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Abstract. The surface roughness of several stylolites in limestones was measured using 19 

high resolution laser profilometry. The 1D signals obtained were statistically analyzed to 20 

determine the scaling behavior and calculate a roughness exponent, also called Hurst 21 

exponent. Statistical methods based on the characterization of a single Hurst exponent 22 

imply strong assumptions on the mathematical characteristics of the signal: the derivative of 23 

the signal (or local increments) should be stationary and have finite variance. The analysis 24 

of the measured stylolites show that these properties are not always verified simultaneously. 25 

The stylolite profiles show persistence and jumps and several stylolites are not regular, with 26 

alternating regular and irregular portions. A new statistical method is proposed here, based 27 

on a non-stationary but Gaussian model, to estimate the roughness of the profiles and 28 

quantify the heterogeneity of stylolites. This statistical method is based on two parameters: 29 

the local roughness (H) which describes the local amplitude of the stylolite, and the amount 30 

of irregularities on the signal (μ), which can be linked to the heterogeneities initially present 31 

in the rock before the stylolite formed. Using this technique, a classification of the stylolites 32 

in two families is proposed: those for which the morphology is homogeneous everywhere 33 

and those with alternating regular and irregular portions. 34 

Key words: stylolites, roughness, scaling analysis, heterogeneity 35 

36 
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1. Introduction 37 

The geometrical characterization of rough profiles or surfaces is a widespread problem in 38 

various geological examples such as erosion patterns (Dunne, 1980; Cerasi et al., 1995), 39 

multiphase fluid percolation in porous rocks (Rubio et al., 1989), fractures (Schmittbuhl et 40 

al., 1993), or stylolites (Renard et al., 2004). In these studies, the scaling behavior of 41 

various data sets was investigated, showing that the statistics at one scale could be 42 

extrapolated to another scale using a power law relationship. 43 

For a self-affine function h(x), a scaling relationship is defined when the signal follows a 44 

power law relationship under a dilation of a factor λ 45 

  ( ) ( )xhxh Dλλ =       (1) 46 

where x is the spatial coordinate and h is a scalar field, λ is the scaling scalar, and D is the 47 

scaling exponent. 48 

Applying this property to 1D discrete signals, involves working on the increments δh(x) of 49 

the function h. The self-similar property of a 1D data set h(x) emerges when the increments 50 

of the signal follows 51 

  ( )( ) ( )( )xhxh H δλλδ =       (2) 52 

where H is the so-called Hurst exponent (Feder, 1988; Meakin, 1998). 53 

This scaling approach is based on two assumptions on the mathematical properties of the 54 

signal. First, increments of the signal have finite variance distribution and, second they are 55 

stationary, which means that the statistics are independent of the position along the signal. 56 

In the case of a signal with increments that follow a Gaussian distribution (that has a finite 57 

variance by definition), the roughness of the signal can be deduced from the scaling 58 

exponent.  59 

For a function ( )xh  with the property: 60 
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  ( ) ( ) 0HyxCyhxh −≤− ,     (3) 61 

where x and y are two different points along the signal and C is a constant, H0 is defined as 62 

the Hölder exponent (Daubechies, 1992). When the increments of a signal are Gaussian and 63 

stationary, the Hölder exponent is equal to the Hurst exponent. 64 

In this contribution, the assumption of Gaussian stationary increments of several 1D data 65 

sets is tested, based on roughness measurements of various stylolites in limestones. We 66 

show that these profiles do not verify the Gaussian stationary increments property, and we 67 

propose a new technique to characterize the statistics of these signals by introducing two 68 

parameters: the localized roughness exponent H, and a second parameter μ, which 69 

characterizes the quantity of irregularities in the system at all scales. Applied to stylolites, 70 

this parameter can be used to quantify the degree of heterogeneity in the rock initially 71 

present before the stylolitization process.  We also show that heterogeneities have an effect 72 

only above a millimeter scale. 73 

We first present some examples showing how heterogeneities determine the location of 74 

some stylolite peaks. Then the two-parameter statistical description of stylolite roughness is 75 

used to help characterize such heterogeneities. 76 

2. The roughness of stylolites 77 

2.1. Self-similar scaling of stylolites 78 

Stylolites are rough surfaces that develop by stress-enhanced dissolution in crustal rocks 79 

