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Let D = {ρ < 0} be a smooth relatively compact domain in a four dimensional almost complex manifold (M, J), where ρ is a J-plurisubharmonic function on a neighborhood of D and strictly Jplurisubharmonic on a neighborhood of ∂D. We give sharp estimates of the Kobayashi metric. Our approach is based on an asymptotic quantitative description of both the domain D and the almost complex structure J near a boundary point. Following Z.M.Balogh and M.Bonk [1], these sharp estimates provide the Gromov hyperbolicity of the domain D.

INTRODUCTION

One can define different notions of hyperbolicity on a given manifold, based on geometric structures, and it seems natural to try to connect them. For instance, the links between the symplectic hyperbolicity and the Kobayashi hyperbolicity were studied by A.-L.Biolley [START_REF] Biolley | Floer homology, symplectic and complex hyperbolicities[END_REF]. In the article [START_REF] Balogh | Gromov hyperbolicity and the Kobayashi metric on strictly pseudoconvex domains[END_REF], Z.M.Balogh and M.Bonk established deep connections between the Kobayashi hyperbolicity and the Gromov hyperbolocity, based on sharp asymptotic estimates of the Kobayashi metric. Since the Gromov hyperbolicity may be defined on any geodesic space, it is natural to understand its links with the Kobayashi hyperbolicity in the most general manifolds on which the Kobayashi metric can be defined, namely the almost complex manifolds. As emphasized by [START_REF] Balogh | Gromov hyperbolicity and the Kobayashi metric on strictly pseudoconvex domains[END_REF], it is necessary to study precisely the Kobayashi metric. Since there is no exact expression of this pseudometric, except for particular domains where geodesics can be determined explicitely, we are interested in the boundary behaviour of the Kobayashi metric and in its asymptotic geodesics. One can note that boundary estimates of this invariant pseudometric, whose existence is directly issued from the existence of pseudoholomorphic discs proved by A.Nijenhuis-W.Woolf [START_REF] Nijenhuis | Some integration problems in almost-complex and complex manifolds[END_REF], is also a fundamental tool for the study of the extension of diffeomorphisms and for the classification of manifolds.

The first results in this direction are due to I.Graham [START_REF] Graham | Boundary behaviour of the Caratheodory and Kobayashi metrics on strongly pseudoconvex domains in C n with smooth boundary[END_REF], who gave boundary estimates of the Kobayashi metric near a strictly pseudoconvex boundary point, providing the (local) complete hyperbolicity near such a point. Considering a L 2 -theory approach, D.Catlin [START_REF] Catlin | Estimates of invariant metrics on pseudoconvex domains if dimension two[END_REF] obtained similar estimates on pseudoconvex domains of finite type in C 2 . A crucial progress in the strictly pseudoconvex case is due to D.Ma [START_REF] Ma | Sharp estimates of the Kobayashi metric near strongly pseudoconvex points[END_REF], who gave an optimal asymptotic description of this metric. His approach is based on a localization principle given by F.Forstneric and J.-P.Rosay [START_REF] Forstneric | Localization of the Kobayashi metric and the boundary continuity of proper holomorphic mappings[END_REF] using some purely complex analysis arguments as peak holomorphic functions. The estimates proved by D.Ma were used in [START_REF] Balogh | Gromov hyperbolicity and the Kobayashi metric on strictly pseudoconvex domains[END_REF] to prove the Gromov hyperbolicity of relatively compact strictly pseudoconvex domains. The aim of this paper is to obtain sharp estimates of the Kobayashi metric on strictly pseudoconvex domains in four almost complex manifolds: Theorem A. Let D be a relatively compact strictly J-pseudoconvex smooth domain in a four dimensional almost complex manifold (M, J). Then for every ε > 0, there exists 0 < ε 0 < ε and positive constants C and s such that for every p ∈ D ∩ N ε 0 (∂D) and every v = v n + v t ∈ T p M we have e -Cδ(p) s |v n | 2 4δ(p) 2 + L J ρ(π(p), v t ) 2δ(p)

1 2 ≤ K (D,J) (p, v) ≤ e Cδ(p) s |v n | 2 4δ(p) 2 + L J ρ(π(p), v t ) 2δ(p) 1 2 
. (0.1)

In the above theorem, δ(p) := dist(p, ∂D), where dist is taken with respect to a Riemannian metric. For p sufficiently close to the boundary the point π(p) denotes the unique boundary point such that δ(p) = p-π(p) . Moreover N ε 0 (∂D) := {q ∈ M, δ(q) < ε 0 }. We point out that the splitting v = v n +v t ∈ T p M in tangent and normal components in (0.1) is understood to be taken at π(p).

As a corollary of Theorem A, we obtain:

Theorem B.
(1) Let D be a relatively compact strictly J-pseudoconvex smooth domain in an almost complex manifold (M, J) of dimension four. Then the domain D endowed with the Kobayashi integrated distance d (D,J) is a Gromov hyperbolic metric space. (2) Each point in a four dimensional almost complex manifold admits a basis of Gromov hyperbolic neighborhoods.

The paper is organized as follows. In Section 1, we give general facts about almost complex manifolds. In Section 2, we show how to deduce Theorem B from Theorem A. Finally, Section 3 is devoted to the proof of our main result, namely Theorem A.

PRELIMINARIES

We denote by ∆ the unit disc of C and by ∆ r the disc of C centered at the origin of radius r > 0.

1.1. Almost complex manifolds and pseudoholomorphic discs. An almost complex structure J on a real smooth manifold M is a (1, 1) tensor field which satisfies J 2 = -Id. We suppose that J is smooth. The pair (M, J) is called an almost complex manifold. We denote by J st the standard integrable structure on C n for every n. A differentiable map f : (M ′ , J ′ ) -→ (M, J) between two almost complex manifolds is said to be

(J ′ , J)-holomorphic if J (f (p)) • d p f = d p f • J ′ (p) , for every p ∈ M ′ . In case M ′ = ∆ ⊂ C, such a map is called a pseudoholomorphic disc. If f : (M, J) -→ M ′ is
a diffeomorphism, we define an almost complex structure, f * J, on M ′ as the direct image of J by f :

f * J (q) := d f -1 (q) f • J f -1 (q) • d q f -1 , for every q ∈ M ′ .
The following lemma (see [START_REF] Gaussier | Estimates of the Kobayashi metric on almost complex manifolds[END_REF]) states that locally any almost complex manifold can be seen as the unit ball of C n endowed with a small smooth pertubation of the standard integrable structure J st . Lemma 1.1. Let (M, J) be an almost complex manifold, with J of class C k , k ≥ 0. Then for every point p ∈ M and every λ 0 > 0 there exist a neighborhood U of p and a coordinate diffeomorphism

z : U → B centered a p (ie z(p) = 0) such that the direct image of J satisfies z * J (0) = J st and ||z * (J) -J st || C k ( B) ≤ λ 0 .
This is simply done by considering a local chart z : U → B centered a p (ie z(p) = 0), composing it with a linear diffeomorphism to insure z * J (0) = J st and dilating coordinates.

So let J be an almost complex structure defined in a neighborhood U of the origin in R 2n , and such that J is sufficiently closed to the standard structure in uniform norm on the closure U of U . The J-holomorphy equation for a pseudoholomorphic disc u : ∆ → U ⊆ R 2n is given by

(1.1) ∂u ∂y -J (u) ∂u ∂x = 0.
According to [START_REF] Nijenhuis | Some integration problems in almost-complex and complex manifolds[END_REF], for every p ∈ M , there is a neighborhood V of zero in T p M , such that for every v ∈ V , there is a J-holomorphic disc u satisfying u (0) = p and d 0 u (∂/∂x) = v.

1.2. Splitting of the tangent space. Assume that J is a diagonal almost complex structure defined in a neighborhood of the origin in R 4 and such that J(0) = J st . Consider a basis (ω 1 , ω 2 ) of (1, 0) differential forms for the structure J in a neighborhood of the origin. Since J is diagonal, we may choose

ω j = dz j -B j (z)dz j , j = 1, 2.
Denote by (Y 1 , Y 2 ) the corresponding dual basis of (1, 0) vector fields. Then

Y j = ∂ ∂z j -β j (z) ∂ ∂z j , j = 1, 2. Moreover B j (0) = β j (0) = 0 for j = 1, 2. The basis (Y 1 (0), Y 2 (0)) simply coincides with the canonical (1,0) basis of C 2 .
In particular Y 1 (0) is a basis vector of the complex tangent space T J 0 (∂D) and Y 2 (0) is normal to ∂D. Consider now for t ≥ 0 the translation ∂D -t of the boundary of D near the origin. Consider, in a neighborhood of the origin, a (1, 0) vector field X 1 (for J) such that X 1 (0) = Y 1 (0) and X 1 (z) generates the J-invariant tangent space T J z (∂D -t) at every point z ∈ ∂D -t, 0 ≤ t << 1. Setting X 2 = Y 2 , we obtain a basis of vector fields (X 1 , X 2 ) on D (restricting D if necessary). Any complex tangent vector v ∈ T

(1,0) z (D, J) at point z ∈ D admits the unique decomposition v = v t + v n where v t = α 1 X 1 (z) is the tangent component and v n = α 2 X 2 (z) is the normal component. Identifying T (1,0) z (D, J)
with T z D we may consider the decomposition v = v t + v n for each v ∈ T z (D). Finally we consider this decomposition for points z in a neighborhood of the boundary.

