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Abstract: Let 6 and i denote the location and the size of the mode of a
probability density. We study the joint convergence rates of
semirecursive kernel estimators of § and pu. We show how
the estimation of the size of the mode allows to measure
the relevance of the estimation of its location. We also
enlighten that, beyond their computational advantage on
nonrecursive estimators, the semirecursive estimators are
preferable to use for the construction on confidence regions.
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1 Introduction

Let Xi,...,X, be independent and identically distributed R%valued random variables with un-
known probability density f. The aim of this paper is to study the joint kernel estimation of the
location @ and of the size p = f(#) of the mode of f. The mode is assumed to be unique, that is,
f(x) < f(0) for any = # 0, and nondegenerated, that is, the second order differential D?f(6) at the
point 6 is nonsingular (in the sequel, D™g will denote the differential of order m of a multivariate
function g).

The problem of estimating the location of the mode of a probability density was widely studied.
Kernel methods were considered, among many others, by Parzen [[[§, Nadaraya [[7], Van Ryzin
[6], Riischendorf [RF], Konakov [[L(], Samanta [24], Eddy ([E], [f]), Romano (], Tsybakov [F],
Vieu [B7], Mokkadem and Pelletier [[J], and Abraham et al. ([fl], [B]). At our knowledge, the
behaviour of estimators of the size of the mode has not been investigated in detail, whereas there
are at least two statistical motivations for estimating this parameter. First, a use of an estimator
of the size is necessary for the construction of confidence regions for the location of the mode (see,
e.g., Romano [R(]). As a more important motivation, let us underline that the high of the peak
gives information on the shape of a density; from this point view, as suggested by Vieu [R7], the
location of the mode is more related to the shape of the derivative of f, whereas the size of the
mode is more related to the shape of the density itself. Moreover, the knowledge of the size of the
mode allows to measure the pertinence of the parameter location of the mode.

Let us mention that, even if the problem of estimating the size of the mode was not investigated
in the framework of density estimation, it was studied in the framework of regression estimation.
Miiller [[[6] proves in particular the joint asymptotic normality and independence of kernel esti-
mators of the location and of the size of the mode in the framework of nonparametric regression
models with fixed design. In the framework of nonparametric regression with random design, a
similar result is obtained by Ziegler ([BJ], [BJ]) for kernel estimators, and by Mokkadem and Pel-
letier [I4] for estimators issued from stochastic approximation methods.

This paper is focused on semirecursive kernel estimators of 8 and f(#). To explain why we chose
this option of semirecursive estimators, let us first recall that the (nonrecursive) wellknown kernel
estimator of the location of the mode introduced by Parzen [I§] is defined as a random variable 6;
satisfying

fa(607) = sup f(y),
y€Rd

where f, is Rosenblatt’s estimator of f; more precisely,

1 — z—X;
* = — K !

where the bandwidth (h,,) is a sequence of positive real numbers going to zero and the kernel K is a
continuous function satisfying lim|j, 4.0 K (x) = 0, Jga K (x)dz = 1. The asymptotic behaviour of
07 was widely studied (see, among others, [, [|], [Ld], [3, [T, [g], Bd], (2], 4], [26], 7)), but,
on a computational point of view, the estimator 8 has a main drawback: its update, from a sample
size n to a sample size n + 1, is far from being immediate. Applying the stochastic approximation
method, Tsybakov [2J] introduced the recursive kernel estimator of § defined as

Tnfl - Xn>

1
o= T4 ¥ (B
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where Ty € R? is arbitrarily chosen, and the stepsize (v,) is a sequence of positive real numbers
going to zero. The great property of this estimator is that its update is very rapid. Unfortunately,
for reasons inherent to stochastic approximation algorithms properties, very strong assumptions
on the density f must be required to ensure its consistency. A recursive version f, of Rosenblatt’s
density estimator was introduced by Wolverton and Wagner [B(] (and discussed, among others,
by Yamato [BI], Davies [f], Devroye [], Menon et al. [IJ], Wertz 9], Wegman and Davies [Rg],
Roussas [RF], and Mokkadem et al. [[(5]). Let us recall that f,, is defined as

n

fulz) = %Z%K (w ;LX> (1)

i=1

Its update from a sample of size n to one of size n + 1 is immediate since f,, clearly satisfies the

recursive relation 1 1 X
T — Anp
@) =(1=2) f._ K .
fn(@) ( n> Fo-a(@) + nhd ( hay, >

n

This property of rapid update of the density estimator is particularly important in the framework
of mode estimation, since the number of points where f must be estimated is very large. We thus
define a semirecursive version of Parzen’s estimator of the location of the mode by using Wolverton-
Wagner’s recursive density estimator, rather than Rosenblatt’s density estimator. More precisely,
our estimator 6,, of the location 6 of the mode is a random variable satisfying

fn(en) = Sup fn(y) (2)

y€Rd

Let us mention that, in the same way as for Parzen’s estimator, the fact that the kernel K is
continuous and vanishing at infinity ensures that the choice of 0,, as a random variable satisfying
(@) can be made with the help of an order on R%. For example, one can consider the following
lexicographic order: x < y if the first nonzero coordinate of x — y is negative. The definition

0, = inf {y e R? such that f,,(y) = sup fn(x)} ,
r€R

where the infimum is taken with respect to the lexicographic order on R, ensures the measurability
of the kernel mode estimator.