(Dunnington, 1954; Park and Schot, 1968; Bathurst, 1971; Bayly, 1986). Anticrack models 80 

have been proposed to describe their initial stage of nucleation and propagation as a flat 81 

interface (Fletcher and Pollard, 1981; Koehn et al., 2003; Katsman and Aharonov, 2006). 82 

With time, the stylolites roughen and acquire their typical wavy geometry (Figures 1, 2). 83 
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The wide range of morphological geometries of such surfaces makes them difficult to 84 

characterize using a simple scaling approach. However, it has been shown that stylolites 85 

have self-similar scaling properties (Karcz and Scholz, 2002; Renard et al., 2004; 86 

Schmittbuhl et al., 2004). These studies are based on the assumption that the morphological 87 

statistics of the stylolites do not vary laterally along the plane of the interface. 88 

Here, the topography of stylolites in limestones was measured using high-resolution laser 89 

profilometers that acquire (1+1)D roughness profiles (Figure 2). Some stylolites were split 90 

open to reveal the complex 2D geometry of their surface. Using this method, described in 91 

Renard et al., (2004), (2+1)D maps of stylolite roughness can be obtained with an accuracy 92 

of up to 0.003 mm, on a regular grid of 0.03 to 0.125 mm depending on the kind of 93 

profilometer used. The (2+1)D maps were built by combining (1+1)D profiles on a square 94 

grid with a constant discretization interval. For each stylolite surface, the result is a (2+1)D 95 

height field from which the mean plane was removed by a least-square method. 96 

Using these data, stylolitic 1D profiles were found to show two different self-affine regimes 97 

at large and small length scales (Figure 3). Two signal processing techniques were used: the 98 

Fourier Power Spectrum (FPS) and the Averaged Wavelet Coefficient (AWC). 99 

FPS decomposition techniques are standard tools used to characterize the scaling behaviour 100 

of stationary increments signals (Kahane and Lamarié-Rieusset, 1998). Assuming finite 101 

variance stationary increments of a signal, the Hurst exponent H (eq. 2) can be deduced 102 

from the power-law behaviour of the Fourier Power Spectrum with 103 

  Hk)k(FPS 21 −−∝       (4) 104 

where k is the wave number, the inverse of the wavelength (Barabási and Stanley, 1995). 105 

Wavelet series (or wavelet decompositions) constitute a powerful tool for processing 106 

signals in which different scales are combined (Meyer and Roques, 1993). Various signals 107 

can be reconstructed knowing the coefficients of their wavelet decomposition, and for 108 
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compactly supported wavelets (Daubechies, 1992) any 1D profile, h(x), can be decomposed 109 

into a wavelet series having the following summation: 110 

  ( ) ( )∑ ∑
∞+

=

−

=
−=

0

12

0
2

j i

j
j,i

j

ixcxh ψ     (5) 111 

where i,jc  are the wavelet coefficients indexed by (j,i) and ψ is the so-called mother 112 

wavelet (generating all the wavelets by expansion of a factor j2  and by a translation i). 113 

Using this method, the self-similar behaviour of a signal emerges as the average wavelet 114 

coefficient AWC satisfies: 115 

  50.Hl)l(AWC +∝ ,      (6) 116 

where l is the spatial wavelength (Simonsen et al., 1998). 117 

These two techniques provide a scaling relationship and the Hurst exponent is directly 118 

related to the slope of the spectra. In the case of a signal with Gaussian and stationary 119 

increments, the Hölder exponent is equal to the Hurst exponent. 120 

In stylolites, these two signal processing techniques give the same Hurst exponent (eq. 2), 121 

H = 0.5 for the large length scales and H = 1.1 for small length scales (Figure 3, see also 122 

Renard et al., 2004). 123 

The measurements also show that a sharp cross-over length scale close to the millimeter 124 

scale separates the two regimes. This characteristic length scale has been interpreted as a 125 

crossover length emerging from the competition between two forces: surface tension 126 

dominates at small wavelengths, whereas elastic interactions dominate at large wavelengths 127 

(Renard et al., 2004; Schmittbuhl et al., 2004). 128 

Using the same data sets, it can also be shown that a stylolite can be wavy at one point and 129 

rather flat at another point (Figure 2), suggesting that the statistical properties vary along 130 

the profiles. Therefore, the Gaussian stationary increments hypothesis must be called into 131 



 

 

