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Remote Stabilization via Communication

Networks with a Distributed Control Law

Emmanuel Witrant, Carlos Canudas-de-Wit, Didier Georges and Mazen Alamir

Abstract

In this paper we investigate the problem of remote stabilization via communication networks

involving some time-varying delays of known average dynamics. This problem arises when the control

law is remotely implemented and leads to the problem of stabilizing an open-loop unstable system with

time-varying delay. We use a time-varying horizon predictor to design a stabilizing control law that sets

the poles of the closed-loop system. The computation of the horizon of the predictor is investigated and

the proposed control law explicitly takes into account an estimation of the average delay dynamics. The

resulting closed loop system robustness with respect to some uncertainties on the delay estimation is

also considered. Simulation results are finally presented.

Index Terms

Networked control systems, stabilization with time-varying delays, state predictor.

I. INTRODUCTION

The networked control systems constitute a new class of control systems including specific

problems such as delays, loss of information and data process. The problem studied in this paper

concerns the remote stabilization of unstable open-loop systems. The sensor, actuator and system

are assumed to be remotely commissioned by a controller thatinterchanges measurements and

control signals through alossless communication network (all lost packets are re-emitted). We
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assume that the communication network has its own dynamics,and that an estimator or a model

for the average induced time-delay is available. As an example, the CUMSUM Kalman filter

proposed in [1] can be used to estimate the delay from some measurements of the round-trip time

or of a single channel delay. Another possibility is to estimate the delay from some established

model, such as those proposed in [2], [3], which are derived for local networks where the transfer

protocol (TP) is set by the users and where a router (which canpossibly inform the emitters of

the instantaneous queue length) manages the packets.

Some experimental results [4], [5], [6] on control over networks illustrate the fact that latency

and jitter have a crucial effect on the closed-loop performances, while practical solutions can

be used to reduce the effect of packet losses to an acceptablelevel. Our work is then focused

on the compensation of the delays induced by the network witha control law that explicitly

takes into account an estimation of these delays. We consider also that the remotely controlled

system may be unstable, as the teleoperation of open-loop unstable systems with time-varying

delays has been scarcely studied yet. Airplane drone and tele-operated vehicles are examples of

open-loop unstable and remotely controlled systems.

An interesting survey on time delay systems is proposed in [7], where different control laws

are compared. The control approach developed in this paper is based on the design of a state

predictor. Compared to other latency compensation methods, such as the one proposed in [8]

(based on output feedback and GPS synchronization), the advantage of a control strategy based

on the use of a state predictor is to allow for a “pole-placement” on the closed-loop system.

The state predictor is used in [9], [10], [11] to achieve a finite spectrum assignment on systems

with delayed output, state or input. The previous works are generalized in [12] with the concept

of system reduction (infinite to finite spectrum assignment). The problem of time-varying delays

is studied more specifically in [13], which predictor is included in aH∞ control scheme in [14].

The explicit use of the latency dynamics in the computation of the predictor’s horizon is detailed

in [15], [16], where we supposed that a network model was available. These results are first

summarized to describe the ideal case and then extended to the case where only an estimation

of the network latency is available to set the control law. This is done thanks to an appropriate

investigation of the closed-loop system robustness with respect to some latency estimation errors.

This paper is organized as follows. The control problem considered is formulated as the

problem of stabilizing a time-delay system with a state predictor which has a time-varying
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horizon in section II. The computation of the horizon and theexplicit use of the average network

dynamics is investigated in section III. The robustness of the resulting control setup with respect

to some uncertainties on the network model is presented in the section, along with a simulation

example.

II. PROBLEM FORMULATION

Before dealing with a particular transmission protocol dynamics, we aim at exploring how the

control design can be elaborated for a system where the transmission delay is considered as an

autonomous stable system. More precisely, we consider systems of the form:

ẋ(t) = Ax(t) + Bu(t − τ(t)), x(0) = x0 (1)

y(t) = Cx(t) (2)

ż(t) = f(z(t), ud(t)), z(0) = z0 (3)