Let us also mention that, in order to make more rapid the computation of the kernel estimator
of the location of the mode, Abraham et al. ([, [B]) proposed the following alternative version of
Parzen’s estimator 6 :

0 = argmax f}(X;).
1<i<n

Similarly, we could consider the following alternative version of our semirecursive estimator 6,,:

0, = argmax fp(X;).
1<i<n

However, to establish the asymptotic properties of HA;;, Abraham et al. [fJ] prove the asymptotic
proximity between ) and 6, which allows them to deduce the asymptotic weak behaviour of 6
from the one of ). In the same way, we can conjecture that the asymptotic weak behaviour of

én could be deduced from the one of 8,,, but, in this paper, we limit ourselves on establishing the



asymptotic properties of 6,,.

Let us now come back to the problem of estimating the size f(#) of the mode. The ordinarily
used estimator is defined as p) = f(67) (f being Rosenblatt’s density estimator and 6 Parzen’s
mode estimator); the consistency of u) is sufficient to allow the construction of confidence regions
for 6 (see, e.g., Romano [R(]). Adapting the construction of u) to the semirecursive framework
would lead us to estimate f(6) by

Hn = fn(en) (3)

However, this estimator has two main drawbacks (as well as ). First, the use of a higher order
kernel K is necessary for (u, — p) to satisfy a central limit theorem, and thus for the construction
of confidence intervals of p (and of confidence regions for (0, pu)). Moreover, in the case when a
higher order kernel is used, it is not possible to choose a bandwidth for which both estimators 6,
and pu, converge at the optimal rate. These constations lead us to use two different bandwidths,
one for the estimation of 6, the other one for the estimation of . More precisely, let f,, be the
recursive kernel density estimator defined as

n

- - X;
b= X (5.

i=1

where the bandwidth (h,) may be different from (h,) used in the definition of f, (see ([])); we
estimate the size of the mode by

fn = fn(an)7 (4)
where 0, is still defined by (), and thus with the first bandwidth (h,,).

The purpose of this paper is the study of the joint asymptotic behaviour of 8,, and fi,,. We first
prove the strong consistency of both estimators. We then establish the joint weak convergence rate
of 0,, and [i,,. We prove in particular that adequate choices of the bandwidths lead to the asymptotic
normality and independence of these estimators, and that the use of different bandwidths allow
to obtain simultaneously the optimal convergence rate of both estimators. We then apply our
weak convergence rate result to the construction of confidence regions for (0, u), and illustrate
this application with a simulations study. This application enlightens the advantage of using
semirecursive estimators rather than nonrecursive estimators. It also shows how the estimation
of the size of the mode gives information on the relevance of estimating its location. Finally, we
establish the joint strong convergence rate of 6,, and fi,.

2 Assumptions and Main Results

Throughout this paper, (hy) and (hy) are defined as h,, = h(n) and h,, = h(n) for all n > 1, where
h and h are two positive functions.

2.1 Strong consistency
The conditions we require for the strong consistency of 6,, and fi,, are the following.

(A1) i) K is an integrable, differentiable, and even function such that [p, K(z)dz = 1.
ii) There exists ¢ > 0 such that [, [|2[||K(2)dz| < occ.
ili) K is Holder continuous.
iv) There exists v > 0 such that z — ||z||” |K(2)| is a bounded function.



(A2) i) f is uniformly continuous on R
ii) There exists £ > 0 such that [p, [|z]|°f(z)dz < .
iii) There exists > 0 such that z — ||z]|7 f(2) is a bounded function.
iv) There exists § € R? such that f(z) < f(#) for all = # 6.

(A3) The functions h and h are locally bounded and vary regularly with exponent (—a) and (—a)
respectively, where a €]0,1/(d +4)[, @ €]0,1/(d + 2)][.

Remark 1 Note that (A1)iv) implies that K is bounded.

Remark 2 The assumptions required on the probability density to establish the strong consistency
of the semirecursive estimator of the location of the mode are slightly stronger than those needed
for the nonrecursive estimator (see, e.g., [3], [BQ]), but are much weaker than the ones needed for
the recursive estimator (see [23]).

Remark 3 Let us recall that a positive function (not necessarily monotone) L defined on ]0,00]
is slowly varying if limy_,o L(tx)/L(t) = 1, and that a function G varies regularly with exponent
p, p € R, if and only if it is of the form G(x) = xPL(x) with L slowly varying (see, for example,
Feller [§] page 275). Typical examples of regularly varying functions are x”, xflogx, x”loglog z,
xPlogz/loglogx, and so on.