Levi geometry.

Let ρ be a C 2 real valued function on a smooth almost complex manifold (M, J) . We denote by d c J ρ the differential form defined by (1.2)

d c J ρ (v) := -dρ (Jv)
, where v is a section of T M . The Levi form of ρ at a point p ∈ M and a vector v ∈ T p M is defined by

L J ρ (p, v) := d (d c J ρ) (p) (v, J(p)v) = dd c J ρ(p) (v, J(p)v) .
In case (M, J) = (C n , J st ), then L Jst ρ is, up to a positive multiplicative constant, the usual standard Levi form:

L Jst ρ(p, v) = 4 ∂ 2 ρ ∂z j ∂z k v j v k .
We investigate now how close is the Levi form with respect to J from the standard Levi form. For p ∈ M and v ∈ T p M , we easily get:

(1.3) L J ρ (p, v) = L Jst ρ(p, v) + d(d c J -d c Jst )ρ(p)(v, J(p)v) + dd c Jst ρ(p)(v, J(p) -J st )v).
In local coordinates (t 1 , t 2 , • • • , t 2n ) of R 2n , (1.3) may be written as follows

L J ρ (p, v) = L Jst ρ(p, v) + t v(A -t A)J(p)v + t (J(p) -J st )vDJ st v + t (J(p) -J st )vD(J(p) -J st )v (1.4)
where

A := i ∂u ∂t i ∂J i,j ∂t k 1≤j,k≤2n
and

D := ∂ 2 u ∂t j ∂t k 1≤j,k≤2n
.

Let f be a (J ′ , J)-biholomorphism from (M ′ , J ′ ) to (M, J). Then for every p ∈ M and every v ∈ T p M :

L J ′ ρ (p, v) = L J ρ • f -1 (f (p) , d p f (v)) .
This expresses the invariance of the Levi form under pseudobiholomorphisms. The next proposition is useful in order to compute the Levi form (see [START_REF] Ivashkovich | Schwarz-type lemmas for solutions of ∂-inequalities and complete hyperbolicity of almost complex manifolds[END_REF]).

Proposition 1.2. Let p ∈ M and v ∈ T p M . Then

L J ρ (p, v) = ∆ (ρ • u) (0)
,

where u : ∆ → (M, J) is any J-holomorphic disc satisfying u (0) = p and d 0 u (∂/∂ x ) = v.
Proposition 1.2 leads to the following proposition-definition:

Proposition 1.3. The two statements are equivalent:

(1) ρ • u is subharmonic for any J-holomorphic disc u : ∆ → M .

(2) L J ρ(p, v) ≥ 0 for every p ∈ M and every v ∈ T p M .

If one of the previous statements is satisfied we say that ρ is J-plurisubharmonic. We say that ρ is strictly J-plurisubharmonic if L J ρ(p, v) is positive for any p ∈ M and any v ∈ T p M \ {0}. Plurisubharmonic functions play a very important role in almost complex geometry: they give attraction and localization properties for pseudoholomorphic discs. For this reason the construction of J-plurisubharmonic functions is crucial.

Similarly to the integrable case, one may define the notion of pseudoconvexity in almost complex manifolds. Let D be a domain in (M, J). We denote by T J ∂D := T ∂D ∩ JT ∂D the J-invariant subbundle of T ∂D.

Definition 1.4.

(1) The domain

D is J-pseudoconvex (resp. it strictly J-pseudoconvex) if L J ρ(p, v) ≥ 0 (resp. > 0)
for any p ∈ ∂D and v ∈ T J p ∂D (resp. v ∈ T J p ∂D \ {0}). (2) A J-pseudoconvex region is a domain D = {ρ < 0} where ρ is a C 2 defining function, Jplurisubharmonic on a neighborhood of D.

We recall that a defining function for D satisfies dρ = 0 on ∂D.

We need the following lemma due to E.Chirka [6].

Lemma 1.5. Let J be an almost complex structure of class C 1 defined in the unit ball B of R 2n satisfying J(0) = J st . Then there exist positive constants ε and

A ε = O(ε) such that the function log z 2 + A ε z is J-plurisubharmonic on B whenever J -J st C 1 (B) ≤ ε.
Proof. This is due to the fact that for p ∈ B and J -J st C 1 (B) sufficiently small, we have:

L J A z (p, v) ≥ A 1 p - 2 p J(p) -J st -2(1 + J(p) -J st ) J -J st C 1 (B) v 2 ≥ A 2 p v 2
and

L J ln z (p, v) ≥ - 2 p 2 J(p) -J st - 1 p 2 J(p) -J st 2 - 2 p J -J st C 1 (B) - 2 p J(p) -J st J -J st C 1 (B) v 2 ≥ - 6 p J -J st C 1 (B) v 2 .
So taking A = 24 J -J st C 1 (B) the Chirka's lemma follows.

The strict J-pseudoconvexity of a relatively compact domain D implies that there is a constant C ≥ 1 such that:

(1.5) 1 C v 2 ≤ L J ρ(p, v) ≤ C v 2 ,
for p ∈ ∂D and v ∈ T J p (∂D).

Let ρ be a defining function for D, J-plurisubharmonic on a neighborhood of D and strictly Jplurisubharmonic on a neighborhood of the boundary ∂D. Consider the one-form d c J ρ defined by (1.2) and let α be its restriction on the tangent bundle T ∂D. It follows that T J ∂D = Kerα. Due to the strict J-pseudoconvexity of ρ, the two-form ω := dd c J ρ is a symplectic form (ie nondegenerate and closed) on a neighborhood of ∂D, that tames J. This implies that (1.6) g R := 1 2 (ω(., J.) + ω(J., .))

defines a Riemannian metric. We say that T J ∂D is a contact structure and α is contact form for T J ∂D.

Consequently vector fields in T J ∂D span the whole tangent bundle T ∂D. Indeed if v ∈ T J ∂D, it follows that ω(v, Jv) = α([v, Jv]) > 0 and thus [v, Jv] ∈ T ∂D \ T J ∂D. We point out that in case v ∈ T J ∂D, the vector fields v and Jv are orthogonal with respect to the Riemannian metric g R .

1.4. The Kobayashi pseudometric. The existence of local pseudoholomorphic discs proved by A.Nijenhuis and W.Woolf [START_REF] Nijenhuis | Some integration problems in almost-complex and complex manifolds[END_REF] allows to define the Kobayashi-Royden pseudometric, abusively called the Kobayashi pseudometric, K (M,J) for p ∈ M and v ∈ T p M :

K (M,J) (p, v) := inf 1 r > 0, u : ∆ → (M, J) J-holomorphic , u (0) = p, d 0 u (∂/∂x) = rv . = inf 1 r > 0, u : ∆ r → (M, J), J-holomorphic , u (0) = p, d 0 u (∂/∂x) = v .
Since the composition of pseudoholomorphic maps is still pseudoholomorphic, the Kobayashi pseudometric satisfies the decreasing property:

Proposition 1.6. Let f : (M ′ , J ′ ) → (M, J) be a (J ′ , J)-holomorphic map. Then for any p ∈ M ′ and v ∈ T p M ′ we have K (M,J) (f (p) , d p f (v)) ≤ K (M ′ ,J ′ ) (p, v) .
Since the structures we consider are smooth enough, we may define the integrated pseudodistance d (M,J) of K (M,J) :

d (M,J) (p, q) := inf 1 0 K (M,J) (γ (t) , γ (t)) dt, γ : [0, 1] → M, γ (0) = p, γ (1) = q .
Similarly to the standard integrable case, B.Kruglikov [START_REF] Kruglikov | Existence of close pseudoholomorphic disks for almost complex manifolds and their application to the Kobayashi-Royden pseudonorm[END_REF] proved that the integrated pseudodistance of the Kobayashi pseudometric coincides with the Kobayashi pseudodistance defined by chains of pseudholomorphic discs.