τ(t) = h(z(t), ud(t)) (4)

wherex ∈ Rn is the internal state,u ∈ R is the control input,y ∈ Rm is the system output,

andA, B, C are matrices of appropriate dimensions. The pairs(A, B) and(A, C) are assumed

to be controllable and observable, respectively, butA may be unstable. The signalud(t) and the

functionsf(·) and h(·) are assumed to be some known continuous functions in this nominal

case. These hypothesis will be relaxed later on the paper (section IV), where only the estimated

dynamics are taken into account. Equation set (3)-(4) describes the internal delay dynamics

representing the transmission channel. We assume that all solutions of model (3)-(4), have the

following properties for allt ≥ 0

τmax ≥ τ(t) ≥ 0 (5)

1 − ν ≥ τ̇(t) (6)

whereτmax ≥ 0 is an upper bound of the time-variation ofτ(t) and1 > ν > 0 is an arbitrarily

small constant determined by the delay dynamics. These two conditions on the delay are a direct

consequence of the fact that we consider reliable transmission networks. To understand this, first

note that the time-delay considered is the latency experienced by the transmitted signal and may

be different from the delay measured on the network. From this point of view,τ̇ = 1 means that
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Fig. 1. Time-delay on the actuator (a) and measurement (b) signals.

the signal considered is blocked in the communication link indefinitely since the latency grows

as fast as the current timet, which contradicts the lossless data property.

The control setup is presented on Figure 1(a). This specific location of the delay, between the

control setup and the system, is motivated by the fact that most of the destabilizing effect and

technical difficulties to solve the problem come from this delay location. Indeed, if we consider

an induced delayτ1(t) located between the system and the control setup, as in Figure 1(b), then

we can set the control law

u(t) = −K

[

eAτ1x(t − τ1(t)) + eAt

∫ t

t−τ1

e−AθBu(θ)dθ

]

= −Kx(t)

whereτ1(t) is estimated or directly measured. Keeping track of the control input during the time

[t − τ1, t], the resulting closed-loop system has the dynamics

ẋ(t) = (A − BK)x(t)

and the remote stabilisation problem reduces to a traditional pole placement problem. An error

in the predictor computation only introduces a consideration on the robustness with respect to

some disturbances on the input signal. A setup with two delays is studied in an observer-based

control scheme in [15] but will not be presented here.

A. Control design

Due to the inherent time-variation of the delay considered here, it is not possible to design a

controller that imposes an invariant closed-loop spectrum. Instead, under certain weak conditions,

we are able to set the eigenvalues of atime-varying shifted system, or equivalently we transform
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the time-invariant delayed unstable open-loop system, into a stable time-varying linear system.

The control design proposed here is similar to the one used in[13] in an adaptive control context.

The system transformation is done by replacing the current time t by the shifted time coordinate

t + δ(t) in (1), which results in

x′(t + δ(t)) = Ax(t + δ(t)) + Bu(t + δ(t) − τ(t + δ(t))), (7)

where x′(·) is the derivative ofx(·) with respect to its argument andδ(t) is a bounded and

positive time-depending function. Definingδ(t) as

δ(t) = τ(t + δ(t)) (8)

and considering first the problem of state feedback stabilization, the eigenvalues of the time-

varying shifted system (7) are set with the control input

x(t + δ) = eAδ
[

x(t) + eAt

∫ t+δ

t

e−AθBu(θ − τ(θ))dθ
]

u(t) = −Kx(t + δ(t)). (9)

The resulting closed-loop equation is then

x′(t + δ(t)) = (A − BK)x(t + δ(t)) = Aclx(t + δ(t)) (10)

where Acl is the closed loop state matrix, that can be made Hurwitz by the controllability

hypothesis on the(A, B) pair.

B. Stability analysis

The stability analysis of the time-varying system (10) and the resulting constraints on the

dynamics ofδ(t) is detailed in the following Lemma, which proof is given in [16].

Lemma 2.1: Assume that∃δ(t) satisfying (8), such that the control law (9) applied to system

(7) leads to the closed-loop form (10). Then if the followingconditions hold:

i) All the real parts of the eigenvalues ofAcl are in the open left hand side of the complex

plane,

ii) ∞ > δM ≥ δ(t) ≥ 0,

iii) ∞ > ρ > δ̇(t) > −1 with ρ an arbitrarily large positive constant.

then, limt→∞ ||x(t + δ(t))|| = 0 ∀ t + δ(t) ≥ δ0 with δ0 = δ(0) and for all bounded values of

x(δ0). Furthermore, the statex(t + δ(t)) is exponentially stable.
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The stability result of the pervious lemma is applied to the system considered thanks to the

following proposition.