7

question. This spatial variation in statistical properties along a single stylolite is not 132 

accounted for in current models of stylolite roughening. 133 

2.2. Heterogeneities along stylolites 134 

Various examples both from nature and experiments show that heterogeneities in rocks help 135 

either to localize dissolution pits or to deflect the dissolution surface along a single stylolite 136 

at all scales. Figure 4a shows experimental microstylolites along quartz grains (Gratier et 137 

al., 2005). Dissolution pits (Figure 4b) are systematically located at the bottom of each 138 

conical-shaped stylolite structure. Due to the fit of the two opposite grain surfaces, the pits 139 

of the lower grain stylolite surface are located just in front of the stylolitic peak of the upper 140 

grain and vice versa. The explanation is that pits develop at intersections of crystal 141 

dislocations with the grain surface and determine the stylolite peak location. 142 

Figure 4c shows the indenting of a mineral (quartz) by another mineral (mica). In this case, 143 

the mica grains along the dissolution surface are responsible for the local dissolution peaks. 144 

Mica distribution determines the location of the peaks location. 145 

The same geometry may be observed along columnar stylolites in limestones (Figure 4d). 146 

However, the interpretation is different as the two parts of the rock have the same 147 

composition. In this case, the geometry of the columnar stylolite is probably determined by 148 

preexisting micro-fractures as is clearly the case in the example shown in Figure 4e where a 149 

fracture controls the shape of the peak. Finally, Figure 4f shows several dissolution seams 150 

that are deflected by hard objects: pyrite (black) or quartz pressure shadows (white). In this 151 

case, the hard objects located in the dissolution plane deflect it, thereby contributing to 152 

roughening of the dissolution surface. 153 

All these examples show that the location of some stylolite peaks is not purely random but 154 

rather partially controlled by the distribution of heterogeneities. The statistical properties of 155 

stylolites should depend on the distribution of these heterogeneities, and therefore vary in 156 
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space along a single stylolite. It would appear relevant to integrate the presence of non-157 

uniformly distributed heterogeneities at all scales in the modeling of stylolites and test their 158 

potential effect on the final geometry. 159 

3. A two-parameter statistical description of the roughness of 1D stylolite 160 

profiles 161 

The wide range of morphologies of stylolites (Figure 1) and the alternating smooth and 162 

irregular portions of the same stylolite (Figures 2, 5a), suggests that the Gaussian stationary 163 

increments assumption should be tested. In this section we show that it is not possible to 164 

obtain all stylolite morphologies from a single parameter scaling relationship (e. g. a Hurst 165 

exponent). 166 

Figure 5b represents the increments of a 1D stylolite. These increments are calculated as the 167 

height difference between two successive points, and therefore represent a first order 168 

derivative of the original signal of Figure 5a. In this incremental signal, the existence of 169 

many large jumps and long tails in the histogram (Figure 5c) differentiate the signal from a 170 

synthetic fractional Gaussian noise signal (Figure 5h). Therefore, the Gaussian self-similar 171 

stationary increments property can be excluded for stylolite signals and a simple scaling 172 

relationship using a single Hurst exponent is not sufficient to explain the measured signals. 173 

The following section proposes a new technique that can accommodate the large jumps of 174 

Figure 5b so that it can be applied to stylolites. This analysis has been tested on all the 175 

available stylolites surfaces, and show similar properties. 176 

3.1. The Simple Branching Process Wavelet Series method 177 

Mathematicians commonly use two different techniques to deal with the large jumps 178 

similar to those shown in Figure 5b. The first technique is to select a non-Gaussian self-179 

similar stationary increment model with infinite variance, also called stable Lévy motion 180 
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(Samorodnitsky and Taqqu, 1994). Stable Lévy motions contain two parameters: the 181 

frequency of the jumps and the average size of these jumps. Applied to stylolites, 182 

microfractures densities in the rocks can be associated with the frequency of jumps for 183 

instance and estimated by specific methods. However, in such models, the roughness 184 

cannot be identified from the scaling relationship because the roughness and the scaling 185 

exponents are not similar. The Lévy models are avoided in the following discussion. 186 

The second technique is a non-stationnary Gaussian model with scaling properties, where 187 

the roughness can be estimated. According to Samorodnitsky and Taqqu (1994), neither of 188 

these techniques is superior to the other.. In the following section, the non-stationary 189 