We now define the Kobayashi hyperbolicity: Definition 1.7.

(

) The manifold (M, J) is Kobayashi hyperbolic if the Kobayashi pseudodistance d (M,J) is a distance. ( 1 
) 2 
The manifold (M, J) is local Kobayashi hyperbolic at p ∈ M if there exist a neighborhood U of p and a positive constant C such that

K (M,J) (q, v) ≥ C v
for every q ∈ U and every v ∈ T q M . (3) A Kobayashi hyperbolic manifold (M, J) is complete hyperbolic if it is complete for the distance d (M,J) .

GROMOV HYPERBOLICITY

In this section we give some backgrounds about Gromov hyperbolic spaces. Furthermore, according to Z.M.Balogh and M.Bonk [START_REF] Balogh | Gromov hyperbolicity and the Kobayashi metric on strictly pseudoconvex domains[END_REF], proving that a domain D with some curvature is Gromov hyperbolic reduces to providing sharp estimates for the Kobayashi metric K (D,J) near the boundary of D.

2.1. Gromov hyperbolic spaces. Let (X, d) be a metric space.

Definition 2.1. The Gromov product of two points x, y ∈ X with respect to the basepoint ω ∈ X is defined by

(x|y) ω := 1 2 (d(x, ω) -d(y, ω) -d(x, y)).
The Gromov product measures the failure of the triangle inequality to be an equality and is always nonnegative.

Definition 2.2. The metric space X is Gromov hyperbolic if there is a nonnegative constant δ such that for any x, y, z, ω ∈ X one has:

(2.1) (x|y) ω ≥ min((x|z) ω , (z|y) ω ) -δ.
We point out that (2.1) can also be written as follows:

(2.2)

d(x, y) + d(z, ω) ≤ max(d(x, z) + d(y, ω), d(x, ω) + d(y, z)) + 2δ, for x, y, z, ω ∈ X.
There is a family of metric spaces for which Gromov hyperbolicity may be defined by means of geodesic triangles. A metric space (X,d) is said to be geodesic space if any two points x, y ∈ X can be joined by a geodesic segment, that is the image of an isometry g : [0, d(x, y)] → X with g(0) = x and g(d(x, y)) = y. Such a segment is denoted by

[x, y]. A geodesic triangle in X is the subset [x, y] ∪ [y, z] ∪ [z, x]
, where x, y, z ∈ X. For a geodesic space (X, d), one may define equivalently (see [START_REF]Sur les groupes hyperboliques d'après Mikhael Gromov[END_REF]) the Gromov hyperbolicity as follows:

Definition 2.3. The geodesic space X is Gromov hyperbolic if there is a nonnegative constant δ such that for any geodesic triangle

[x, y] ∪ [y, z] ∪ [z, x] and any ω ∈ [x, y] one has d(ω, [y, z] ∪ [z, x]) ≤ δ.

Gromov hyperbolicity of strictly pseudoconvex domains in almost complex manifolds of dimension four.

Let D = {ρ < 0} be a relatively compact J-strictly pseudoconvex smooth domain in an almost complex manifolds (M, J) of dimension four. Although the boundary of a compact complex manifold with pseudoconvex boundary is always connected, this is not the case in almost complex setting. Indeed D.McDuff obtained in [START_REF] Mcduff | Symplectic manifolds with contact type boundaries[END_REF] a compact almost complex manifold (M, J) of dimension four, with a disconnected J-pseudoconvex boundary. Since D is globally defined by a smooth function, J-plurisubharmonic on a neighborhood of D and strictly J-plurisubharmonic on a neighborhood of the boundary ∂D, it follows that the boundary ∂D of D is connected. Moreover this also implies that there are no J-complex line contained in D and so that (D, d D,J ) is a metric space.

A C 1 curve α : [0, 1] → ∂D is horizontal if α(s) ∈ T J α(s) ∂D for every s ∈ [0, 1]
. This is equivalent to αn ≡ 0. Thus we define the Levi length of a horizontal curve by

L J ρ -length(α) := 1 0 L J ρ(α(s), α(s)) 1 2 ds.
We point out that, due to (1.6),

L J ρ -length(α) = 1 0 g R (α(s), α(s)) 1 2 ds.
Since T J ∂D is a contact structure, a theorem due to Chow [START_REF] Chow | Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung[END_REF] states that any two points in ∂D may be connected by a C 1 horizontal curve. This allows to define the Carnot-Carathéodory metric as follows:

d H (p, q) := {L J ρ -length(α), α : [0, 1] → ∂D horizontal , α(0) = p, α(1) = q} .
Equivalently, we may define locally the Carnot-Carathéodory metric by means of vector fields as follows. Consider two g R -orthogonal vector fields v, Jv ∈ T J ∂D and the sub-Riemannian metric associated to v, Jv:

g SR (p, w) := inf a 2 1 + a 2 2 , a 1 v(p) + a 2 (Jv)(p) = w . For a horizontal curve α, we set g SR -length(α) := 1 0 g SR (α(s), α(s)) 1 2 ds.
Thus we define:

d H (p, q) := {g SR -length(α), α : [0, 1] → ∂D horizontal , α(0) = p, α(1) = q} .
We point out that for a small horizontal curve α, we have

α(s) = a 1 (s)v(α(s)) + a 2 (s)J(α(s))v(α(s)). Consequently g R (α(s), α(s)) = a 2 1 (s) + a 2 2 (s) g R (α(s), v(α(s))).
Although the role of the bundle T J ∂D is crucial, it is not essential to define the Carnot-Carathéodory metric with g SR instead of g R . Actually, two Carnot-Carathéodory metrics defined with different Riemannian metrics are bi-Lipschitz equivalent (see [START_REF] Gromov | Carnot-Carathéodory spaces seen from within, Sub-Riemannian geometry[END_REF]).

According to A.Bellaiche [START_REF] Bellaïche | The tangent space in sub-Riemannian geometry, Sub-Riemannian geometry[END_REF] and M.Gromov [START_REF] Gromov | Carnot-Carathéodory spaces seen from within, Sub-Riemannian geometry[END_REF] and since T ∂D is spanned by vector fields of T J ∂D and Lie Brackets of vector fields of T J ∂D, balls with respect to the Carnot-Carathéodory metric may be anisotropically approximated. More precisely Proposition 2.4. There exists a positive constant C such that for ε small enough and p ∈ ∂D:

(2.3) Box p, ε C ⊆ B H (p, ε) ⊆ Box(p, Cε),
where

B H (p, ε) := {q ∈ ∂D, d H (p, q) < ε} and Box(p, ε) := {p + v ∈ ∂D, |v t | < ε, |v n | < ε 2 }.
The splitting v = v t + v n is taken at p. We point out that choosing local coordinates such that p = 0, J(0) = J st and

T J 0 ∂D = {z 1 = 0}, then Box(p, ε) = ∂D ∩ Q(0, ǫ), where Q(0, ǫ) is the classical polydisc Q(0, ǫ) := {z ∈ C 2 , |z 1 | < ε 2 , |z 2 | < ε}.
As proved by Z.M.Balogh and M.Bonk [START_REF] Balogh | Gromov hyperbolicity and the Kobayashi metric on strictly pseudoconvex domains[END_REF], (2.3) allows to approximate the Carnot-Carathéodory metric by a Riemannian anisotropic metric: Lemma 2.5. There exists a positive constant C such that for any positive κ

1 C d κ (p, q) ≤ d H (p, q) ≤ Cd κ (p, q),
whenever d H (p, q) ≥ 1/κ for p, q ∈ ∂D. Here, the distance d κ (p, q) is taken with respect to the Riemannian metric g κ defined by:

g κ (p, v) := L J ρ(p, v h ) + κ 2 |v n | 2 , for p ∈ ∂D and v = v t + v n ∈ T p ∂D.
The crucial idea of Z.M.Balogh and M.Bonk [START_REF] Balogh | Gromov hyperbolicity and the Kobayashi metric on strictly pseudoconvex domains[END_REF] to prove the Gromov hyperbolicity of D is to introduce a function on D × D, using the Carnot-Carathéodory metric, which satisfies (2.1) and which is roughly similar to the Kobayashi distance.