Note that the hypotheses(ii) and (iii) of the previous Lemma are always satisfied for the

delay models defined by (3)-(4) and satisfying the conditions (5)-(6). Indeed, hypothesis(ii)

is clearly satisfied from the definition ofδ(t) and (5) while(iii) is obtained from (6). More

precisely, taking the time-derivative of (8) and from the fact that τ̇ (t) 6= 1 ∀t, we can write

δ̇(t) =
dτ(ζ)/dζ

1 − dτ(ζ)/dζ

Hypothesis(iii) is then satisfied if

−1 <
dτ(ζ)/dζ

1 − dτ(ζ)/dζ
< ρ.

The left part of this inequality clearly always holds since

dτ(ζ)/dζ − 1 < dτ(ζ)/dζ ⇔ −1 <
dτ(ζ)/dζ

1 − dτ(ζ)/dζ

and the right part is also satisfied since (6) implies

1

ν
≥ 1

1 − dτ(ζ)/dζ
and

dτ(ζ)/dζ

1 − dτ(ζ)/dζ
<

1 − ν

ν

Choosingρ =
1 − ν

ν
finally ensures thatρ is finite, from the properties ofν.

We can then conclude on the stability of the closed loop system with the following corollary,

which summarizes the previous discussion.

Corollary 2.1: The control law (9) applied to the system (1)-(4), where the delay satisfies

(5)-(6), has a bounded solution and the system trajectoriesexponentially decrease to zero.

III. COMPUTATION OF δ(t) AND USE OF THE TIME-DELAY MODEL

The computation of the control law implies to continuously solve (8) for δ(t) and to keep a

history of the past control inputs during a time-interval[t−τ(t), t]. The existence of a solution to

this equation implies thatτ(·) satisfies (5)-(6). It is solved analytically (for specific delay models)

or numerically (time consuming) in [16]. A more convenient and efficient way to computeδ(t)

is to use directly the delay dynamics. This is achieved by first defining the function

s(t) = δ̂(t) − τ(t + δ̂(t)) (11)
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whereδ̂(t) is the computed estimate ofδ(t). The idea is to find a variation law for̂δ such that the

manifold s(t) = 0 is rendered attractive and invariant, consequently ensuring that δ̂ converges

asymptotically toδ. In order to prevent for the numerical instabilities, the dynamics ofs(t) is

defined as

ṡ(t) + λs(t) = 0 (12)

whereλ is a positive constant. Taking the derivative of (11) with respect to time and substituting

ṡ in (12), we obtain
˙̂
δ − τ ′(ζ̂)(1 +

˙̂
δ) + λ(δ̂ − τ(ζ̂)) = 0 (13)

where ζ̂(t) = t + δ̂(t) and τ ′(·) is the derivative ofτ(·) with respect to its argument. From the

previous equation, (12) is satisfied ifτ ′(·) 6= 1 and the variation law˙̂
δ(t) is set with

˙̂
δ(t) = − λδ̂

1 − τ ′(ζ̂)
+

τ ′(ζ̂) + λτ(ζ̂)

1 − τ ′(ζ̂)
(14)

This explicit expression for the dynamics ofδ̂(t) then ensures that the approximateδ̂(t) converges

to the desired valueδ(t), and that the functions(t) exponentially converges to zero. The

convergence speed can be set arbitrarily fast by choosingλ sufficiently small, and we directly

use the delay dynamics (τ(ζ̂) and τ ′(ζ̂) are given by (3)-(4)). To illustrate the computation of
˙̂
δ, consider the case whereτ(t) = z(t): (14) is then set usingτ(ζ̂) = z(ζ̂) and τ ′(ζ̂) = z′(ζ̂) =

f(z(ζ̂), ud(ζ̂)).

The influence of the dynamics ofs(t) introduced in (11) on the closed-loop system is studied

with the following lemma, which is a synthesis of the resultspresented in [17].

