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Stylolites are natural pressure-dissolution surfaces in sedimentary rocks. We present 3D high
resolution measurements at laboratory scales of their complex roughness. The topography is shown
to be described by a self-affine scaling invariance. At large scales, the Hurst exponent is ζ1 ≈ 0.5
and very different from that at small scales where ζ2 ≈ 1.2. A cross-over length scale at around
�Lc = 1 mm is well characterized. Measurements are consistent with a Langevin equation that
describes the growth of a stylolitic interface as a competition between stabilizing long range elastic
interactions at large scales or local surface tension effects at small scales and a destabilizing quenched
material disorder.

PACS numbers: 83.80.Ab, 62.20.Mk, 81.40.Np

Stylolites are geological patterns that are very com-
mon in polished limestones, a material largely used to
construct floors and walls of buildings and monuments.
They are observed in many sedimentary rocks as thin ir-
regular interfaces that look like printed lines on rock cuts,
which is responsible for their name. They are roughly
planar structures, typically perpendicular to the geologi-
cal load (i.e. lithostatic pressure or tectonic maximum
compressive stress) and are formed at shallow depths
in the Earth’s crust during deformation of sedimentary
rocks. They result from a combination of stress-induced
dissolution and precipitation processes [1] and exist on
a very large range of scales, from micro-meters to me-
ters. Despite their abundance, stylolites are, as men-
tioned by Gal et al. [2], “among the least well-explained
of all pressure-solution phenomena”. First they are com-
plex 3D structures that are often only described from 2D
cross-sections since they are generally partially sealed [3].
Second, they develop in various geological contexts which
lead to very different geometries. Third they are some-
times transformed because of processes like diagenesis
and metamorphism that develop after their initiation.

In this Letter we show the first 3D high resolu-
tion topography measurements of natural stylolite in-
terfaces. We characterize the scaling invariance, namely
self-affinity, of the morphology and show the presence of
a cross-over length scale. We also propose a model based
on a Langevin equation that emphasizes the role of the
quenched disorder.

The roughness measurements have been performed on
three independent stylolite interfaces included in very
fine-grained limestone samples from Burgundy area, Ver-
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FIG. 1: Picture of a stylolite surface (S12A) in a limestone
from Vercors Mountains. Magnitude of the peaks are typically
of the order of 6 mm.

cors, and Jura mountains in France (Fig. 1). The samples
have been collected in newly open quarries, thus pre-
served from late breakage and chemical erosion. The
opening procedure was possible for these samples be-
cause of the accumulation of undissolved minerals like
clays which formed a weak layer along the stylolite in-
terface. The concentration of these minerals provides an
estimate of the cumulative strain by dissolution the sam-
ple underwent [4]. As shown in Fig. 1, peaks along the
interface are randomly distributed in space and of vari-
ous sizes (up to one centimeter). Large peak magnitudes
and local high slopes along the topography makes the
roughness measurement difficult and challenging.

We used two different profilometers to sample the sty-
lolite roughness. First, with a mechanical profilometer [5]
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FIG. 2: A 1D profile obtained by a mechanical profilometer
(1030 data points - Δx = 30μm) along a stylolite surface.

we extracted four profiles of 1030 points each with a hori-
zontal step of Δx = 30 μm. The mechanical profilometer
measures the surface height from the contact of a needle
onto the surface (its radius is 25 μm). The vertical res-
olution is 3 μm over an available range of 5 cm. One of
these profiles is shown in Fig. 2. We compare the me-
chanical measurements to an optical profiling [6] that is
based on a laser triangulation of the surface without any
contact. The laser beam is 30 μm wide and horizontal
steps between measurement points were Δx = Δy = 7
to 50 μm. The vertical resolution is 2 μm. The latter
technique has a high acquisition speed since there is no
vertical move allowing on-flight measurements. However,
a successful comparison with mechanical measurements
is necessary to ensure that optical fluctuations are true
height fluctuations and not material property fluctua-
tions. Three independent samples have been measured
at very high resolution: one side of a stylolite from Jura
mountains (Sjura) with a resolution 600 × 600, one side
of a stylolite from Burgundy area (S15) with a resolu-
tion 8200 × 4100 and two opposite surfaces of the same
stylolite from Vercors mountains shown in Fig. 1 with
a resolution 2400 × 1400 for S12A and 8200 × 4100 for
S12B.