For p ∈ D we define a boundary projection map π : D → ∂D by

δ(p) = p -π(p) = dist(p, ∂D).
We notice that π(p) is uniquely determined only if p ∈ D is sufficiently close to the boundary. We set

h(p) := δ(p) 1 2
. Then we define a map g : D × D → [0, +∞) by:

g(p, q) := 2 log d H (π(p), π(q)) + max{h(p), h(q)} h(p)h(q) ,
for p, q ∈ D. The map π is uniquely determined only near the boundary. But an other choice of π gives a function g that coincides up to a bounded additive constant that will not disturb our results. The motivation of introducing the map g is related with the Gromov hyperbolic space Con(Z) defined by M.Bonk and O.Schramm in [START_REF] Bonk | Embeddings of Gromov hyperbolic spaces[END_REF] (see also [START_REF] Gromov | Hyperbolic groups, in "Essays in group theory[END_REF]) as follows. Let (Z, d) be a bounded metric space which does not consist of a single point and set

Con(Z) := Z × (0, diam(Z)].
Let us define a map g : Con(Z) × Con(Z) → [0, +∞) by

g (z, h), (z ′ , h ′ ) := 2 log d(z, z ′ ) + max{h, h ′ } √ hh ′ .
M.Bonk and O.Schramm in [START_REF] Bonk | Embeddings of Gromov hyperbolic spaces[END_REF] proved that (Con(Z), g) is a Gromov hyperbolic (metric) space.

In our case the map g is not a metric on D since two different points p = q ∈ D may have the same projection; nevertheless Lemma 2.6. The function g satisfies (2.2) (or equivalently (2.1)) on D.

Proof. Let r ij be real nonnegative numbers such that

r ij = r ji and r ij ≤ r ik + r kj , for i, j, k = 1, • • • , 4. Then (2.4)
r 12 r 34 ≤ 4 max(r 13 r 24 , r 14 r 23 ).

Consider now four points

p i ∈ D, i = 1, • • • , 4. We set h i = δ(p i ) 1 2 and d i,j = d (H,J) (π(p i ), π(p j ))
. Then applying (2.4) to r ij = d i,j + min(h i , h j ), we obtain:

(d 1,2 + min(h 1 , h 2 ))(d 3,4 + max(h 3 , h 4 )) ≤ 4 max((d 1,3 + max(h 1 , h 3 ))(d 2,4 + min(h 2 , h 4 ), (d 1,4 + min(h 1 , h 4 ))(d 2,3 + max(h 2 , h 3 )).
Then: g(p 1 , p 2 ) + g(p 3 , p 4 ) ≤ max(g(p 1 , p 3 ) + g(p 2 , p 4 ), g(p 1 , p 4 ) + g(p 2 , p 3 )) + 2 log 4, which proves the desired statement.

As a direct corollary, if a metric d on D is roughly similar to g, then the metric space (D, d) is Gromov hyperbolic: Corollary 2.7. Let d be a metric on D verifying

(2.5) -C + g(p, q) ≤ d(p, q) ≤ g(p, q) + C
for some positive constant C, and every p, q ∈ D. Then d satisfies (2.2) and so the metric space (D, d) is Gromov hyperbolic.

Z.M.Balogh and M.Bonk [START_REF] Balogh | Gromov hyperbolicity and the Kobayashi metric on strictly pseudoconvex domains[END_REF] proved that if the Kobayashi metric (with respect to J st ) of a bounded strictly pseudoconvex domain satisfies (0.1), then the Kobayashi distance is rough similar to the function g. Their proof is purely metric and does not use complex geometry or complex analysis. We point out that the strict pseudoconvexity is only needed to obtain (1.5) or the fact that T ∂D is spanned by vector fields of T Jst ∂D and Lie Brackets of vector fields of T Jst ∂D. In particular their proof remains valid in the almost complex setting and, consequently, Theorem A implies: Theorem 2.8. Let D be a relatively compact strictly J-pseudoconvex smooth domain in an almost complex manifold (M, J) of dimension four. There is a nonnegative constant C such that for any p, q ∈ D g(p, q) -C ≤ d (D,J) (p, q) ≤ g(p, q) + C.

According to Corollary 2.7 we finally obtain the following theorem (see also [START_REF] Balogh | Gromov hyperbolicity and the Kobayashi metric on strictly pseudoconvex domains[END_REF] of Theorem B): Theorem 2.9. Let D be a relatively compact strictly J-pseudoconvex smooth domain in an almost complex manifolds (M, J) of dimension four. Then the metric space (D, d (D,J) ) is Gromov hyperbolic.

Example 2.10. There exist a neighborhood U of p and a diffeomorphism z : U → B ⊆ R 4 , centered at p, such that the function z 2 is strictly J-plurisubharmonic on U and z * (J) -J st C 2 (U ) ≤ λ 0 . Hence the unit ball B equipped with the metric d (B(0,1),z * J) is Gromov hyperbolic.

As a direct corollary of Example 2.10 we have (see also [START_REF] Bellaïche | The tangent space in sub-Riemannian geometry, Sub-Riemannian geometry[END_REF] of Theorem B):

Corollary 2.11. Let (M, J) be a four dimensional almost complex manifold. Then every point p ∈ M has a basis of Gromov hyperbolic neighborhoods.

SHARP ESTIMATES OF THE KOBAYASHI METRIC

In this section we give a precise localization principle for the Kobayashi metric and we prove Theorem A.

Let D = {ρ < 0} be a domain in an almost complex manifold (M, J), where ρ is a smooth defining strictly J-plurisubharmonic function. For a point p ∈ D we define For ε > 0, we introduce

(3.3) N ε := {p ∈ D, δ(p) < ε}.
3.1. Sharp localization principle. F.Forstneric and J.-P.Rosay [START_REF] Forstneric | Localization of the Kobayashi metric and the boundary continuity of proper holomorphic mappings[END_REF] obtained a sharp localization principle of the Kobayashi metric near a strictly J st -pseudoconvex boundary point of a domain D ⊂ C n . However their approach is based on the existence of some holomorphic peak function at such a point; this is purely complex and cannot be generalized in the nonintegrable case. The sharp localization principle we give is based on some estimates of the Kobayashi length of a path near the boundary.

Proposition 3.1.

There exists a positive constant r such that for every p ∈ D sufficiently close to the boundary and for every sufficiently small neighborhood U of π(p) there is a positive constant c such that for every v ∈ T p M :

(3.4) K (D∩U,J) (p, v) ≥ (1 -cδ(p) r )K (D∩U,J) (p, v).
We will give later a more precise version of Proposition 3.1, where the constants c and r are given explicitly (see Lemma 3.4).

Proof. We consider a local diffeomorphism z centered at π(p) from a sufficiently small neighborhood U of π(p) to z(U ) such that (1) z(p) = (δ(p), 0), (2) the structure z * J satisfies z * J(0) = J st and is diagonal, (3) the defining function ρ • z -1 is locally expressed by:

ρ • z -1 (z) = -2ℜez 1 + 2ℜe ρ j,k z j z k + ρ j,k z j z k + O( z 3 ),
where ρ j,k and ρ j,k are constants satisfying ρ j,k = ρ k,j and ρ j,k = ρ k,j .

According to Lemma 4.8 in [START_REF] Lee | Domains in almost complex manifolds with an automorphism orbit accumulating at a strongly pseudoconvex boundary point[END_REF], there exists a positive constant c 1 (C 1/4 in the notations of [START_REF] Lee | Domains in almost complex manifolds with an automorphism orbit accumulating at a strongly pseudoconvex boundary point[END_REF]), independent of p, such that, shrinking U if necessary, for any q ∈ D ∩ U and any v ∈ T q R 4 :

K (D,J) (q, v) ≥ c 1 d q χ(v) χ(q) ,
where χ(q

) := |z 1 (q)| 2 + |z 2 (q)| 4 . Let u : ∆ → D be a J-holomorphic discs satisfying u(0) = p ∈ D. Assume that u(∆) ⊂ D ∩ U and let ζ ∈ ∆ such that u(ζ) ∈ D ∩ ∂U . We consider a C ∞ path γ : [0; 1] → D from u(ζ) to the point p; so γ(0) = u(ζ) and γ(1) = p.
Without loss of generality we may suppose that γ([0, 1[) ⊆ D ∩ U . From this we get that the Kobayashi length of γ satisfies:

L (D,J) (γ) := 1 0 K (D,J) (γ(t), γ(t))dt ≥ c 1 1 0 d γ(t) χ( γ(t)) χ(γ(t)) dt.
This leads to:

L (D,J) (γ) ≥ c 1 χ(u(sζ)) χ(p) dt t = c 1 log χ(u(sζ)) χ(p) = c 1 log χ(u(sζ)) χ(p) ,
for p sufficiently small. Since there exists a positive constant c 2 (U ) such that for all z ∈ D ∩ ∂U :

χ(z) ≥ c 2 (U ),
and since χ(p) = δ(p) 2 it follows that

(3.5) L (D,J) (γ) ≥ c 1 log c 2 (U ) δ(p) 2 ,
We set c 3 (U ) = c 1 log(c 2 (U )).