Proposition 1 Let 0, and fi,, be defined by (3) and (}}), respectively. Under (A1)-(A3),

lim 6, =60 a.s. and lim g, =up a.s.
n—oo n—oo

2.2 Weak convergence rate

In order to state the weak convergence rate of 6, and fi,, we need the following additional assump-
tions on K and f.

(A4) i) K is twice differentiable on R
ii) z — 2V K(z) is integrable.
iii) For any (i,7) € {1,...,d}?, 9>K/0x;0z; is bounded integrable and Hélder continuous.
iv) K is a kernel of order ¢ > 2 ie. Vs € {1,...,¢ — 1}, Vj € {1,....,d}, [ga y; K (y)dy; = 0
and [ |y;1K(y)|dy < 00.

(A5) i) D?f(9) is nonsingular.
ii) D?f is g-times differentiable, V f and D?f are bounded.
iii) For any (,7) € {1,...,d}?, sup,cga || D? (0% f)0x;0x;) || < 0o, and for any k € {1,...,d},
supega [|DU(0f /0xy)|| < oo

Remark 4 Note that (A4)ii) and (A4)iii) imply that VK is Lipschitz-continuous and integrable;
it is thus straightforward to see that lim|, o [[VK(2)|| =0 (and in particular VK is bounded).

We also need to add conditions on the bandwiths. Let us set
Lo(n) = n’h, and L,(n) = nh,,.

(In view of (A3), Ly and L,, are positive slowly varying functions, see Remark f). In the statement
of the the weak convergence rate of 6,, and fi,,, we shall refer to the following conditions.



(C1) One of the following two conditions is fulfilled.
L q

i) ci< dd< <1—2d
i o< ————and — <a ;
d+4 d+2q+2 q d+2
14 ad

d120+2 " 2(d+2)

ii) ! <a< ! d
ii n
d+2q a_d+4a

(C2) One of the following two conditions is fulfilled.
1 a

< d-<a< ———;
dt2g 9SS gy 2

1
limy, o0 £ = d ——-<a< —7—.
1m0 £y(n) = 00 an 2(d + 2q) “ d+2q+2

Remark 5 (C1) implies that lim, o nhi 2972 = 0 and lim,_..o nh&4 = 0, whereas (C2) implies

that lim, oo nh&1%? = & and limy, 0 nhi™1 = .

We finally need to introduce the following notation:

eV (S5 81524 0)
(1—a =1 ox? . -

By(0) = qﬂ%qgjﬂéﬁm) mmxﬁaﬂﬁK@@,m¢1wdm¢L<w
q!(T—ag) 2«j=1"j da" R

- £0)G
= - [DQf(H)] ' 0 _ T+a(d+2) 0
A‘( 0 1) T 0 1OfuKed |0 (6)
1+ad
0K , 0K

(x)dz, and, for any ¢,é > 0, D(c,¢) =

G is the matrix d x d defined by GUI) = / T)—
Rd 8.%'1 31‘j

Vel 0 . . .
( 0 NG where I; is the d x d identity matrix.
Theorem 1 Let 0, and fi,, be defined by ([8) and (f]), respectively, and assume that (A1)-(A5)
hold.

i) If (C1) is satisfied, then

( nfhfllﬁ(en =) ) 2, N (0, A A).
nh(riz(lan - :U')

h(riz+2q+2 —c

i) Ifa = (d+2q+2)71, a = (d+2q)', and if there exist ¢,é > 0 such that lim,, oo n
~di2g

and lim,_,oo nhy =" = ¢, then

( Va0, —0) ) D, N (D(c,&)AB,(0), AT A).
nh(riz(lan - M)

iit) If (C2) is satisfied, then



Remark 6 The simultaneous weak convergence rate of nonrecursive estimators of the location and
size of the mode can be established by following the lines of the proof of Theorem []. More precisely,
set

B*(G) — (_q—l!)qv<2?:1 Bg%(m) E* _ < f(H)G 0 )
' ey e ) 0 f0) fpu K2(2)dz )

let 0 be Parzen’s kernel estimator of the location of the mode and fi¥ = f:(0%) be the kernel
estimator of the size of the mode defined with the help of 8} and of Rosenblatt’s density estimator
f;; (the bandwidth (iLn) defining f; being eventually different from the banwidth (hy,) used to define
0 ); Theorem [] holds when 0y, fin, By(0), % are replaced by 0}, fiy,, B;(0), ¥*, respectively.

Part 1 and Part 2 in the case ¢ = ¢ = 0 (respectively Part 3) of Theorem [|| correspond to the
case when the bias (respectively the variances) of both estimators 6,, and fi,, are negligeable in front
of their respective variances (respectively bias). When ¢, é > 0, Part 2 of Theorem [I] corresponds
to the case when the bias and the variance of each estimator 6,, and fi,, have the same convergence
rate. Other possible conditions lead to different combinations; these ones have been omitted for
sake of simplicity.