We analyzed the height distribution in terms of self-
affinity [7] which states that the surface remains sta-
tistically unchanged for the transform: Δx → λ Δx,
Δy → λ Δy, Δz → λζ Δz, where λ can take any
real value. The exponent ζ is the so-called Hurst ex-
ponent. A 1D Average Wavelet Coefficient technique [8]
has been used to estimate ζ. Indeed, for a self-affine pro-
file, the wavelet spectrum behaves as a power law with a
slope 1/2 + ζ. AWC spectra clearly exhibit two regimes
(Fig. 3). At large length scales, a power law behavior
is observed with a slope of 1, which is consistent with
a Hurst exponent of ζ1 = 0.5. At small length scales,
a second power law behavior is observed with a larger
slope (1.7) in agreement with a Hurst exponent ζ2 = 1.2.
The crossover length scale is sharp and defines a char-
acteristic length scale which is slightly different for the
three surfaces, Lc ≈ 1 mm. Lc is several orders of magni-
tude larger than the grain size and experimental cutoffs.
This spectral behavior is observed for both mechanical

and optical measurements.
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FIG. 3: Averaged wavelet spectra of topographic profiles ex-
tracted from four optical maps of stylolite surfaces. Spectra
have been normalized to superimpose for large L on the spec-
trum of S12A.

We checked that another analysis technique, namely
the Fourier power spectrum, was providing very consis-
tent results. Fig. 4 shows averaged 1D spectra of profiles
extracted from the surface Sjura. A self-affine property
of the profiles leads to a power-law behavior of the power
spectrum as P (k) ∝ k−1−2ζ [7]. Moreover, average spec-
tra of profiles taken along perpendicular directions pro-
vide very consistent results (Fig. 4). Isotropy of scaling
invariance is confirmed by the circular symmetry of the
2D power spectrum of the surface.

The second part of the letter is devoted to a mod-
eling of the stylolite roughening which aims at under-
standing the origin of the self-affine behaviors and of
the characteristic length Lc. The stylolite interface is
assumed to be initiated along a boundary between ge-
ological beds. More precisely it is approximated as the
boundary of a quasi-flat and very elongated fluid pore
where the trapped fluid is assumed to be at lithostatic
pressure and the solid, where this pore is embedded, at an
average stress σ0 = σ0

zz ẑẑ +σ0
xx(x̂x̂+ ŷŷ), where ẑ refers

to the direction normal to average stylolite direction and
x̂ and ŷ refer to directions along the average stylolite
direction. Since stylolites are on average normal to the
largest principal stress direction, σs = |σ0

zz| − |σ0
xx| > 0.

Possible solid contacts with the mirror surface on the
other side of the fluid film are neglected, considering that
such contact points concentrate dissolution and disap-
pear. Accordingly, we assume that the stylolite morphol-
ogy is to first order dominated by a dissolution process
between a fluid film and a single elastic solid.

Assuming a free surface profile z(x, t), the normal n̂
to the interface pointing toward the solid is, in the limit
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FIG. 4: Fourier power spectra of 1D topographic profiles ori-
ented along two perpendicular directions (X and Y) and of
the full 2D surface. The latter was radially integrated to be
compared to the 1D power spectra. Inset shows a gray map
of the 2D power spectrum. A mirroring technique has been
used to reduce non periodic edge effects.

of small relief, n̂ = ẑ − (∂xz)x̂, where plane strain holds.
The stress state in the solid is expressed as σ = σ0 +σ1,
where mechanical equilibrium between solid and fluid re-
quires that σ1 · (−n̂) = −σs(∂xz)x̂. This stress state
results from a surface distribution of tangential force
−σs(∂xz)x̂ applied on the quasi-planar boundary of the
solid by the fluid, so that using Green’s elastostatic
function [9] and integrating along the y−direction, at
the surface, σ1

xz = σ1
zx = σs(∂xz) and σ1

xx = σ1
yy =

σs(2ν/π)
∫

dy(∂yz(y))/(x− y), all other components be-
ing null.