Lemma 3.1: Consider the closed-loop system described by

x′(t + δ) = Aclx(t + δ) + BK[x(t + δ) − x(t + δ̂)], x(0) = x0 (15)

with δ̂ obtained from (14). If

• τ(t) satisfies the properties (5)-(6),

• Acl is a Hurwitz matrix,

• 0 < λ <
1 − ν

2|δ̂(0) − τ(δ̂(0))|
,

then the trajectories ofx(t + δ) are asymptotically stable.

Proof: (Outline) The previous lemma is established from the fact that the stability of the

transformed system
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Σt : x′(ζ) = (A − BK)x(ζ) + BKA

∫ 0

−ǫδ

x(ζ + θ)dθ

−(BK)2

∫

−ǫδ

−2ǫδ

x(ζ + θ)dθ

where ǫδ(t) = δ(t) − δ̂(t) and ζ(t) = t + δ(t), implies the stability of (15). This transformed

system is obtained using the Leibniz-Newton formula

x′(ζ) = (A − BK)x(ζ) + BK

∫ 0

−ǫδ

x′(ζ + θ)dθ

The behaviour ofΣt is then investigated thanks to the Lyapunov-Krasovskii functional [18]

V (x(ζ)) = x(ζ)T Px(ζ)

+
1

1 − ǭδ

∫ 0

−ǫδ

[∫ ζ

ζ+θ

x(µ)T Sx(µ)dµ

]

dθ

+
α

1 − 2ǭδ

∫

−ǫδ

−2ǫδ

[
∫ ζ

ζ+θ

x(µ)T Sx(µ)dµ

]

dθ

with P , S some positive definite matrices,ǭδ
.
= supt ǫ̇δ(t) and0 < α <

1 − 2ǭδ

ǭδ

. Taking the time-

derivative of this functional along the system trajectories of (14)-(15) ensures, if the hypotheses

of the lemma are satisfied, the stability of the system considered.

The previous lemma is now applied to the proposed control scheme in the following theorem.

Theorem 3.1: Consider the system (1) with(A, B) a controllable pair. Assume that the delay

dynamics (3)-(4) is such that (5)-(6) hold for allt, then the feedback control law (9) based on

the estimated predictor’s horizon̂δ(t) which dynamics are described by (14) with

τ ′(ζ̂) =
dh

dζ̂
(z(ζ̂), ud(ζ̂))

dz

dζ̂
(ζ̂) = f(z(ζ̂), ud(ζ̂)), z(0) = z0

andλ satisfying the conditions stated in lemma 3.1, ensures thatthe trajectories ofx(t) decrease

asymptotically to zero.

Proof: First note that the time-shifted system

x′(t + δ) = Ax(t + δ) + Bu(t)

with u(t) = −Kx(t + δ̂) writes as (15) by adding and subtractingBKx(t + δ) to the previous

dynamic equation. Thanks to Lemma 3.1 and conditions (5)-(6), the proposed control law then
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allows for a pole placement on the time-shifted system described by the statex(t + δ) andAcl

in (10) is made Hurwitz with a proper choice ofK. Therefore, the time-shifted state converges

asymptotically with the proposed control law. Finally, thestability of x(t) is deduced from the

fact that the system (1)-(2) is linear and its states cannot diverge in finite time.

IV. ROBUSTNESSANALYSIS

The aim of this section is to study the robustness of the system (1)-(4) stabilized by the

state feedback (9) with respect to some delay uncertainties. These uncertainties are due to the

difference that may exist between the delay model (3)-(4) and the true delay induced by the

communication channel.

A. Problem formulation

In order to study the robustness of the control setup with respect to delay uncertainties, we

investigate their influence on the dynamics of the closed-loop system. The dynamics of the

estimated delaŷτ is obtained from

˙̂z(t) = fe(ẑ(t), ude(t)), ẑ(0) = ẑ0 (16)

τ̂ (t) = he(ẑ(t), ude(t)) (17)

wherefe(·) and he(·) are some continuous functions,ẑ is the internal state of the model and

ude is an exogenous input to this model, possibly including somenetwork measurements. An

example of such dynamics is provided by the Kalman filter updates in [1], determined by the

combination of Kalman filtering and CUMSUM change-detection that sets the delay estimation

strategy. Another possibility is to use some network models, such as the one provided in [2],

which relate the dynamics of the emitters window size and of the routers queue length to the

network protocol (the TCP case is investigated in the referred work).