Theorem [I| gives the joint weak convergence rate of 8, and fi,. Of course, it is also possible
to estimate the location and the size of the mode separately. Concerning the estimation of the
location of the mode, let us enlighten that the advantage of the semirecursive estimator #,, on its
nonrecursive version 6 is that its asymptotic variance [1+a(d+2)]7!f(6)G is smaller than the one
of Parzen’s estimator, which equals f(0)G (see, e.g. Romano [(] for the case d = 1 and Mokkadem
and Pelletier [[J] for the case d > 1); this advantage of semirecursive estimators will be discussed
again in Section P.3. The estimation of the size of the mode is of course not independent of the
estimation of the location, since the estimator fi, is constructed with the help of the estimator 6,,.
To get a good estimation of the size of the mode, it seems obvious that 6,, should be computed
with a bandwidth (h,) leading to its optimal convergence rate (or, at least, to a convergence rate
close to the optimal one). The main information given by Theorem [| is that, for fi,, to converge at

the optimal rate, the use of a second bandwidth (h,,) is then necessary.

Let us enlighten that, in the case when 6,, and [, satisfy a central limit theorem (Parts 1 and
2 of Theorem [[), these estimators are asymptotically independent, although, in its definition, the
estimator of the size of the mode is heavily connected to the one of the location of the mode. As
pointed out by a referee, this property was expected. As a matter of fact (and as mentioned in
the introduction), the location of the mode is a parameter which gives information on the shape of
the density derivative, whereas the size of the mode gives information on the shape of the density
itself. This constatation must be related to the fact that the weak (and strong) convergence rate
of 6,, is given by the one of the gradient of f,,, whereas the weak (and strong) convergence rate of
[in is given by the one of f, itself; the variance of the density estimators converging to zero faster
than the one of the estimators of the density derivatives, the asymptotic independence of 6,, and
[, is completely explained.

Let us finally say one word on our assumptions on the bandwidths. In the framework of
nonrecursive estimation, there is no need to assume that (hy,) and (hy,) are regularly varying
sequences. In the case of semirecursive estimation, this assumption can obviously not be omitted,
since the exponents ¢ and a stand in the expressions of the asymptotic bias B,(#) and variance

3. This might be seen as a slight inconvenient of semirecursive estimation; however, as it is



enlightened in the following section, it turns out to be an advantage, since the asymptotic variances
of the semirecursive estimators are smaller than the ones of the nonrecursive estimators.

2.3 Construction of confidence regions and simulations studies

The application of Theorem [ (and of Remark [f]) allows the construction of confidence regions (si-
multaneous or not) of the location and of the size of the mode, as well as confidence ellipsoids of the
couple (6, ). Hall [E] shows that, in order to construct confidence regions, avoiding bias estimation
by a slight undersmoothing is more efficient than explicit bias correction. In the framework of
undersmoothing, the asymptotic bias of the estimator is negligeable in front of its asymptotic vari-
ance; according to the estimation by confidence regions point of view, the parameter to minimize
is thus the asymptotic variance. Now, note that

(4 ad+2)]7 T 0 .
E‘( 0 du+m>2

(where AX A (respectively AX*A) is the asymptotic covariance matrix of the semirecursive estima-
tors (6, fin) (respectively of the nonrecursive estimators (0, fi)). In order to construct confidence
regions for the location and/or size of the mode, it is thus much preferable to use semirecursive
estimators rather than nonrecursive estimators. Simulations studies confirm this theoritical con-
clusion, whatever the parameter (0, p or (6, 1)) for which confidence regions are contructed is. For
sake of succintness, we do not give all these simulations results here, but focuse on the construction
of confidence ellipsoid for (6, 1); the aim of this example is of course to enlighten the advantage of
using semirecursive estimators rather than nonrecursive estimators, but also to show how this con-
fidence region gives informations on the shape of the density, and, consequently allows to measure
the pertinence of the parameter location of the mode.

To construct confidence regions for (6, 1), we consider the case d = 1. The following corollary
is a straightforward consequence of Theorem [f.

Corollary 1 Let 0, and fi, be defined by @) and ({}), respectively, and assume that (A]) (A5)
hold.  Moreover, let (hn) and (hn) ezther satisfy (C1) 07“ be such that lim, ..o nhol™ = 0 and
limy, oo nh2? ™ = 0 with a = (24 3)~! and @ = (2¢+ 1)~'. We then have

u+dmﬁ

(14 3a)nh3[f"(0)]?
0) [z K?(x)dx (7in

0) [z K"?(x)dx

(6n = 67+ 5 S I 0)) (7)

Moreover, (1) still holds when the parameters f(6) and f"(8) are replaced by consistent estimators.

Remark 7 In view of Remark[], in the case when the nonrecursive estimators 6 and [i}, are used,

[1) becomes

_9)2_|_

WLOR W D
10) Jx K’Z(w)dm(en 0) [ K2(z)dx ik —p)? — X*(2) (8)

(and, again, this convergence still holds when the parameters f(6) and f"(0) are replaced by con-
sistent estimators).