According to the decreasing property of the Kobayashi distance, we have:

(3.6) d (D,J) (p, u(ζ)) ≤ d (∆,Jst) (0, ζ) = log 1 + |ζ| 1 -|ζ| .
Due to (3.5) and (3.6) we have:

e c 3 (U ) -δ(p) 2c 1 e c 3 (U ) + δ(p) 2c 1 ≤ |ζ|,
and so for p sufficiently close to its projection point π(p):

1 -2e -c 3 (U ) δ(p) 2c 1 ≤ |ζ|, This finally proves that u(∆ s ) ⊂ D ∩ U with s := 1 -2e -c 3 (U ) δ(p) 2c 1 .

Sharp estimates of the Kobayashi metric.

In this subsection we give the proof of Theorem A.

Proof. Let p ∈ D ∩ N ε 0 with ε 0 small enough and set δ := δ(p). Considering a local diffeomorphism z : U → z(U ) ⊂ R 4 such that Proposition 3.1 holds, me may assume that:

(1) π(p) = 0 and p = (δ, 0).

(

) D ∩ U ⊂ R 4 , 2 
The structure J is diagonal and coincides with J st on the complex tangent space {z 1 = 0}:

(3.7) J C =     a 1 b 1 0 0 b 1 a 1 0 0 0 0 a 2 b 2 0 0 a 2 a 2     , with    a l = i + O( z 1 2 ), b l = O( z 1 ), for l = 1, 2. (4)
The defining function ρ is expressed by:

ρ (z) = -2ℜez 1 + 2ℜe ρ j,k z j z k + ρ j,k z j z k + O( z 3 ),
where ρ j,k and ρ j,k are constants satisfying ρ j,k = ρ k,j and ρ j,k = ρ k,j .

Since the structure J is diagonal, the Levi form of ρ at the origin with respect to the structure J coincides with the Levi form of ρ at the origin with respect to the structure J st on the complex tangent space. It follows essentially from [START_REF] Gaussier | Estimates of the Kobayashi metric on almost complex manifolds[END_REF]. Lemma 3.2. Let v 2 = (0, v 2 ) ∈ R 4 be a tangent vector to ∂D at the origin. We have:

(3.8) ρ 2,2 |v 2 | 2 = L Jst ρ(0, v 2 ) = L J ρ(0, v 2 ).
Proof of Lemma 3.2. Let u : ∆ → C 2 be a J-holomorphic disc such that u(0) = 0 and tangent to v 2 ,

u(ζ) = ζv 2 + O(|ζ| 2 ).
Since J is a diagonal structure, the J-holomorphy equation leads to:

(3.9)

∂u 1 ∂ζ = q 1 (u) ∂u 1 ∂ζ ,
where q 1 (z) = O( z ). Moreover, since d 0 u 1 = 0, (3.9) gives:

∂ 2 u 1 ∂ζ∂ζ (0) = 0.
This implies that

∂ 2 ρ • u ∂ζ∂ζ (0) = ρ 2,2 |v t | 2 .
Thus, the Levi form with respect to J coincides with the Levi form with respect to J st on the complex tangent space of ∂D δ at the origin.

Remark 3.3. More generally, even if J(0) = J st , the Levi form of a function ρ with respect to J at the origin does not coincide with the Levi form of ρ with respect to J st . According to Lemma 3.2 if the structure is diagonal then they are equal at the origin on the complex tangent space; but in real dimension greater than four, the structure can not be (genericaly) diagonal. K.Diederich and A.Sukhov [START_REF] Diederich | Plurisubharmonic exhaustion functions and almost complex Stein structures[END_REF] proved that if the structure J satisfies J(0) = J st and d z J = 0 (which is always possible by a local diffeomorphism in arbitrary dimensions), then the Levi forms coincide at the origin (for all the directions).

Lemma 3.2 implies that since the domain D is strictly J pseudoconvex at π(p) = 0, we may assume that ρ 2,2 = 1.

Consider the following biholomorphism Φ (for the standard structure J st ) that removes the harmonic term 2ℜe(ρ 2,2 z 2 2 ):

(3.10) Φ(z 1 , z 2 ) := (z 1 -ρ 2,2 z 2 2 , z 2
). The complexification of the structure Φ * J admits the following matricial representation:

(3.11) (Φ * J) C =      a 1 (Φ -1 (z)) b 1 (Φ -1 (z)) c 1 (z) c 2 (z) b 1 (Φ -1 (z)) a 1 (Φ -1 (z)) c 2 (z) c 1 (z) 0 0 a 2 (Φ -1 (z)) b 2 (Φ -1 (z)) 0 0 b 2 (Φ -1 (z)) a 2 (Φ -1 (z))      , where    c 1 (z) := 2ρ 2,2 z 2 a 1 (Φ -1 (z)) -a 2 (Φ -1 (z) c 2 (z) := 2ρ 2,2 z 2 b 1 (Φ -1 (z)) -ρ 2,2 z 2 b 2 (Φ -1 (z)).
In what follows, we need a quantitative version of Proposition 3.1. So we consider the following polydisc

Q (δ,α) := {z ∈ C 2 , |z 1 | < δ 1-α , |z 2 | < cδ 1-α
2 } centered at the origin, where c is chosen such that (3.12)

Φ(D ∩ U ) ∩ ∂Q (δ,α) ⊂ {z ∈ C 2 , |z 1 | = δ 1-α }.
Lemma 3.4. Let 0 < α < 1 be a positive number. There is a positive constant β such that for every sufficiently small δ we have:

(3.13) K (D∩U,J) (p, v) = K (Φ(D∩U ),Φ * J) (p, v) ≥ 1 -2δ β K (φ(D∩U )∩Q (δ,α) ,Φ * J) (p, v),
for p = (δ, 0) and every v ∈ T p R 4 .

Proof. The proof is a quantitative repetition of the proof of Proposition 3.1; we only notice that according to (3.12) we have

c 2 = δ 1-α , implying β = 2αc 1 .
Let 0 < α < α ′ < 1 to be fixed later, independently of δ. For every sufficiently small δ, we consider a smooth cut off function χ : R 4 → R:

   χ ≡ 1 on Q (δ,α) , χ ≡ 0 on R 4 \ Q (δ,α ′ ) ,
with α ′ < α. We point out that χ may be chosen such that

(3.14) d z χ ≤ c δ 1-α ′ ,
for some positive constant c independent of δ. We consider now the following endomorphism of R 4 : q ′ (z) := χ(z)q(z),

for z ∈ Q (δ,α ′ ) , where q(z) := (Φ * J(z) + J st ) -1 (Φ * J(z) -J st ).
According to the fact that q(z) (3.11)) and according to (3.14), the differential of q ′ is upper bounded on Q (δ,α ′ ) , independently of δ. Moreover the dz 2 ⊗ ∂ ∂z 1 and the (3.11); this is also the case for the endomorphism q ′ . We define an almost complex structure on the whole space R 4 by:

= O(|z 1 + ρ 2,2 z 2 2 |) (see
dz 2 ⊗ ∂ ∂z 1 components of the structure Φ * J are O(|z 1 + ρ 2,2 z 2 2 ||z 2 |) by
J ′ (z) = J st (Id + q ′ (z))(Id -q ′ (z)) -1 ,
which is well defined since q ′ (z) < 1. It follows that the structure J ′ is identically equal to Φ * J in Q (δ,α) and coincides with J st on R 4 \ Q (δ,α ′ ) (see Figure 1). Notice also that since χ ≡ dχ ≡ 0 on ∂Q (δ,α ′ ) , J ′ coincides with J st at first order on ∂Q (δ,α ′ ) . Finally the structure J ′ satisfies:

J ′ = J st + O(|z 1 + ρ 2,2 z 2 2 |) on Q (δ,α ′ ) .
To fix the notations, the almost complex structure J ′ admits the following matricial interpretation:

(3.15)

J ′ C =     a ′ 1 b ′ 1 c ′ 1 c ′ 2 b ′ 1 a ′ 1 c ′ 2 c ′ 1 0 0 a ′ 2 b ′ 2 0 0 b ′ 2 a ′ 2     . with            a ′ l = i + O( z 2 ), b ′ l = O( z ), c ′ l = O(|z 2 | z ), for l = 1, 2. p = (δ, 0) 0 Q (δ,α) Q (δ,α ′ ) J J ′ J st J ′ |∂Q (δ,α ′ )
= J st at order 1

J |∂Q (δ,α) ) = J ′ |∂Q (δ,α ′ )
at order 1

Φ(D ∩ U )
Figure 1. Extension of the almost complex structure J.