The estimated delay satisfies the conditionsτ̂max ≥ τ̂ (t) ≥ 0 and sup ˙̂τ(t) = ν̂ < 1.

Considering that such a model exists and is compared to the actual network induced delay with

the error parametersǫM andǭM defined as{ǫM , ǭM} .
= supt{ǫ(t), ǫ̇(t)}, whereǫ(t)

.
= τ(t)−τ̂ (t),

the aim of this section is to determine if, for a chosen feedback gainK, the closed-loop system

remains stable when{ǫM , ǭM} 6= {0, 0}. The predicted state feedback is computed from the
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delay model and the resulting closed-loop system writes as

ẋ(t) = Ax(t) + Bu(t − τ(t))

u(t) = −KeAδ̂(t)

[

x(t)

+eAt

∫ t+δ̂(t)

t

e−AθBu(θ − τ̂(θ))dθ

]

where δ̂(t) = τ̂(t + δ̂(t)) is the prediction horizon computed from (16)-(17) (τ̂ 6= τ ⇒ δ̂ 6= δ).

The controller outputu(t) can be expressed, equivalently, as

u(t) = −Kx(t + δ̂(t)) + ∆u(t) (18)

where

∆u(t)
.
= −KeA(t+δ̂(t))

∫ t+δ̂(t)

t

e−AθB[u(θ − τ̂(θ))

−u(θ − τ(θ))]dθ

The resulting closed-loop system is then defined by the functional differential equation

x′(t + δ(t)) = Ax(t + δ(t)) − BKx(t + δ̂(t)) + B∆u(t) (19)

While a direct Lyapunov-Krasovskii analysis (similar to the one used in the previous section)

of this problem is very conservative [19], some more interesting results can be obtained by

neglecting the effect of∆u in the previous dynamics.

Indeed, (18) can be expressed equivalently asu(t) − ∆u(t) = −Kx(t + δ̂(t)), which can be

considered as a functional equation withx(·) as an input. If the delay is small,|∆u(t)|/|u(t)| is

small, and the dynamics of the functional equation is stableand fast converging. The effect of

∆u can then be easily ignored. The same conclusion holds when the estimation error is small,

since

• ∆u is proportional to the differenceu(θ − τ̂(θ)) − u(θ − τ(θ)) and is bounded since there

is no singularity in the system and the integration is carried on a finite-time horizon,

• |u(t)| is proportional to|x(t + δ̂(t))|,

which implies that|∆u| is proportional to the distance|x(θ)−x(θ− τ(θ)+ δ̂(θ− τ(θ)))|, where

θ ∈ [t, t+ δ̂(t)]. If we suppose that this distance is sufficiently small to ensure the robustness of
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the origin stability, or if the delay is sufficiently small, then the stability of (19) can be deduced

from the stability of

x′(t + δ(t)) = Ax(t + δ(t)) − BKx(t + δ̂(t)) (20)

Note that this is a qualitative result based on the vanishingperturbation theory [20]. From a

physical point of view, it is equivalent to consider that themain disturbing effect of the delay

estimation error acts on the fundamental dynamics of (19).

B. Proposed solution

We consider here thesmall gain approach for time-delay systems proposed in [21], applied

to the stability analysis of

x′(ζ) = Ax(ζ) − BKx(ζ − ǫδ(t)) (21)

= (A − BK)x(ζ) + BK [x(ζ) − x(ζ − ǫδ(t))]

whereǫδ(t)
.
= δ(t) − δ̂(t) and ζ = t + δ(t). The previous equation is first written as a function

of the average, constant value of the errorǫa (i.e. ǫa = [max ǫ(t) − min ǫ(t)]/2) thanks to the

relationship

x(ζ − ǫδ(t)) = x(ζ − ǫa) −
∫ ζ−ǫa

ζ−ǫδ(t)

x′(θ)dθ

Note that the average and maximum values ofǫδ(t) are the same as those ofǫ(t). The dynamics

of the resulting system is then

x′(ζ) = Ax(ζ) − BKx(ζ − ǫa)