For small reliefs ( ||σ1||/||σ0|| � 1) and to the lead-
ing order, the elastic free energy ue = [(1 + ν)σijσij −
νσkkσll]/4E can be approximated as ue = u0

e + u1
e where

from the above, u0
e = αp2

0/E, and:

u1
e = − β(p0σs/E)

∫
dy(∂yz)/(x − y) (1)

with an average solid pressure p0 = −(2σ0
xx+σ0

zz)/3, and
two dimensionless positive constants α = [9(1 − 2ν) +
2(1 + ν)σ2

s/p2
0]/12 and β = ν(1 − 2ν)/π, where E is an

effective Young’s modulus, and ν the Poisson coefficient.
u0

e is the average elastic energy from the global tectonic
loading and u1

e is its local perturbation that results from
the interface topography.

The chemical potential difference at the solid/fluid in-
terface that potentially destabilizes the interface, can be
written as [10]: Δμ = Ω(ue + γκ) where ue is the elas-
tic energy per unit volume in the solid, γ is the surface
energy, κ the curvature, and Ω a molar volume. Grav-
ity effects are supposed to be negligible. We have also

assumed that the matrix of the solid, i.e. an assembly
of initial sedimentary particles, is sufficiently porous dur-
ing stylolite initiation to have a bulk diffusion within the
material. This assumption is supported by rock thin sec-
tion observations under an optical microscope [11]. If a
bulk diffusion holds in the fluid surrounding the stylo-
lite, the evolution of the interface is directly related to
the chemical potential difference: vn = mΔμ where vn is
the normal dissolution velocity and m is the mobility [10].
We also neglected the chemical potential evolution within
the film since we only aim at describing the initiation of
the process under drained conditions.

This homogeneous description thus predicts, for small
reliefs, ∂tz = v0 + mΩ(u1

e + γ∂xxz), with v0 = mΩu0
e.

Surface tension is a stabilizing term, but it is important
to note that the elastic interaction term, u1

e, is also sta-
bilizing in the present context. For the present situa-
tion, stylolites are perpendicular to the maximum princi-
pal stress, and will subsequently be assumed horizontal:
σs > 0. Considering an elementary departure from a flat
interface, such as a fluid intrusion in the solid, i.e. a
bump with a maximum in x, such as ∂yz > 0 for y < x,
and ∂yz < 0 for y > x, u1

e is negative in x and reduces
the dissolution speed in the bump at x. Accordingly,
since the problem is linear, elastic interactions are stabi-
lizing for any corrugations of the interface. For vertical
stylolites, the picture is opposite (σs < 0) and elastic in-
teractions are destabilizing leading to a lateral expansion
of the stylolite.

The homogeneous picture predicts the propagation
of a planar dissolution interface driven by the average
elastic energy u0

e, with an average speed estimated as
v0 ≈ 8·10−6 m/year where we used m = kΩ/(RT ), with a
dissolution rate k ≈ 10−4 mol/m2/s, Ω ≈ 4·10−5 m3/mol
for calcite, R is the universal gas constant, T ≈ 300 K,
α ≈ 0.5, E ≈ 8 · 1010 Pa for limestones, a characteristic
stress estimated as p0 ≈ 25 MPa, corresponding to a rock
at 1 km depth.

To understand the dynamic roughening of stylolites,
it is essential to capture the effect of heterogeneities of
relevant material properties in the solid, namely ν, E, m
and γ. We assume the relative variation (δE/E and oth-
ers) of these properties to be small, and to correspond
to independent random variables associated to each con-
stitutive grain of the rock, which are typically 
=10 μm
sized. At early stages of the process where ∂xz � 1, we
define the dimensionless surface position with respect to
the average plane z′ = (z − v0t)/
 and the dimensionless
space and time variables x′ = x/
 and t′ = t/τ where
τ = 
2/(γΩm) to obtain, to the leading order in rela-
tive fluctuations and typical slopes, for the roughening
interface speed:

