some more intiémgsresults can be obtained by
neglecting the effect of\, in the previous dynamics.

Indeed, (18) can be expressed equivalently@$ — A, (¢) = —Kxz(t + 5(¢)), which can be
considered as a functional equation with) as an input. If the delay is small\,(¢)|/|u(t)] is
small, and the dynamics of the functional equation is stablé fast converging. The effect of
A, can then be easily ignored. The same conclusion holds wheedtimation error is small,

since

. A, is proportional to the difference(d — 7(0)) — u(6 — 7(0)) and is bounded since there
is no singularity in the system and the integration is cdroe a finite-time horizon,

« |u(t)| is proportional to|z(t + 6(t))

which implies thatA,| is proportional to the distande(6) — (6 — 7(0) +6(0 — 7(6)))|, where

0 e [t, t+6(t)). If we suppose that this distance is sufficiently small toueashe robustness of
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11

the origin stability, or if the delay is sufficiently smalhen the stability of (19) can be deduced
from the stability of
2 (t+6(t) = Ax(t +6(t)) — BKz(t + 6(t)) (20)

Note that this is a qualitative result based on the vanisipegurbation theory [20]. From a
physical point of view, it is equivalent to consider that tim@in disturbing effect of the delay

estimation error acts on the fundamental dynamics of (19).

B. Proposed solution

We consider here themall gain approach for time-delay systems proposed in [21], applied

to the stability analysis of

#(¢) = Az(() — BKx(¢ —€5(t)) (21)
= (A= BEK)x(¢) + BK [2(C) — x(C — e(1))]

wherees(t) = 0(t) — 6(t) and¢ = ¢ + &(¢). The previous equation is first written as a function
of the average, constant value of the ertpr(i.e. ¢, = [maxe(t) — mine(t)]/2) thanks to the

relationship
(—¢€a

£(C — e(t)) = 2(C — ) - / +'(0)df

C—es(t)
Note that the average and maximum values;0f) are the same as those «t). The dynamics

of the resulting system is then

7'(¢) = Az(() — BKx(¢ — €a)
B [T [Au(0) — BE(0— es(0))] d6
¢—es(t)

with 2(0) = $(6), 0 € [ty — exr, tol, (o, &) € RT x C

n,epm "

equality is considered as an uncertainty and the closgul4$getem writes as

The integral term in the previous

Ysg = G<usg>7 Usg = A(ysg)

wherey,, = [y1ya]7, usy, = [u1 uz)?, andG and A are defined as
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5 G

i €ar €dy EM
U Al
U2 Y2

S— e

€ay €d E]\/[) 65(t)

Fig. 2. Small gain formulation.

(7)) = Ax(@i) — BKx(C — €) + €aBKuy(C)
G y(t) = ﬁx(ﬂ (22)
L 12(t) = Ax(t) — BKuy(t)
(w(t) = Aw(t) = VT = anp(t — e(t)
A 1 l—€a (23)
us(t) = Agyo(t) = —/ ya(0)do
\ €d Ji—es(t)

wheree; = max{ey — €45 €, — €} @nde,, = inf,(e(t)). The interconnection betweer and A

is presented in figure IV-B. Note that this specific formwataims at separating the expressions
with constant (in) and time dependent (iA) values ofes(¢). The stability of the interconnected
system is obtained by showing that the gain of both subsysténand A are less then one.
The main advantage of this formulation is that the stabdityhe closed loop system is inferred
from the stability ofG, which is a system with @onstant time-delay. More precisely, we first
consider the following result [21]

Y0(Akx,) < 1, for all non-singular matricex(, € R™", k = 1,2,
where~,(-), the gain of the system considered, ahgl, are defined respectively as

Yo(H) = inf{~| [|H f||2 < 7||f]|2, and

Akaf = XkAk(Xk_lf), for all f c L2+}.