Gaussian model is used and referred to as the Simple Branching Process Wavelet Series (in 190 

short SBPWS). 191 

3.2. Construction of SBPWS profiles in one dimension 192 

Simple Branching Processes (also called Galton-Watson processes, see Harris, 1969) are 193 

stochastic trees built by an incremental branching process at all scales. In the case of Simple 194 

Branching Process Wavelet Series (SBPWS), each node of the tree has the same probability 195 

of having either one or two branches (see Figure 6a). In the following, 1 < 196 

μ  < 2  corresponds to the average number of sons at each node. For a node of the tree, (2-197 

μ) represents the probability of having only one branch. 198 

SBPWS models are particular random lacunary wavelet series (Jaffard, 2000) based on 199 

simple branching processes. Lacunary refers to the property that only a small number of 200 

coefficients in the series are non-vanishing, more precisely those indexed by an elementary 201 

branching process and corresponding to the branches of Figure 6a. SBPWS is defined by: 202 

  ( ) ∑ ∑
∞

= ∈

− −=
0

22
j Λ(μ)i

j
j,i

jH i)xψ(εxSBPWS   (7) 203 
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where x is the spatial coordinate, H is the fractional parameter, )( μΛ is the elementary 204 

branching process of parameter μ, i,jε  are a family of independent Gaussian standard 205 

random variables and ψ is a wavelet-like function. 206 

Only wavelets with coefficients indexed by the stochastic sub-tree Λ (of non-vanishing 207 

coefficients) contribute to the roughening of the initial flat profile (see Figure 6b). 208 

Therefore, the stochastic tree process Λ locally deforms the 1D profile, at all the tree 209 

branches. 210 

In this model, elementary forms of the deformation are given by the shape of the mother-211 

function ψ. A difficulty with modeling a stylolitic structure is to choose the function ψ, 212 

which corresponds to the shape of each dissolution increment. However, it has been shown 213 

that the statistics of a simulated signal do not depend on the shape of ψ, as long as this 214 

function has the same property as an individual wavelet (Brouste, 2006). 215 

In nature, the stylolite shape varies from columnar to conical (Figures 1, 4) and these two 216 

kinds of shape might be related to the shape of microscopic increment of dissolution: either 217 

rectangular for columnar stylolites, or triangular for the conical ones. As a consequence, a 218 

choice must be made in the mathematical modeling between rectangular or triangular 219 

increments or a specific parameter used that may express all the intermediary shapes. 220 

Moreover, columnar stylolites are rather specific, being associated either with 221 

microfractures (Figure 4d and 4e) or with non-consolidated material (Gratier et al., 2005). 222 

In order to avoid the use of a third parameter, the shape of the function ψ , which might 223 

hide the effect of the two other parameters, a triangular function was chosen for ψ (Figure 224 

6b, inset). Note that the choice of the shape of this function ψ  does not modify the 225 

statistical properties of the synthetic signal. 226 
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The natural stylolites that were examined in this study can be modeled with such an 227 

elementary triangular shape. By varying the parameters H and μ, one can generate synthetic 228 

profiles that have stylolite-like patterns (Figure 7; Appendix A gives the algorithm to build 229 

these synthetic stylolites). These synthetic profiles, unlike those generated by previous 230 

models, exhibit two important properties of the natural stylolites: 231 

i) the variability of the roughness between independent stylolite profiles; 232 

ii) the variability of the roughness within a single profile, with alternating regular and 233 

irregular portions. 234 

3.3. Parameters H and μ 235 

The parameters H and μ have distinct visual effects on the synthetic profiles. The 236 

irregularities on the whole profile are quantified by the parameter μ : for instance, at the nth 237 

order branches, there are, on average, nμ  non-vanishing coefficients and then nμ branches 238 

of the tree, corresponding to nμ  stages of deformation of the initially flat profile. When 239 

μ  is close to 2, there are irregularities everywhere along the profile. When μ decreases to 1, 240 

there are alternating irregular and regular portions along the profile. Finally, when μ is 241 

equal to 1, there are no more irregularities along the signal. 242 

The amplitude of the deformation (only where it is deformed) depends on the scale, on a 243 

random Gaussian variable, and on a fractional exponent H that can be considered to be a 244 

local roughness parameter. In this sense, H is indicative of the nature of the irregularity and 245 

the amplitude of the profile variations. When H tends to 0 the profile is irregular and looks 246 