+BK

∫ ζ−ǫa

ζ−ǫδ(t)

[Ax(θ) − BKx(θ − ǫδ(θ))] dθ

with x(θ) = φ(θ), θ ∈ [t0 − ǫM , t0], (t0, φ) ∈ R
+ × Cν

n, ǫM
. The integral term in the previous

equality is considered as an uncertainty and the closed-loop system writes as

ysg = G(usg), usg = ∆(ysg)

whereysg = [y1 y2]
T , usg = [u1 u2]

T , andG and∆ are defined as
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ǫa, ǫd, ǭM

ǫa, ǫd, ǭM , ǫδ(t)





u1

u2









y1

y2


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Fig. 2. Small gain formulation.

G :



















x′(ζ) = Ax(ζ) − BKx(ζ − ǫa) + ǫdBKu2(ζ)

y1(t) =
1√

1 − ǭM

x(t)

y2(t) = Ax(t) − BKu1(t)

(22)

∆ :











u1(t) = ∆1y1(t) =
√

1 − ǭMy1(t − ǫ(t))

u2(t) = ∆2y2(t) =
1

ǫd

∫ t−ǫa

t−ǫδ(t)

y2(θ)dθ
(23)

whereǫd
.
= max{ǫM − ǫa; ǫa − ǫm} andǫm

.
= inft(ǫ(t)). The interconnection betweenG and∆

is presented in figure IV-B. Note that this specific formulation aims at separating the expressions

with constant (inG) and time dependent (in∆) values ofǫδ(t). The stability of the interconnected

system is obtained by showing that the gain of both subsystems G and ∆ are less then one.

The main advantage of this formulation is that the stabilityof the closed loop system is inferred

from the stability ofG, which is a system with aconstant time-delay. More precisely, we first

consider the following result [21]

γ0(∆kXk
) ≤ 1, for all non-singular matricesXk ∈ R

n×n, k = 1, 2,

whereγ0(·), the gain of the system considered, and∆kXk
are defined respectively as

γ0(H) = inf{γ| ||Hf ||2 ≤ γ||f ||2, and

∆kXk
f = Xk∆k(X

−1
k f), for all f ∈ L2+}.

L2+ denotes the set of functionsf : R+ → R
n, R being the closed set of square integrable

reals, i.e.,
∫

∞

0
||f(t)||2 is well defined and finite. We can then conclude on the stability of (21)

by applying the following proposition.
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Proposition 4.1: [21] The input-output stability of system (21) is ensured ifthe scaled small

gain problem

γ0(GX) < 1 for X = diag(X1 X2),

X1,X2 ∈ R
n×n non singular,

has a solution, whereG is described by (22).

Consequently, we have to find the sufficient conditions that the estimation error has to fulfil in

order to ensure that the gain ofG is bounded by one. This is done with the following proposition

Proposition 4.2: Consider the systemG described by

ẋ(t) = A0x(t) + A1x(t − r) + Eu(t)

y(t) = G0x(t) + G1x(t − r) + Du(t),

a given set of non-singular matricesX , and Z .
= {XTX|X ∈ X}. There exists aX ∈ X

such thatγ0(GX) < 1 if there exists aZ ∈ Z and real matricesP = P T , Qp, Sp, Rpq = RT
qp,

p = 0, 1, . . . , N , q = 0, 1, . . . , N such that the following LMIs are satisfied:










∆̃ −D̃s −D̃a

−D̃sT Rd + Sd 0

−D̃aT 0 3Sd











> 0,





P Q̃

Q̃T R̃ + S̃



 > 0

where

Q̃
.
= (Q0 Q1 . . . QN ), S̃

.
=

1

h
diag(S0 S1 . . . SN)

R̃
.
=











R00 R01 . . .