Furthermore, according to the decreasing property of the Kobayashi metric we have for p = (δ, 0):

(3.16) K (Φ(D∩U )∩Q (δ,α) ,Φ * J) (p, v) = K (Φ(D∩U )∩Q (δ,α) ,J ′ ) (p, v) ≥ K (Φ(D∩U )∩Q (δ,α ′ ) ,J ′ ) (p, v).
Finally, (

(3.17)

K (D∩U,J) (p, v) ≥ (1 -2δ β )K (Φ(D∩U )∩Q (δ,α ′ ) ,J ′ ) (p, v).
This implies that in order to obtain the lower estimate of Theorem A it is sufficient to prove lower estimates for K (Φ(D∩U )∩Q (δ,α ′ ) ,J ′ ) (p, v).

We set

Ω := Φ(D ∩ U ) ∩ Q (δ,α ′ )
. Let T δ be the translation of C 2 defined by

T δ (z 1 , z 2 ) := (z 1 -δ, z 2 ),
and let ϕ δ be a linear diffeomorphism of R 4 such that the direct image of J ′ by ϕ δ • T δ • Φ, denoted by J ′δ , satisfies:

(3.18) J ′δ (0) = J st .

To do this we consider a linear diffeomorphism such that its differential at the origin transforms the basis (e 1 , (T δ • Φ) * J ′ (0)(e 1 ), e 3 , (T δ • Φ) * J ′ (0)e 3 ) into the canonical basis (e 1 , e 2 , e 3 , e 4 ) of R 4 . According to (3.10) and (3.11), we have

(T δ • Φ) * J ′ (0) = Φ * J ′ (δ, 0) = J ′ (δ, 0).
This means that the endomorphism (T δ • Φ) * J ′ (0) is block diagonal. This and the fact that J ′ (δ, 0) = J ′ st + O(δ) imply that the desired diffeomorphism is expressed by:

(3.19) ϕ δ (z) := (z 1 + O(δ|z 1 |), z 2 + O(δ|z 2 |)) ,
for z ∈ T δ (Ω), and that:

(3.20) (J ′δ ) C (z) =      a ′ 1,δ (z) b ′ 1,δ (z) c ′ 1,δ (z) c ′ 2,δ (z) b ′ 1,δ (z) a ′ 1,δ (z) c ′ 2,δ (z) c ′ 1,δ (z) 0 0 a ′ 2,δ (z) b ′ 2,δ (z) 0 0 b ′ 2,δ (z) a ′ 2,δ (z)      ,
where

           a ′ k,δ (z) := a ′ k (Φ -1 • T -1 δ • ϕ -1 δ (z)) + O(δ) b ′ k,δ (z) := b ′ k (Φ -1 • T -1 δ • ϕ -1 δ (z)) + O(δ) c ′ k,δ (z) := c ′ k (T -1 δ • ϕ -1 δ (z)) + O(δ)
for k = 1, 2. Furthermore we notice that the structure J ′δ is constant and equal to

J st + O(δ) on R 4 \ (ϕ δ • T δ • (Ω)),
We consider now the following anisotropic dilation Λ δ of C 2 :

Λ δ (z 1 , z 2 ) := z 1 z 1 + 2δ , √ 2δz 2 z 1 + 2δ .
Its inverse is given by:

(3.21) Λ -1 δ (z) = 2δ z 1 1 -z 1 , √ 2δ z 2 1 -z 1 .
Let

Ψ δ := Λ δ • ϕ δ • T δ .
We have the following matricial representation for the complexification of the structure J δ := (Λ δ ) * J δ :

(3.22)      A ′ 1,δ (z) B ′ 1,δ (z) C ′ 1,δ (z) C ′ 2,δ (z) B ′ 1,δ (z) A ′ 1,δ ((z) C ′ 2,δ (z) C ′ 1,δ (z) D ′ 1,δ (z) D ′ 2,δ (z) A ′ 2,δ (z) B ′ 2,δ (z) D ′ 2,δ (z) D ′ 1,δ (z) B ′ 2,δ (z) A ′ 2,δ (z)      , with                                                                                            A ′ 1,δ (z) := a ′ 1,δ (Λ -1 δ (z)) + 1 √ 2δ z 2 c ′ 1,δ (Λ -1 δ (z)) A ′ 2,δ (z) := a ′ 2,δ (Λ -1 δ (z)) - 1 √ 2δ z 2 c ′ 1,δ (Λ -1 δ (z)) B ′ 1,δ (z) := (1 -z 1 ) 2 (1 -z 1 ) 2 b ′ 1,δ (Λ -1 δ (z)) + 1 √ 2δ (1 -z 1 ) 2 z 2 (1 -z 1 ) 2 c ′ 2,δ (Λ -1 δ (z)) B ′ 2,δ (z) := 1 -z 1 1 -z 1 b ′ 2,δ (Λ -1 δ (z)) - 1 √ 2δ (1 -z 1 )z 2 1 -z 1 c ′ 2,δ (Λ -1 δ (z)) C ′ 1,δ (z) := 1 √ 2δ (1 -z 1 )c ′ 1,δ (Λ -1 δ (z)) C ′ 2,δ (z) := 1 √ 2δ (1 -z 1 ) 2 1 -z 1 c ′ 2,δ (Λ -1 δ (z)) D ′ 1,δ (z) := z 2 1 -z 1 (a ′ 2,δ (Λ -1 δ (z)) -a ′ 1,δ (Λ -1 δ (z))) - 1 √ 2δ z 2 2 1 -z 1 c ′ 1,δ (Λ -1 δ (z)) D ′ 2,δ (z) := 1 -z 1 (1 -z 1 ) 2 (z 2 b ′ 2,δ (Λ -1 δ (z)) -z 2 b ′ 1,δ (Λ -1 δ (z))) -1 √ 2δ (1-z 1 )|z 2 | 2 (1-z 1 ) 2 c ′ 2,δ (Λ -1 δ (z)).
Direct computations lead to:

                                                   A ′ 1,δ (z) = a ′ 1 ( z1 + ρ 2,2 z2 2 , z2 ) + 1 √ 2δ z 2 O(| z2 || z1 + ρ 2,2 z2 2 |) + O( √ δ) B ′ 1,δ (z) = (1 -z 1 ) 2 (1 -z 1 ) 2 b ′ 1 ( z1 + ρ 2,2 z2 2 , z2 ) + 1 √ 2δ (1 -z 1 ) 2 1 -z 2 1 z 2 O(| z2 || z1 + ρ 2,2 z2 2 |) +O( √ δ) C ′ 1,δ (z) = 1 √ 2δ (1 -z 1 )O(| z2 || z1 + ρ 2,2 z2 2 |) + O( √ δ) D ′ 1,δ (z) = z 2 1 -z 1 [(a ′ 2 -a ′ 1 )( z1 + ρ 2,2 z2 2 , z2 )] + 1 √ 2δ z 2 2 1 -z 1 O(| z2 || z1 + ρ 2,2 z2 2 |) +O( √ δ).
where

           z1 := 2δ z 1 1 -z 1 + δ + O δ 2 z 1 1 -z 1 z2 := √ 2δ z 2 1 -z 1 + O δ 3/2 z 2 1 -z 1 .
Notice that:

           ∂ ∂z 1 z1 := 2δ 1 (1 -z 1 ) 2 + ∂ ∂z 1 O δ 2 z 1 1 -z 1 ∂ ∂z 1 z2 := - √ 2δ z 2 (1 -z 1 ) 2 + ∂ ∂z 1 O δ 3/2 z 2 1 -z 1 .
The crucial step is to control J ′δ -J st C 1 (Ψ δ (Ω)) by some positive power of δ. Working on a small neighborhood of the unit ball B (see next Lemma 3.5), it is sufficient to prove that the differential of J ′δ is controlled by some positive constant of δ. We first need to determine the behaviour of a point z = (z 1 , z 2 ) ∈ Ψ δ (Ω) near the infinite point (1, 0). Let ω = (ω 1 , ω 2 ) ∈ Ω be such that Ψ δ (ω) = z; then:

z 1 = ω 1 -δ + O(δ|ω 1 -δ|) ω 1 + δ + O(δ|ω 1 -δ|) ,
where the two terms O(δ|ω 1 -δ|) are equal, and so