Let fr/{ (respectively f;//) be the recursive estimator (respectively the nonrecursive Rosenblatt’s
estimator) of f” computed with the help of a bandwidth h,,, and set

P - (1~+ 3a)nhi[ﬂ[(9n)]2 Q= — (1+ d)nﬁn
Fu(02) [ K2 (2)dz " a(6) [ K2(2)dz
pe_ L O 0 — nhn
" fa6y) fp K (x)da b0 g K2 (z)de

Moreover, let ¢, be such that P(Z < ¢,) = 1—a, where Z is x?(2)-distributed; in view of Corollary
and Remark [], the sets

Ea = {(G,M)/ Pn(an - ‘9)2 +Qn(ﬂn - ,U')Q < Ca}
Ex = {0,m)/ Pi(O5 = 0)* + Qp (i1, — 1)? < ca}

are confidence ellipsoids for (0, 1) with asymptotic coverage level 1 — . Let us dwell on the fact
that both confidence regions have the same asymptotic level, but the lengths of the axes of the
first one (constructed with the help of the semirecursive estimators 6,, and fi,) are smaller than
the ones of the second one (constructed with the help of the nonrecursive estimators 6 and f)).

We now present simulations results. In order to see the relationship between the shape of the
confidence ellipsoids and the one of the density, the density f we consider is the density of the
N (0, 0?)-distribution, the parameter o taking the values 0.3, 0.4, 0.5, 0.7, 0.75, 1, 1.5, 2, and 2.5.
We use the sample size n = 100 and the coverage level 1 — a = 95% (and thus ¢, = 5.99). In each
case, the number of simulations is N = 5000. The kernel we use is the standard Gaussian density;

the bandwidths are
S S U SRT)
(logn)” ™" (logn)” "
Table 1 below gives, for each value of o, the empirical values of 6,, , 6, wu, , ©} (with respect to
the 5000 simulations), and:

b the empirical length of the #-axis of the confidence ellipsoid E5g;
b* the empirical length of the 6-axis of the confidence ellipsoid &£, ;
a the empirical length of the p-axis of the confidence ellipsoid Exy;
a* the empirical length of the p-axis of the confidence ellipsoid £y, ;
p the empirical coverage level of the confidence ellipsoid Egq;

p* the empirical coverage level of the confidence ellipsoid &, .

Table 1
o 0.3 0.4 0.5 0.7 0.75 1 1.5 2 2.5

6, —0.002 0.004 0.001 0.003 0.002 0.014 —-0.005 —0.009 0.014
6r 0.003 0.005 0.001 0.006 —0.008 0.016 0.003 —0.020 —0.046
b 1.1564 1.346 1.805 2.898 3.160 5.218 10.094 17.866 17.405
b* 1.166 1458 1.968 3.300  3.582  5.925 12943 21.946 23.715
e 1335 0989 0782 0.564  0.522  0.401  0.263 0.196 0.155
wyo 1312 0979  0.783  0.562  0.512  0.388  0.269 0.193 0.163

0.444 0.399 0365 0.322 0315 0.283  0.247 0.224 0.210
* 0514 0459 0420 0369 0363 0.327  0.287 0.261 0.246
98.7% 97.8% 982% 98.4% 97.7% 97.8% 97.5%  97.2%  98.4%
98.6% 98.1% 98.4% 98.2% 96.8% 96.6% 96.9% 97.7%  98.2%

*

"N TS| R



Confirming our theoritical results, we see that the empirical coverage levels of both confidence
ellipsoids £y, and Esy, are similar, but that the empirical areas of the ellipsoids Exy, (constructed
with the help of the semirecursive estimators) are always smaller than the ones of the the ellipsoids
&2y, (constructed with the help of the nonrecursive estimators).

Let us now discuss the interest of the estimation of the size of the mode and the one of the joint
estimation of the location and size of the mode. Both estimations give informations on the shape
of the probability density and, consequently, allow to measure the pertinence of the parameter
location of the mode. Of course, the parameter 6 is significant only in the case when the high
of the peak is large enough; since we consider here the example of the AV(0, o%)-distribution, this
corresponds to the case when ¢ is small enough. Estimating only the size of the mode gives a first
idea of the shape of the density around the location of the mode (for instance, when the size is
estimated around 0.16, it is clear that the density is very flat). Now, the shape of the confidence
ellipsoids allows to get a more precise idea. As a matter of fact, for small values of o, the length
of the p-axis is larger than the one of the #-axis; as ¢ increases, the length of the p-axis decreases,
and the one of the #-axis increases (for o = 2.5, the length of the #-axis is larger than 20 times the
one of the p-axis). Let us underline that these variations of the lengths of the axes are not due
to bad estimations results; Table 2 below gives the values of the lengths b (respectively b*) of the
f-axis, a (respectively a*) of the u-axis of the ellipsoids computed with the semirecursive estima-
tors 6,, and [i,, (respectively with the nonrecursive estimators 6 and 1)) in the case when the true
values of the parameters f(#) and f”(6) are used (that is, by straightforwardly applying () and (§)).