∂t′z
′(x′, t′) = ∂x′x′z′− 


L∗

∫
dy′ ∂y′z′

x′ − y′ +η(x′, z′(x′)) (2)

where L∗ = γE/(βp0σs) and η = [α
p0/(βL∗σs)] ·



[(δE/E) + (δm/m) − (δα/α)]. In this Langevin equa-
tion with quenched noise, the destabilizing random term
is balanced by the restoring surface tension term at scales
below L∗, and by the restoring elastic interactions at
scales above L∗. We propose that this critical scale L∗

corresponds to the measured crossover length Lc. For
typical limestones, γ = 0.27 J/m2 for a water-calcite sur-
face and ν ≈ 0.25, so that β ≈ 0.04 and L∗ ≈ 0.9 mm,
consistently with the above measured. The other char-
acteristic quantities of interest are τ ≈ 0.2 year and the
characteristic amplitude of the dimensionless noise η is
ρ ≈ α
p0/(βλ∗σs) ≈ 0.2.

For the Laplacian regime (L � L∗) and the mechani-
cal regime (L � L∗), only one of the two restoring terms
in Eq. (2) dominates, and these two independent regimes
have already been studied. Indeed, the Laplacian regime
is nothing else than the Edwards Wilkinson (EW) prob-
lem [12] in a quenched noise. In this case the interface
is self-affine with an exponent ζ2 ≈ 1.2 [13]. In the me-
chanical regime, Eq. (2) is analogous to the quasi-static
propagation of an elastic line or a mode I fracture front in
a disordered material, and the Hurst exponent is ζ1 ≈ 0.4
for a kernel similar to Eq. (1) [14].

The roughening amplitude can be obtained by consid-
ering the EW equation with a quenched noise: the char-
acteristic width of the surface measured at scale L, i.e.
the saturation width, scales as w(L)/
 ≈ ρ(L/
)ζ2. The
saturation time for this width to be achieved from a flat
interface defines the characteristic time for the roughness
evolution τs(L). Indeed, the dissolution process goes on,
with an average speed v0, as long as u0

e > 0, and the
surface profile fluctuates around the average progressing
plane with a correlation time τs and a characteristic am-
plitude w(L). τs is such that τs/τ ≈ (L/
)ζ2/δ, with
a dynamic exponent δ ≈ 0.8 [13]. With L ≈ 1 mm,

 ≈ 10μm and ζ2 ≈ 1.2, this scaling law predicts, up to
a constant of order unity, the saturation width at cross
over scale w(L∗) ≈ 0.5 mm and the time to saturation as
τs ≈ 200 years. This length scale corresponds to the mea-
sured one (Fig. 2). The short saturation time implies that
observed stylolites have achieved their saturation width
over geological time scales. That the width amplitude is
also correctly predicted in the mechanical regime could
be checked directly, but is granted by the fact that it is
correctly predicted in the Laplacian regime, as well as the
crossover scale, which determines entirely the prefactor of
the scaling law w(L) in the L > L∗ regime. In principle,
determining L∗ and w(L∗) could give two independent
constraints on both p0 and σs, which could allow to deter-
mine both the pressure and differential stress prevailing
during the formation of a particular stylolite. However,
given the amount of approximations in the involved con-
stants, the only way to test this effect on the cross-over
wavelength would be to measure stylolites formed in var-
ious geological conditions and study the effect of depth

and orientation to the main stress.
In conclusion, we presented a quantitative description

of stylolite interfaces. The experimental measurements
are 3D high resolution descriptions of the topography of
natural stylolites. We show that the surfaces are self-
affine but with two regimes. At small scales, the Hurst
exponent is unexpectedly high, ζ2 = 1.2, and consistent
with a Laplacian regime. At large scales, the stylolites
morphology is controlled by long range elastic stress re-
distributions. In this case the roughening is important
with a low Hurst exponent ζ1 = 0.5. The two regimes
are separated by a crossover characteristic length Lc, also
predicted by a model based on the description of a stress-
induced dissolution, where restoring surface tension ef-
fects and elastic interactions compete with a quenched
noise. It is important for geological implications to note
that Lc is very sensitive to the average stress p0. Indeed,
a measurement of Lc from roughness profiling could pro-
vide an estimate of the stress magnitude during the sty-
lolite growth, that is, in the past. Accordingly stylolites
could be considered as stress fossils.
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