“noisy”. This property is also called antipersistence: locally a valley in the signal has a 247 

greater probability of being followed by a hill. When H is close to 1, the profile roughness 248 

is smoother and a valley or a hill in the signal tends to extend locally. This property is 249 

called persistence (Meakin, 1998). 250 
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3.4. Measurements of H and μ on a 1D data set 251 

As stated previously, the SBPWS have scaling properties that no longer involve a unique 252 

stationary Hurst exponent. SBPWS provides self-affine behavior either in the 1D Average 253 

Wavelet Coefficient technique or in the Fourier Power Spectrum, and is defined by a 254 

power-law in both scale and frequency domains, respectively (Brouste, 2006): 255 

  H/logl)l(AWC +−∝ 21 2 μ        (8) 256 

and 257 

  Hlogk)k(FPS 22 2 −+−∝ μ       (9) 258 

where H and μ are the two parameters of the SBPWS method. When μ = 2, equations (8) 259 

and (9) are reduced to the Gaussian stationary case described in equations (4) and (6). 260 

Note that in the SBPWS method, the values of H and μ cannot be determined by a simple 261 

regression to the 1D Fourier and AWC spectra, as done previously by Renard et al. (2004), 262 

because the following system of equations, whose determinant is equal to zero, is 263 

underdetermined: 264 

  
⎩
⎨
⎧

=+−
=+−

b/logH
alogH

21
22

2

2
μ

μ      (10) 265 

Here a and b are the slopes measured by linear regression on the FPS spectrum and on the 266 

AWC spectrum, respectively. 267 

Therefore, a more complex tool must be used, such as the s-generalized variations method 268 

(Istas and Lang, 1997) to obtain estimated values of H and μ  at large and small length 269 

scales. This method, detailed in Appendix B, was applied to estimate H and μ in the 270 

stylolites that were measured (Table 1). 271 

4. Application to natural stylolites 272 

4.1. Parameters H and μ for the stylolites 273 
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To estimate the parameters μ and H, from both sides of the cross-over length scale, it is 274 

necessary to observe how the estimators of Appendix B behave when the length scale 275 

decreases (as n increases), from large scales to small scales through the cross-over length 276 

scale (Figure 8a-b). Large length scales values are taken at the cross-over length scale and 277 

small ones are taken at the discretization scale in order to use the greatest number of points 278 

in the two different patterns. 279 

The results presented in Table 1 are based on averaged estimations of a series of 256 to 512 280 

parallel stylolite profiles, each profile being regularly discretized on 512 to 1024 points. 281 

This gives the large length scale and the small length scale parameters H and μ for all the 282 

stylolites that have been measured. 283 

4.2. Geometrical characterization 284 

Most of the information on μ and H variability belongs to the large length scale parameters 285 

(see Table 1). In fact, small length scale parameters have almost similar values (μ from 1.2 286 

to 1.4 and H from 0.6 to 0.85) for all samples except S12A and S13A. These results are also 287 

found on experimental microstylolites in quartz (Sdiss1 and Sdiss2 in Table 1, Gratier et al., 288 

2005), suggesting that an physical process smoothes the stylolites at small wavelengths. 289 

Plotting the results of the analysis in µ versus H space, one can distinguish between two 290 

classes of stylolites at long wavelengths. (Figure 10). A first class, called homogeneous 291 

stylolites, contains two kinds of profile: i) the almost-everywhere irregular stylolites 292 

(Sjura1 or S12A) and ii) the smooth stylolites (S11C or S10A). For both kinds, the 293 

parameter μ is close to 2 (greater than 1.75), which represents few heterogeneities in the 294 

rock. Irregular stylolites have a localized roughness parameter H that varies around 0.5 (0.4 295 

to 0.5 in the results obtained here), contrary to smooth stylolites where H is close to 1. 296 

Stylolites of this class can be simulated by dynamic surface growth models such as the 297 



 

 