Table 2
o 0.3 0.4 0.5 0.7 0.75 1 1.5 2 2.5

b 0.159 0.327 0.571 1.357 1.572 3.227 8.895 18.260 31.899
b* 0.190 0.390 0.682 1.622 1.879 3.858 10.631 21.825 38.127
po 1333 0998 0.798 0.570 0.532 0.399 0.266 0.199  0.159
a 0465 0.403 0.360 0.303 0.294 0.255 0.208 0.180 0.161
a* 0509 0.441 0.395 0.332 0.322 0.279 0.228 0.197 0.176

2.4 Strong convergence rate

To establish the joint strong convergence rate of 6, and fi,, we need the following additionnal
assumption.

(A6) i) h and h are differentiables, their derivatives vary regularly with exponent (—a — 1) and
(—a — 1) respectively.
ii) There exists ng € N such that

mh 42 ' mf%d} B min {mh,}(dH);miL;ﬂ}

n>m2>ng = max ;= — .
{ nh;(dJrz) nhp? min {nh;(d+2);nhﬁd}

Remark 8 Assumption (A6)ii) holds when a # a, and in the case a = a, it is satisfied when
Lo(n) = (Eu(n))d;jr2 for n large enough.

Moreover, condition (C2) is replaced by the following one.

(C’2) Either (C2) i) is fulfilled or a LI (Ly ()21 q—1 <ac<
1ner 1) 1S Tu ea or a = MMy, so00 — 5 — OO, and ————— a
d+2q’ 2loglogn 2(d + 2q)
1
d+2q+2

10



Before stating the almost sure convergence rate of (67, ji,,)7, let us remark that Proposition 2.3
in Mokkadem and Pelletier [[d] ensures that the matrix G' (and thus the matrix ¥) is nonsingular.

Theorem 2 Let 0, and i, be defined by (@) and (f]), respectively, and assume that (A1)-(A6)
hold.

i) If (C1) is fulfilled, then, with probability one, the sequence
1 Vnhit (0, —0)
2log logn Mnﬁ%(,&n — )
is relatively compact and its limit set is the ellipsoid

E= {1/ € R such that vTATIS 1A < 1} .

i) If a = (d+2q+2)', @ = (d+2q)"t, and if there exist c,¢ > 0 such that
lim,, o0 nhﬁ+2q+2/(2 loglogn) = ¢ and lim, nhﬁ+2q/(2 log log n) = ¢, then, with probability
one, the sequence

1 Vnhi (0, — )
VIR Togn \ /(1 — )

is relatively compact and its limit set is the ellipsoid

€= {y € R™ such that (A™'v — D (¢,&) By(0))" £ (A~'v — D (c,é) B,(6)) < 1} .

(

Remark 9 (C’1) implies that limy,_.o nhs 2772 /loglogn = 0 and lim,_.co nh& 4 /loglogn = 0,
whereas (C’2) implies that limy,_.e nh% 292 loglog n = 0o and lim,_..c nh% 7 log log n = co.

iir) If (C’2) is satisfied, then

(an - ‘9)
(Ian - :U')

|-~

>

) &% AB,(9).

q
n

Laws of the iterated logarithm for Parzen’s nonrecursive kernel mode estimator were established
by Mokkadem and Pelletier [IJ]. The technics of demonstration used in the framework of nonre-
cursive estimators are totally different from those employed to prove Theorem P This is due to
the following fondamental difference between the nonrecursive estimator 6}, and the semirecursive
estimator 6,,: the study of the asymptotic behaviour of 8} comes down to the one of a triangular
sum of independent variables, whereas the study of the asymptotic behaviour of #,, reduces to the
one of a sum of independent variables. Of course, this difference is not quite important for the
study of the weak convergence rate. But, for the study of the strong convergence rate, it makes
the case of the semirecursive estimation much easier than the case of the nonrecursive estimation.
In particular, on the oppposite to the weak convergence rate, the joint strong convergence rate of
the nonrecursive estimators 6, and [, cannot be obtained by following the lines of the proof of
Theorem [, and remains an open question.

11



3 Proofs

Let us first note that an important consequence of (A3) which will be used throughout the proofs
is that

if fa <1, then lim —Zhﬁ =

9
”Hwnhgzl 1—aﬁ ©)

Moreover, for all ¢ > 0 small enough,

1 & 1
> =0 <h3;'3 + —> : (10)
n i—1 n

As a matter of fact: (i) if aq < 1, ([Ld) follows easily from (B); (ii) if ag > 1, since Z h! is summable,
(L) holds; (iii) if ag = 1, since a(q — €) < 1, using ({) again, we have n -1 S hl=0(hi®), and
thus ([[d) follows. Of course (f]) and (Id) also hold when (h,) and a are replaced by (h,) and @,
respectively.