RT
01

. . .
... RNN











, h =
r

N

∆̃
.
=











∆00 QN − PA1 − GT
0 ZG1 −PE − GT

0 ZD

(∗) SN − GT
1 ZG1 −GT

1 ZD

(∗) (∗) Z − DT ZD











∆00
.
= −PA0 − AT

0 P − Q0 − QT
0 − S0 − GT

0 ZG0

D̃s .
=

(

Ds
1 . . . Ds

N

)
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Ds
p

.
=



















h

2
AT

0 (Qp−1 + Qp) +
h

2
(R0,p−1 + R0,p)

−(Qp−1 − Qp)
h

2
AT

1 (Qp−1 + Qp) −
h

2
(RN,p−1 + RN,p)

h

2
ET (Qp−1 + Qp)



















D̃a .
=

(

Da
1 . . . Da

N

)

Da
p

.
=

h

2











−AT
0 (Qp−1 − Qp) − (R0,p−1 − R0,p)

−AT
1 (Qp−1 − Qp) + (RN,p−1 − RN,p)

ET (Qp − Qp−1)











Rd
.
=











Rd11 Rd12 . . .

RT
d12

. . .
... RdNN











Rdpq
.
= h(Rp−1,q−1 − Rpq)

Sd
.
= diag (Sd1 Sd2 . . . SdN ), Sdp

.
= Sp−1 − Sp

This result is applied to the system considered by usingh =
ǫa

N
and











































A0 = A, A1 = −BK, E = [0n×n ǫdBK]

G0 =





1√
1 − ǭM

In

A



 , G1 = 02n×n

D =





0n×n 0n×n

−BK 0n×n





(24)

from which we can compute the maximum average estimation error on the delay, for a given

maximum variation of this error.

Example 4.1: Consider the “T” shape inverted pendulum described by the dynamics

ẋ =















0 1 0 0

−18.78 0 14.82 0

0 0 0 1

56.92 0 −15.18 0















x +















0

7.52

0

−8.82















u(t − τ)

The controller gainK is chosen such that the poles of the matrixAcl are [−8 + 0.5i;−8 −
0.5i;−16;−32]. The results obtained in proposition 4.2 are applied with the relationships (24)
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(a)

τ(t) = τ̂ (t) + ǫ(t)

τ̂ (t)

θ(t)

z(t)

time (s)

E
st

.
&

re
al

d
el

ay
s

(m
s)

S
ys

.
re

sp
o

n
se

(b)

τ(t) = τ̂ (t) − ǫ(t)

τ̂ (t)

θ(t)

z(t)

time (s)

Fig. 3. Influence of the delay estimation error.

and ǫd = 2ǫa. The estimated delay averagêτ(t) is based on the model proposed in [2] and

depicted in figure 3(a).

This example aims at illustrating the fact that the closed-loop system remains stable if the error

fits within the bounds estimated in this section. We suppose that the error and estimated delay

maximum variations are the same:ǭM = ν̂ = 0.6167, which givesǫa = 5.9ms. The error trial

function is ǫ(t) = ǫa + ǫa sin

(

ǭM

ǫa

t

)

and we study the system response when the actual delay

is τ(t) = τ̂(t) + ǫ(t) or τ(t) = τ̂ (t) − ǫ(t). The system response to a non zero initial condition

is presented in figure 3(a) in the first case and in figure 3(b) inthe second case. The oscillating

delayτ(t) applies to the data travelling from the control setup to the system, while the estimation

τ̂(t) is used to compute the predictor horizon. The time evolutions of the pendulum angleθ(t)

and positionz(t) illustrate the sensitivity of the system to the estimation error.

This simulation result illustrates the capability of the proposed control law to stabilize the system

considered when the error satisfies the conditions established in this section. Note that the closed-

loop system fails to stabilize ifǫa is increased by2 ms.

V. CONCLUSIONS

In this paper we have investigated the problem of remote stabilization via communication

networks, which is formulated as the problem of stabilizingan open-loop unstable system with

a time-varying delay with known dynamics. The proposed controller results in an exponentially
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converging closed-loop system, under weak assumptions. The controller is based on aδ(t)-step

ahead predictor, whereδ(t) is the solution of the implicit equationδ − τ(t + δ) = 0, which

is shown to be solved if the time delay is bounded. A dynamic solution of this equation is

detailed, allowing for the explicit use of the average network dynamics in the control law. The

robustness of the control law with respect to time-delay uncertainties is also studied and a LMI

formulation allows to compute the maximum admissible bounds on the delay estimation error.

We have presented a simulation showing the capability of this controller to robustly stabilize a

system when the average delay is estimated and the actual delay satisfies some computed error

bounds.
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