(3.23) 1 1 -z 1 = ω 1 + δ + O(δ|ω 1 -δ|) 2δ ≤ c 1 δ -α ′ .
for some positive constant c 1 independent of z. Moreover there is a positive constant c 2 such that (3.24)

|z 2 | = √ 2δ ω 2 + O(δ|ω 2 |) ω 1 + δ + O(δ|ω 1 -δ|) ≤ c 2 δ α ′ /2 .
All the behaviours being equivalent, we focus for instance on the derivative ∂ ∂z 1 D ′ 1,δ (z). In this computation we focus only on terms that play a crucial role:

∂ ∂z 1 D ′ 1,δ (z) = - z 2 (1 -z 1 ) 2 [(a ′ 2 -a ′ 1 )( z1 + ρ 2,2 z2 2 , z2 )] + z 2 (1 -z 1 ) ∂ ∂z 1 (a ′ 2 -a ′ 1 ). 2δ 1 (1 -z 1 ) 2 -4ρ 2,2 δ z 2 2 (1 -z 1 ) 3 + z 2 (1 -z 1 ) ∂ ∂z 2 (a ′ 2 -a ′ 1 ). √ 2δ z 2 (1 -z 1 ) 2 + -1 √ 2δ z 2 2 (1 -z 1 ) 2 O(| z2 || z1 + ρ 2,2 z2 2 |) + 1 √ 2δ z 2 2 1 -z 1 ∂ ∂z 1 O(| z2 || z1 + ρ 2,2 z2 2 |) + R(z).
According to (3.23), to (3.24) and to the fact that (a ′ 2 -a ′ 1 )(z) = O|z|, it follows that for α ′ small enough

∂ ∂z 1 D ′ 1,δ (z) ≤ cδ s
for positive constants c and s. By similar arguments on other derivatives, it follows that there are positive constants, still denoted by c and s such that d J ′δ C 0 (Ψ δ (Ω)) ≤ cδ s . In view of the next Lemma 3.5, since Ψ δ (Ω) is bounded, this also proves that

(3.25) J ′δ -J st C 1 (Ψ δ (Ω)) ≤ cδ s .
Moreover on B(0, 2) \ Ψ δ (Ω), by similar and easier computations we see that J ′δ -J st C 1 (B(0,2)\Ψ δ (Ω)) is also controlled by some positive constant of δ. This finally implies the crucial control :

(3.26)      J ′δ (0) = J st , J ′δ -J st C 1 (B(0,2)) ≤ cδ s .
In order to obtain estimates of the Kobayashi metric, we need to localize the domain

Ψ δ (Ω) = Ψ δ (Φ(D ∩ U ) ∩ Φ(Q (δ,α ′ )
)) between two balls. This technical result is essentially due to D.Ma [START_REF] Ma | Sharp estimates of the Kobayashi metric near strongly pseudoconvex points[END_REF].

Lemma 3.5.

There exists a positive constant C such that:

B 0, e -Cδ α ′ ⊂ Ψ δ (Ω) ⊂ B 0, e Cδ α ′ .
Proof of Lemma 3.5. We have:

(3.27) Ψ δ (z) = z 1 -δ + O(δ|z 1 -δ|) z 1 + δ + O(δ|z 1 -δ|) , √ 2δ z 2 + O(δ|z 2 |) z 1 + δ + O(δ|z 1 -δ|) .
Consider the following expression:

L(z) := |z 1 + δ + O(δ|z 1 -δ|)| 2 ( Ψ δ (z) 2 -1) = |z 1 -δ + O(δ|z 1 -δ|)| 2 + 2δ|z 2 + O(δ|z 2 |)| 2 -|z 1 + δ + O(δ|z 1 -δ|)| 2 .
Since O(δ|z 1 -δ|) in the first and last terms of the right hand side of the previous equality are equal, this leads to

L(z) = 2δM (z) + δ 2 O(|z 1 |) + δ 2 O(|z 2 | 2 ),
where

M (z) := -2ℜez 1 + |z 2 | 2 . Let z ∈ Ω = Φ(D ∩ U ) ∩ Q (δ,α ′ ) .
For δ small enough, we have:

|z 1 + δ + O(δ|z 1 -δ|)| 2 ≥ |z 1 | 2 + δ 2 + δ 2 O(|z 1 | + δ) + δO(|z 1 | 2 + δ|z 1 |) + δ 2 O(|z 1 | + δ) 2 + 2δℜez 1 ≥ |z 1 | 2 + δ 2 + δO(|z 1 | 2 ) + δ 2 O(|z 1 |) + O(δ 3 ) + 2δℜez 1 ≥ 3 4 (|z 1 | 2 + δ 2 ) + 2δℜez 1 . (3.28) Moreover 2ℜez 1 > 2ℜeρ 1,1 z 2 1 + 2ℜeρ 1,2 z 1 z 2 + ρ j,k z j z k + O( z 3 ).
Since the defining function ρ is strictly J-plurisubharmonic, we know that, for z small enough, ρ j,k z j z k + O( z 3 ) is nonnegative. Hence :

2ℜez 1 ≥ 2ℜeρ 1,1 z 2 1 + 2ℜeρ 1,2 z 1 z 2
for z sufficiently small and so there is a positive constant C 1 such that:

(3.29) 2ℜez 1 ≥ -C 1 |z 1 | z .
Finally, (3.28) and (3.29) lead to:

|z 1 + δ + O(δ|z 1 -δ|)| 2 ≥ 1 2 (|z 1 | 2 + δ 2 )
for z small enough. Hence we have:

(3.30) | Ψ δ (z) 2 -1| = |L(z)| |z 1 + δ + O(δ|z 1 -δ|)| 2 ≤ 4δ|M (z)| + δ 2 O(|z 1 |) + δ 2 O(|z 2 | 2 ) |z 1 | 2 + δ 2 .
The boundary of Ω is equal to V 1 ∪ V 2 (see Figure 2), where:

   V 1 := Φ(D ∩ U ) ∩ ∂Q (δ,α ′ ) , V 2 := Φ(∂(D ∩ U )) ∩ Q (δ,α ′ ) . p = (δ, 0) 0 Φ(D ∩ U ) Q (δ,α ′ ) V2 V1 Figure 2. Boundary of Ω. Let z ∈ V 1 . According (3.30) we have: | Ψ δ (z) 2 -1| ≤ 4δ|M (z)| + δ 2 O(|z 1 |) + δ 2 O(|z 2 | 2 ) |z 1 | 2 + δ 2 ≤ 4δ|z 1 | + 4δ|z 2 | 2 + C 2 δ 3-α ′ δ 2-2α ′ + δ 2 ≤ C 3 δ 2-α ′ δ 2-2α ′ + δ 2 ≤ C 4 δ α ′
for some positive constants C 1 , C 2 , C 3 and C 4 , and for α ′ small enough.

If

z ∈ V 2 , then M (z) = -2ℜez 1 + |z 2 | 2 = O(|z 2 | 3 + |z 1 | z )
and so there is a positive constant C 5 such that:

(3.31) M (z) ≤ C 5 δ 3 2 (1-α ′ ) .
We finally obtain from (3.30) and (3.31):

| Ψ δ (z) 2 -1| ≤ 2C 5 δ 5-3α ′ 2 |z 1 | 2 + δ 2 + C 2 δ 3-α ′ |z 1 | 2 + δ 2 ≤ 2C 5 δ 1-3α ′ 2 + C 2 δ 1-α ′ ≤ (2C 5 + C 2 )δ 1-3α ′ 2 .
This proves that:

B 0, 1 -Cδ α ′ ⊂ Ψ δ (Ω) ⊂ B 0, 1 + Cδ α ′ ,
for some positive constant C.

Lemma 3.5 provides for every

v ∈ T 0 C 2 : (3.32) K B(0,e Cδ α ′ ), J ′δ (0, v) ≤ K Ψ δ (Ω), J ′δ (0, v) ≤ K B(0,e -Cδ α ′ ), J ′δ (0, v).
Lower estimate. In order to give a lower estimate of K B(0,e Cδ α ′ ), J ′δ (0, v) we need the following proposition:

Proposition 3.6. Let J be an almost complex structure defined on B ⊆ C 2 such that J (0) = J st . There exist positive constants ε and A ε = O(ε) such that if J -J st C 1 (B) ≤ ε then we have:

(3.33) K (B, J) (0, v) ≥ exp - A ε 2 v .
Proof of Proposition 3.6. Due to Lemma 1.5, there exist positive constants ε and

A ε = O(ε) such that the function log z 2 + A ε z is J-plurisubharmonic on B if J -J st C 1 (B) ≤ ε.
Consider the function Ψ defined by: Ψ := z 2 e Aε z .