Our proofs are now organized as follows. Section B.1] is devoted to the proof of the strong
consistency of 6,, and fi,. In Section B.Z, we give the convergence rate of the derivatives of f,.
In Section B.3, we show how the study of the joint weak and strong convergence rate of 6, and
fin can be related to the one of V £,(#) and f,(#). In Section B4 (respectively in Section B.g), we
establish the joint weak convergence rate (respectively the joint strong convergence rate) of V f,,(6)
and f,(0). Finally, Section B-q is devoted to the proof of Theorems ] and [

3.1 Proof of Proposition [l
Since 6, is the mode of f,, and 6 the mode of f, we have:
0< £(6) = £(6) = [F(6) — Fu(6)) + [fa(60) — < W) < [F6) = Fa(8)] + [£u(6) — £(6,)
< [f(O) = fa(0)| + | fu(® 0u)| < 21 fn = Flloo- (11)

The application of Theorem 5 in Mokkadem et al. [E] with || = 0 and v,, = logn ensures that for
any & > 0, there exists ¢(§) > 0 such that P[(log n)|| fo—E(fn)|leo > ] < exp(—c(0)> 1, h¢/(logn)?).
In view of (), since ad < 1, we can write

n? exp (—0(5)M> — nZexp <—c(5) : nhy 3 1hg> — o(1).

log n)? logn)2 nhd
(log g a

Borell-Cantelli’s Lemma ensures that lim,, . || frn —E(fn)||cc = 0 a.s. Since lim,, o [|E(fn) — fllcc =
0, it follows from ([L) that lim,, . f(f,) = f(6) a.s. Since f is continuous, lim ;oo f(2) = 0 and
f is the unique mode of f, we deduce that lim,, .., 8,, = 6 a.s. Now, we have

where the last inequality follows from ([[T]). As previously, one can show that lim, s || fr— flec = 0
and thus limy, o fin, = @ a.s.

3.2 Convergence rate of the derivatives of the density

For any d-uplet [a] = (al, . ,ad> e N we set |a| = a; + -+ + a4 and, for any function g, let
dlelg(x) = dlolg /(88 ... dz*)(x) denote the [a]-th partial derivative of g.

12



Lemma 1 Assume (A3)-(A5) hold. Let (gn) and (by,) be defined as follows:

gn = fn and by, =hy, or
{ In = fn and by = hy,. (12)

For |a| € {0,1,2}, we have

d
_1)q 8qf
lim E[0 g, ()] — 0l f(x } - (—6[0‘] 1| (
"HOOZzlz[ [9%9:@)] f=) q! jzlﬁjax? (z)
where 3 is defined in (). Moreover, if we set My = sup,epa || D99 ()|, then

E (0g,(@) - 0 @) < Tt [ Iel | )

lim sup
n—oo Zz 1 bz zER?

Lemma 2 Let U be a compact set of R? and assume that (A1)iii), (A3), (A4) and (A5)ii) hold.
Let (gn) and (by,) be defined as in ([1). Then, for all v > 0 and || = 1,2, we have

1 1+~
sup a[a]gn(x) —-E (8[a]gn($))‘ = 0 ( %) a.s.

zeU Z?:l )

Lemma [[] is proved in Mokkadem et al. [[J]. We now prove Lemma . Set v, = >/, bf+2|a‘]1/2

[(log n)**7)~1/2. Applying Proposition 3 in Mokkadem et al. [[[], it holds that for any § > 0, there
exists ¢(6) > 0 such that

a[algnm—E(a[a]gn(x))\z&] < exp (—cw)M).

P
[sup Un 202

xzeU

d+2|o¢\/ n d+2\a|/( )

Since limy, 00 iy (v2logn) = oo we have, for n large enough, ¢(6)> "1, b;

2logn, and Lemma J follows from the application of Borel-Cantelli’s Lemma.

3.3 Relationship between ((6,, — )T, (fin, — p))T and ([V £n(0)]T, fo(8) — f(H))T
By definition of 6,,, we have V f,(6,) = 0 so that

For each ¢ € {1,...,d}, a Taylor expansion applied to the real valued application 9f, /Ox; implies
the existence of ¢,(i) = (8511)(2'), 65;0( )t such that

{ 2 0o - 2’2:(9):Z? oo eali)) (0 — 69),
!5 (2) |§ ‘97(5) H(j)| Vied{l,...,d}.

Define the d x d matrix H, = (Héi’j))lgi,jgd by setting H = aijg;j (e,(7)); Equation ([[J) can
be then rewritten as Hy, (0, —0) = —V f,,(f). Now, set

R, = fn(an)_fn(e) (14)

13



We can then write:

2 -1 . 2
( [D2£(0)] ™ Hn (6 = 0) > _ (oI vae) ) | ( K > | (15)
fin = o Fal0) = £(0) n
Let U be a compact set of R? containing . The combination of Lemmas [l and J with |a| = 2,
gn = fn and b, = h, ensures that for any v > 0 and € > 0 small enough,

sup ‘a[a}fn(g,;) _ a[a]f(x)‘ - 0 < (logn)t*7 i >ict h?) as.

xelU ZZ 1 hg+4 n
B (logm)™*v o 1) _
- 0 < TZH +hiC 4+ —| = o(1) as. (16)

Since D?f is continuous in a neighbourhood of # and since lim,,_.o, 0, = 6 a.s., (d) ensures that
lim,, oo H, = D?f(0) a.s. It follows that the weak and a.s. behaviours of ((6, — 0)7, (ji, — p))"
are given by the one of the right-hand-sided term of ([LF).