14

Langevin growth equations (Renard et al., 2004; Schmittbuhl et al., 2004) because profiles 298 

have the same kind of irregularity almost everywhere. 299 

The second class of stylolites, called heterogeneous stylolites, contains a variety of 300 

morphologies. In this case the parameter μ  is close to 1.5 (stylolites S3b or S0_8). These 301 

stylolites are non-stationary. In this case, the initial heterogeneities in the rock that are 302 

reached by the stylolite during its propagation are recorded in the stylolitic signal. More 303 

exactly, above the millimeter scale, where elastic interactions dominate, heterogeneity may 304 

be seen in the signal. Below the millimeter scale, where surface tension dominates, this 305 

heterogeneity has disappeared. 306 

Agglomerative nesting, clustering methods and principal component analysis (not shown 307 

here) have been performed and indeed show that statistical analysis supports the 308 

classification of stylolite morphologies in two different classes. 309 

4.3. Simulations 310 

Given a set of parameters (H, μ) for both regimes (large and small length scale behaviors 311 

from both parts of the cross-over length scale), the behavior of all measured stylolites can 312 

be reproduced with two SBPWS. This technique can be used to simulate a wide range of 313 

stylolite morphologies (Figures 7, 9): 314 

- those which are close to stationary profiles (μ  close to 2); 315 

- smooth profiles with H close to 1 to irregular profiles with a fractional exponent H; 316 

- more heterogeneous profiles with alternating smooth and irregular zones (where μ ≠ 2). 317 

An interesting perspective would be to use the shape and regularity of stylolites in order to 318 

evaluate the heterogeneity of the rock before or during the stylolitic process, and therefore 319 

better characterize under which conditions (depth, cohesion of the sediment) stylolites 320 

form. Another perspective would be to choose a different noise (a fractional stable noise for 321 
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instance) in the Langevin growth equations proposed in Renard et al. (2004) and 322 

Schmittbuhl et al. (2004). This remains a real prospect for continuous stylolites models and,  323 

more generally, a theoretical extension of rough surface growth models. 324 

4. Conclusion 325 

When the increments of a mathematical function are not stationary (in other words their 326 

statistics vary along the coordinate), or the variance of their distribution is infinite, standard 327 

tools (Fourier spectrum or average wavelet coefficient analysis) fail to capture a roughness 328 

property from a scaling property. 329 

Therefore, an extension of such tools to non stationary signals is proposed here by using a 330 

two-parameter approach. One of the parameters, the local roughness exponent H, describes 331 

the noisiness or waviness of the signal. The second parameter, μ, describes how the 332 

statistical properties vary along the signal. 333 

Applied to stylolites, two kinds of geometry can be distinguished. 334 

i) Stationary stylolites, where the statistics do not vary along the stylolite. For this kind of 335 

stylolite, two sub-families can be defined: stylolites that are almost flat everywhere and 336 

those that are very wavy everywhere. 337 

ii) Non-stationary stylolites where wavy portions alternate with flatter ones. In this case, we 338 

propose that heterogeneities initially present in the rock strongly control the stylolite 339 

morphology. To our knowledge, this second kind of stylolite, which has fossilized the 340 

heterogeneities of the rock in its morphology, has not been previously quantified. Detailed 341 

microstructural and chemical mapping studies focusing on the characterization of 342 

heterogeneities around stylolites would surely bring new information. 343 

This difference between the two families of stylolites is detected only for wavelengths 344 

greater than a crossover scale close to the millimeter. Below this scale, the statistics of all 345 
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the stylolites are very homogeneous, indicating that a physical process, probably driven by 346 

the minimization of the local curvature, smoothes the stylolites at small scales. 347 
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Appendix A: Algorithm to build synthetic signals 352 

%//////// Run the styloprocess function ///////////// 353 
%Matlab© program to create the stylolites of Figure 7 354 
%Parameters of the simulation 355 
%K: depth of the tree (2^K+1 is the number of points on the 356 
profile) 357 
%mu: heterogeneity parameter (between 1 and 2) 358 
%H: local roughness exponent (between 0 and 1) 359 
 360 
function (stylolite) = styloprocess (K,mu,H) 361 
 362 
x=linspace(0,2,2^(K-1)); 363 
y=1-abs(x-1); 364 
psi=(-y,y,0); 365 
trees=createtree(K,(2-mu)); 366 
profile=reconstruct(K,trees,H,psi); 367 
plot(surface); 368 
 369 
%//////// Galton-Watson Tree ///////////// 370 
function (trees)=createtree(K,p) 371 
  372 
randn('state',sum(100*clock)); 373 
trees(1)=randn(1); 374 
for m=0:K-1 375 

for l=0:2^m-1 376 
zfather=2^m+l; 377 
zson1=2*zfather; 378 
zson2=2*zfather+1; 379 
if (trees(zfather)==0) 380 