L., denotes the set of functions : R, — R", R being the closed set of square integrable
reals, i.e.,[;” || f(t)||* is well defined and finite. We can then conclude on the stgtoiit(21)

by applying the following proposition.
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Proposition 4.1: [21] The input-output stability of system (21) is ensuredhié scaled small
gain problem
7(Gx) <1 for X = diag(X; Xa),
X1,X5 € R™™ non singular,
has a solution, wheré&' is described by (22).
Consequently, we have to find the sufficient conditions thatdstimation error has to fulfil in
order to ensure that the gain Gfis bounded by one. This is done with the following propositio

Proposition 4.2: Consider the syster& described by
o(t) = Aox(t) + Ax(t —r)+ Eu(t)
y(t) = Gox(t) + Gix(t —r) + Du(t),

a given set of non-singular matrice®, and Z = {X7X|X € X}. There exists aX € X
such thaty,(Gx) < 1 if there exists aZ € Z and real matrice®® = P*, Q,, S,, R,, = R!

qp’

p=0,1,...,N,q=0,1,..., N such that the following LMIs are satisfied:

A ~-Ds  —Do N
j P Q
-DT R;+S; 0 > 0, - - 1>0

T R+ S
— DT 0 35, ©
where
~ ~ .1
Q = (Q Q1 ... Qn), S= Edzag(So S1 ... Sy)
ROO ROI
s . T
R == Rgl . 5 h — N
; RNN
Aw Qn—PA —GIZG, —PE-GIZD
A= |  Sy-Gfzo _GTZD
(*) (%) 7 -DTZD
Ag = —PAy—ATP—Qo—QF — So— G ZGy
D = <Df D;V)
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D AT Qo+ Q) + 5 (Roypo + Foy)
_(Qp—l - Qp)

Dy= | n, h
5141 (Qp1+Qp) — §<RN,p—1 + Rn,)
h
§ET(Qp—1 + Qp)
D* = <D§” D§”V>
n _Ag(Qp—l - Qp) - (RO,p—l - RO,p)
Dg = 9 —A1T(Qp—1 — Qp) + (Ryp-1 — Rnyp)
ET<QP - Q:n—1)
Rain Raz
Ry = Rdle
Rann

deq = h(Rp—l,q—l_qu)

Sa = diag(Sat Sa2 ... San), Sap=Sp-1— S
This result is applied to the system considered by uéiﬁ:g% and

((Ay=A, A =-BK, E=/[0u, cBK]
1

L
GO = \ 1- €M 5 Gl = 02n><n
A (24)

Oan Oan

—BK 0,xn

D —

\

from which we can compute the maximum average estimaticor @m the delay, for a given
maximum variation of this error.

Example 4.1: Consider the “T” shape inverted pendulum described by theaadycs

0 1 0 0 0
. —18.78 0 1482 0 7.52
T = T+ u(t — )
0 0 0 1 0
| 5692 0 —1518 0| | —8.82 |

The controller gaink  is chosen such that the poles of the matriy are [-8 + 0.5i; —8 —

0.5i; —16; —32]. The results obtained in proposition 4.2 are applied with ridlationships (24)
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Fig. 3. Influence of the delay estimation error.

ande; = 2¢,. The estimated delay averagé€t) is based on the model proposed in [2] and
depicted in figure 3(a).

This example aims at illustrating the fact that the closmaplsystem remains stable if the error
fits within the bounds estimated in this section. We suppbaéthe error and estimated delay
maximum variations are the sanmg; = v = 0.6167, which givese, = 5.9ms. The error trial
function ise(t) = €, + €, sin <€—M t) and we study the system response when the actual delay
is 7(t) = 7(t) + €(t) or 7(t) = ;?t) — ¢(t). The system response to a non zero initial condition
is presented in figure 3(a) in the first case and in figure 3(bheénsecond case. The oscillating
delayr(t) applies to the data travelling from the control setup to tfstesm, while the estimation
7(t) is used to compute the predictor horizon. The time evolstiohthe pendulum anglé(t)
and positionz(¢) illustrate the sensitivity of the system to the estimatiome

This simulation result illustrates the capability of th@posed control law to stabilize the system
considered when the error satisfies the conditions estedlis this section. Note that the closed-

loop system fails to stabilize i, is increased by ms.

V. CONCLUSIONS

In this paper we have investigated the problem of remoteiltatiion via communication
networks, which is formulated as the problem of stabilizamgopen-loop unstable system with

a time-varying delay with known dynamics. The proposed i@bletr results in an exponentially
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converging closed-loop system, under weak assumptiores.cdhtroller is based on &t)-step
ahead predictor, wheré(t) is the solution of the implicit equation — 7(¢ + §) = 0, which

is shown to be solved if the time delay is bounded. A dynamiatgm of this equation is
detailed, allowing for the explicit use of the average nekndynamics in the control law. The
robustness of the control law with respect to time-delayeuainties is also studied and a LMI
formulation allows to compute the maximum admissible bauod the delay estimation error.
We have presented a simulation showing the capability af ¢bintroller to robustly stabilize a
system when the average delay is estimated and the actagl skisfies some computed error

bounds.
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