Let u : ∆ → B be a J-holomorphic disc such that u(0) = 0 and d 0 u(∂/∂x) = rv where v ∈ T q C 2 and r > 0. For ζ sufficiently close to 0 we have

u(ζ) = q + d 0 u(ζ) + O(|ζ| 2 ).
Setting ζ = ζ 1 + iζ 2 and using the J-holomorphy condition d 0 u • J st = J • d 0 u, we may write:

d 0 u(ζ) = ζ 1 d 0 u ∂ ∂x + ζ 2 J d 0 u ∂ ∂x .
This implies

(3.34) |d 0 u(ζ)| ≤ |ζ| I + J d 0 u ∂ ∂x .
We now consider the following function

φ(ζ) := Ψ(u(ζ)) |ζ| 2 = u(ζ) 2 |ζ| 2 exp(A ε |u(ζ)|),
which is subharmonic on ∆\{0} since log φ is subharmonic. According to (3.34) lim sup ζ→0 φ(ζ) is finite. Moreover setting ζ 2 = 0 we have:

lim sup ζ→0 φ(ζ) ≥ d 0 u ∂ ∂x 2 .
Applying the maximum principle to a subharmonic extension of φ on ∆ we obtain the inequality:

d 0 u ∂ ∂x 2 ≤ exp A ε .
Hence, by definition of the Kobayashi infinitesimal metric, we obtain for every q

∈ D ∩ V , v ∈ T q M : (3.35) K (D, J) (q, v) ≥ exp - A ε 2 v .
This gives the desired estimate (3.33).

In order to apply Proposition 3.6 to the structure J ′δ , it is necessary to dilate isotropically the ball B(0, e Cδ α ′

) to the unit ball B. So consider the dilation of C 2 :

Γ(z) = e -Cδ α ′ z. (3.36) K B(0,e Cδ α ′ ), J ′δ (0, v) = e -Cδ α ′ K B,Γ * J ′δ (0, v).
According to (3.32) we obtain:

(3.37) e -Cδ α ′ K B,Γ * J ′δ (0, v) ≤ K Ψ δ (Ω), J ′δ (0, v).
Then applying Proposition 3.6 to the structure Γ * J ′δ = J ′δ (e Cδ α ′ .) and to ε = cδ s (see (3.26)) provides the existence of a positive constant C 1 such that:

(3.38) K B,Γ * J ′δ (0, v) ≥ e -C 1 δ s v . Moreover (3.39) K (Ω,J ′ ) ((δ, 0), v) = K Ψ δ (Ω), J ′δ (0, d (δ,0) Ψ δ (v)),
where

d (δ,0) Ψ δ (v) = d 0 Λ δ • d 0 ϕ δ • d (δ,0) T δ (v) = 1 2δ (v 1 + O(δ)v 1 ), 1 √ 2δ (v 2 + O(δ)v 2 ) .
According to (3.17), (3.38), (3.37) and (3.39), we finally obtain:

(3.40) K (D,J) (p, v) ≥ e -C 2 δ β ′′ |v 1 | 2 4δ 2 + |v 2 | 2 2δ 1 2
, for some positive constant C 2 and β ′′ .

Upper estimate. Now, we want to prove the existence of a positive constant C 3 such that

K (D,J) (p, v) ≤ e C 3 δ α ′ |v 1 | 2 4δ 2 + |v 2 | 2 2δ 1 2
.

According to the decreasing property of the Kobayashi metric it is sufficient to give an upper estimate for K (Φ(D∩U )∩Q (δ,α) ,J) (p, v). Moreover, due to (3.32) and (3.39) it is sufficient to prove:

(3.41) K B(0,e -Cδ α ′ ), J δ (0, v) ≤ e C 4 δ α ′ v .

In that purpose we need to deform quantitatively a standard holomorphic disc contained in the ball B(0, e -Cδ α ′ ) into a J δ -holomorphic disc, controlling the size of the new disc, and consequently its derivative at the origin. As previously by dilating isotropically the ball B(0, e -Cδ α ′ ) into the unit ball B, we may suppose that we work on the unit ball endowed with J δ satisfying (3.26).

We define for a map g with values in a complex vector space, continuous on ∆, and for z ∈ ∆ the Cauchy-Green operator by:

T CG (g)(z) := 1 π ∆ g(ζ) z -ζ dxdy.
We consider now the operator Φ J δ from C 1,r (∆, B(0, 2)) into C 1,r (∆, R 4 ) by:

Φ J δ (u) := Id -T CG q J δ (u) ∂ ∂z u,
which is well defined since J δ satisfying (3.26). Let u : ∆ → B be a J δ -holomorphic disc in C 1,r (∆, B).

According to the continuity of the Cauchy-Green operator from C r (∆, R 4 ) into C 1,r (∆, R 4 ) and since J δ satisfies (3.26), we get:

T CG q J δ (u) ∂ ∂z u C 1,r (∆) ≤ c q J δ (u) ∂ ∂z u C r (∆) ≤ c q J δ C 1 (B) u C 1,r (∆) ≤ c ′ J δ -J st C 1 (B) u C 1,r (∆) ≤ c ′′ δ s u C 1,r (∆)
for some positive constants c, c ′ and c ′′ . Hence

(3.42) (1 -c ′′ δ s ) u C 1,r (∆) ≤ Φ J δ (u) C 1,r (∆) ≤ (1 + c ′′ δ s ) u C 1,r (∆)
for any J δ -holomorphic disc u : ∆ → B. This implies that the map Φ J δ is a C 1 diffeomorphism from C 1,r (∆, B) onto Φ J δ (C 1,r (∆, B)). Furthermore the following property is classical: the disc u is J δholomorphic if and only if Φ J δ (u) is J st -holomorphic. According to (3.42), there exists a positive constant c 3 such that for w ∈ R 4 with w = 1 -c 3 δ s , the map h w : ∆ → B(0, 1 -c 3 δ s ) defined by h w (ζ) = ζw belongs to Φ J δ (C 1,r (∆, B)). In particular, the map Φ -1 J δ (h w ) is a J δ -holomorphic disc from ∆ to the unit ball B.

Consider now w ∈ R 4 such that w = 1 -c 3 δ s , and h w the associated standard holomorphic disc. Let us estimate the derivative of the J δ -holomorphic disc u := Φ -1 J δ (h w ) at the origin:

w = ∂h ∂x (0) = ∂ ∂x Φ J δ (u) (0) = ∂ ∂x u(0) + ∂ ∂x T CG q J δ (u) ∂u ∂z = ∂ ∂x u(0) + T CZ q J δ (u) ∂u ∂z (0) (3.43)
where T CZ denotes the Calderon-Zygmund operator. This is defined by:

T CZ (g)(z) := 1 π ∆ g(ζ) (z -ζ) 2 dxdy,
for a map g with values in a complex vector space, continuous on ∆ and for z ∈ ∆, with the integral in the sense of principal value. Since T CZ is a continuous operator from C r (∆, R 4 ) into C r (∆, R 4 ), we have:

(3.44) T CZ q J δ (u) ∂u ∂z (0) ≤ c q J δ (u) ∂ ∂z u C r (∆) ≤ c ′′′ δ s u C 1,r (∆)
for some positive constant c and c ′′′ . Moreover, according to (3.42) we have: This implies that the map w → ∂ ∂x Φ -1 J δ h w (0) is a small continuously differentiable perturbation of the identity. More precisely, using (3.46), there exists a positive constant c 4 such that for every vector v ∈ R 4 \ {0} and for r = 1 -c 4 δ s , there is a vector w ∈ R 4 satisfying w ≤ 1 + c 3 δ s and such that ∂ ∂x Φ -1 J δ h w (0) = rv/ v (see Figure 3). 

(3. 1 )

 1 δ(p) := dist(p, ∂D), and for p sufficiently close to ∂D, we define π(p) ∈ ∂D as the unique boundary point such that: (3.2) δ(p) = p -π(p) .

( 3 .

 3 45) u C 1,r (∆) = Φ -1 J δ (h w ) C 1,r (∆) ≤ (1 + c ′′ δ s ) h w C 1,r (∆) ≤ 2 w .Finally (3.43), (3.44) and (3.45) lead to:(3.46) (1 -2c ′′′ δ s ) w ≤ ∂ ∂x Φ -1 J δ (h w ) (0) ≤ (1 + 2c ′′′ δ s ) w .
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