trees(zson1)=0; 381 
trees(zson2)=0; 382 

else 383 
if (rand(1)<p) 384 

if (rand(1)<1/2) 385 
trees(zson1)=randn(1);  386 
trees(zson2)=0; 387 

else 388 
trees(zson2)=randn(1); 389 
trees(zson1)=0; 390 

end 391 
else 392 

trees(zson1)=randn(1); 393 
trees(zson2)=randn(1); 394 

end 395 
end 396 

end 397 
end 398 
  399 
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%///////////// Reconstruction //////////////// 400 
function (sig)=reconstruct(K,trees,H,psi) 401 
 402 
sig=zeros((1, 2^K+1)); 403 
for m=0:K 404 

psim=(); 405 
for j=1:2^(K-m)+1 406 

psim(j)=2^(m/2)*psi(2^(m)*(j-1)+1); 407 
end 408 
sigtemp=(0); 409 
for l=0:2^m-1; 410 

zfather=2^m+l; 411 
psitemp=2^(-m*(H+1/2))*trees(zfather)*psim; 412 
sigtemp=(sigtemp,psitemp(2:2^(K-m)+1)); 413 

end 414 
sig=sig+sigtemp; 415 

end 416 

Appendix B: Calculation of H and μ on 1D signals 417 

A 1-D profile h(x) is observed on a regular grid (at space n
i /ix 2=  for i = 0… 32 −n ). 418 

Note the second order variation, an approximation of the second order derivative, at 419 

point ix , by 420 

  )li(ha)i(h
l nlna ∑
=

+
=Δ

2

0 22
     (B1) 421 

where ),,()a,a,a(a 121210 −−== . 422 

Summing the 32 −n  variations )/i(h n
a 2Δ for i = 0… 32 −n , the statistic snV , is obtained:  423 
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where s = 2 (also called quadratic variations) or s = 4 (quadric variations). This statistics 425 

behave according to a power law depending on the parameters H and μ , with 426 

)logsH(n
s,nV μ22 −≈ .  427 

If we note, 428 
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then μ2logsHW n
s,n −⎯⎯ →⎯ ∞→  and by linear combination, either μ or H is obtained. The 430 

estimators are respectively: 431 
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Figures & Table 493 

 494 
Figure 1. Various shapes of stylolites. a) Digital elevation model of a microstylolites 495 
measured at the contact between experimentally deformed quartz grains (after Gratier et al., 496 
2005, isotropic scale). b) 2D stylolite surface S12A in a limestone. c) Roughness field of 497 
the surface S12A measured using a laser profilometer (Renard et al., 2004). d) Stylolite S3b 498 
showing local variations in roughness, with alternating smooth and rougher areas. Such 499 
lateral roughness variations are a good visual indicator that the roughness statistics are not 500 
the same all along the profiles. e) Stylolite in limestone with vertical peaks showing strong 501 
lateral variations in height. It was not possible to measure the roughness of such stylolites 502 
because of local overhangs. 503 
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 504 
Figure 2. Examples of the 1D roughness of different stylolites in limestones measured 505 
using laser profilometer (see Renard et al. (2004) for the measurement technique). The 506 
waviness of the stylolite, characterized by the Hurst exponent H varies from sample to 507 
sample. Moreover, within the same stylolite, regions with smooth or wavy roughness can 508 
be defined, and characterized by the amount of irregularities defined by the parameter μ 509 
(see text). Scales are given in mm. The characteristics of each profile are given in Table 1. 510 
 511 
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 512 
Figure 3. FPS (top) and AWC (bottom) for the stylolite Sjura1. These two independent 513 
scaling methods show that there is a crossover at ~1mm between the small wavelengths 514 
(H~1.1) and the large wavelengths (H~1.5). 515 
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 516 
Figure 4. Heterogeneities associated with stylolites. a-b) Microstylolite on a quartz grain 517 
(Gratier et al., 2005) and zoom on two dislocation pits where deformation is localized. c) 518 
Mica indenting a quartz grain in a North Sea Sandstone and showing a wavy interface at the 519 
grain scale. d-e) Zoom on stylolite peaks in the sample Sjura1. f) Dissolution seams (“flat” 520 
stylolites) deflected by pyrite crystals and quartz pressure shadows in a metamorphic schist 521 
from Bourg d’Oisans (Alps, France). 522 
 523 
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Figure 5. a) Laser roughness measurement of a 1D profile from the stylolite Sjura1. b) 525 
Local increments of the stylolite Sjura1, corresponding to the first order discrete derivative 526 
of profile a). c) Histogram of the increments of b) with the best Gaussian fits represented by 527 
the two curves, which have the same standard deviation (σ) and half the standard deviation 528 
(σ2) of the stylolite data. d) Cumulative distribution function of b). The two lines represent 529 
the best Gaussian fits as in b). The large jumps of the local increments and the long tails in 530 
the histogram cannot be accounted for using Gaussian stationary statistics (plain curves). e) 531 
Quantile-quantile plot that adjusts the sample distribution in d) against the best Gaussian 532 
distribution. This corresponds to the difference between the data and the Gaussian estimate 533 
of d). For a Gaussian distribution a straight line should be observed. f -j) Same plots for a 534 
synthetic fractional Brownian motion. In the quantile-quantile plot, the synthetic signal and 535 
the Gaussian best fit adjust perfectly on a straight line, showing that the fractional 536 
Brownian motion is a Gaussian stationary increments signal. 537 

538 
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 539 

 540 
Figure 6. a) Galton-Watson tree (simple branching process) and indexes for the wavelet 541 
construction. b) Construction of a synthetic 1D profile using the branching process wavelet 542 
series. Such technique is used to build the synthetic signals of Figure 7, using the algorithm 543 
given in Appendix A. 544 
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 545 
 546 
Figure 7. Simulated stylolites with statistical roughness properties characterized by two 547 
parameters. The variability in the stylolite morphology is controlled by H which describes 548 
the apparent noisiness (smoothness) of the roughness, and μ which describes the spatial 549 
variability (heterogeneities at all scales) along the stylolite. 550 

551 
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 552 
 553 

 554 
Figure 8. a, b) Estimators of μ and H for the stylolite Sjura1 at small length scales and 555 
large length scale. As the length-scale a decreases (n increases in the equations of Appendix 556 
B, where n represents the level of branching in Figure 6), the estimated values converge 557 
respectively to H and μ just above the cross-over length scale for large length scales and as 558 
allowed by the precision for small length scales. 559 
 560 
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Figure 9. Using both values H and μ estimated at large length scale and at small length 562 
scale, one can reproduce different morphologies of stylolites using a combination of two 563 
SBPWS behaviors. a) Profile of the stylolite Sjura1 (see Table 1) and synthetic profile with 564 
the same parameters at small and large length scales as those estimated on Sjura1. b) 565 
Derivative of the synthetic signal of a) showing the increments. c) Histogram of the 566 
simulated increments. d) Quantile-quantile plot, as in figure 5 showing the departure from a 567 
Gaussian distribution. FPS (e) and AWC (f) spectra analysis for the synthetic signal having 568 
the same statistical properties as Sjura1. The green dashed straight lines at small and large 569 
length scales indicate the estimated slopes, showing the two characteristic slopes and the 570 
crossover length scale. g-l) Stylolite S0_8 and synthetic profiles with the same parameters 571 
as estimated on S0_8 and similar analysis than in a-d). FPS (g) and AWC (h) spectra of the 572 
synthetic stylolite showing the two characteristic slopes and the crossover length scale. 573 

574 
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 575 

 576 
Figure 10. Various morphologies of stylolites based on their statistical properties at large 577 
length scale. Two main families can be identified, based on their statistical properties: those 578 
which are either regular or irregular everywhere, and those with alternating regular and 579 
irregular portions. 580 

581 
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Table 1. Large and small length scale scaling exponents of the various stylolites. 582 

stylolite origin Hsmall μlmall Hlarge μlarge 

Sjura1 Jura mountains 0.75 1.3 0.4 1.85 

S12A Vercors mountains 0.2 1 0.3 1.9 

S11c Burgundy mountains 0.7 1.35 1 1.9 

S3b Chartreuse mountains 0.5 1.4 0.3 1.6 

S15A Burgundy 0.6 1.4 0.65 2 

S0_8 Jura mountains 0.6 1.3 0.2 1.5 

S13A Burgundy 0.9 1.8 0.55 1.8 

S10A Burgundy 0.85 1.4 1 2 

Sdiss1 Experimental microstylolite 0.8 1.25 - - 

Sdiss2 Experimental microstylolite 0.75 1.2 - - 

1 For more details on the geological characteristics and composition of the stylolites, see Renard et al. (2004) 583 

and Gratier et al. (2005) for the experimental microstylolites. 584 