3.4 Weak convergence rate of ([Vf,(8)]7, f.(0) — f(0))T

Let us at first assume that the following lemma holds.

Lemma 3 Let Assumptions (A1)i), (A1)iv), (A3), (A4)i) and (A4)ii) hold. Then
nhit? |V fa(0) — E(V fa(0
v _ (VRO -B50)] = x(0.%).
Vi Ja0) = E(Fa(0)) |
The application of Lemma [I] gives

I ﬁ (V£a(8)) (=Y <Z 54 0) (17)
o\ e [BGa0) - r0)] ) T [ o))

1) If ag < 1 and aq < 1, by using (), it is straightforward to see that

i E(V fa(0))
) rZ .
nlgrolo< ﬁ[E(fn(G))—f(e)] > = By(0). (18)

2) Let us now consider the case ag > 1 and ag > 1. We have

\/nhEHPE (V1,(0)) = nhﬁ’LQZ?lhgzn 7B (Vfa(0))

n i=1"%

with, in view of ([Ld), for all € > 0 small enough,

n g
nhd+? Zinl hi _ O <n%(1—(a—6)(d+2))n—aq+ae) =o(1).

Applying ([7), it follows that lim, . nhd*2E(V £,(0)) = 0. Proceeding in the same way

for E(f,,()), we obtain
n d+2
lim< 7 NE(W"(G)) ) = 0. (19)

e \ b [E(7.0)) - £0)]

14



The combination of either ([[§) or (IJ) and of Lemma [ gives the weak convergence rate of
T

(Y La(O)]", fu(6) = £(0)) -
e If (C1) holds, then

/ d+2
< ~nh’f+ Vin() ) LLN(0,%). (20)
\ i (fa(0) = £(6))

o Ifa=(d+2¢+2)"!,a=(d+2¢)~!, and if there exist ¢, & > 0 such that lim,, nhit2t — ¢
h;il+2q = ¢, then

( thgﬁ“vf"w) ) L2, N (D(c,&)By(6),5). (21)
\ b (fn(0) — £(6))

e If (C2) holds, since ag < 1 and aq < 1, () implies that

qufn(a) P
ne P,
< 2y (Fa0) = £(6) ) Ba®) 22

Proof of Lemma [ To prove Lemma [, we first prove that

and lim,_,,on

lim E(WanT ) =3, (23)

n—oo

and then check that (W,,) satisfies Lyapounov’s condition. Set

1 00— X 0— X
o = et [ (55) -2 (v (552))
. nhy2 hi, hi,
fun = et 1 (557) -2 (x (557)))

nhn, Ry, R,

oy - 5 () )

k=1 E<YanZk7n E(le,n>

and note that

Now, for any s,t € {1,...,d}, we have

EaK 0 — X\ 0K (60— X B / OK (0—y\ 0K (0—y )
31‘8 hk 31‘,5 hk N Rd 31‘8 hk 8.%'t hk y)ay

= hif(0)Gss+ o(h}),

and since, E {g—ﬁ (eka)] = O(h{), we deduce that

E( VK (5%) —E(VK (ﬁfk)) VK (5% —E<VK (452%) )]T>

= F(O)GRE[1+o(1)] (24)
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which implies that lim, e > 5y E(Yk7nYk7:n) = f(O)[1 + a(d + 2)]7'G. In the same way, we have

2
E( K<6;L];Xk> —E(K (H_thk>>] ) = Rif(0) RdKQ(z)dz[Ho(l)] (25)

and thus lim, . > 54 E(Z,?n) = f(0)[1 +ad)™! [pa K*(2)dz. Moreover, set hj, = min(hy, hy); we

have
E|VK (9_X’“>K<9TX’“>
hk hk
Noting that f(6 — hiz) = f(0) + hiRi(0, z) with |Ri(0, 2)| < ||V f|lcoll 2], we get
E|VK <9_X’“>K<HTX’“>
hy hp

=t 7o) [ v (GEe R (FEe)as e [ V(G2 K (52 o )]

k k

- h;;d/Rd VK(Z: )K(Z—Zz>f(9—h,’;z)dz.

k

Since the function z — [VK(z)] K(z is odd (in each coordinate), the first right-handed integral is
zero, and, since hj, equals either hj or hye, we get

E|VK <9_X’“>K<9TX’“>
hk hk
*(d *(d
< VIV {HKHOO L IENIVE@lds + VK [ qurmz)\dz] =0 (m“Y).

We then deduce that
Bl |vi (P=%%) _gvr (9%
hi, hy,
- d+1 - d+1 _ d+1
- 0 <[min(hk,hk)] > 4O (hihﬁ) —0 (h =t > 7 (26)

and thus, in view of (),

iE(kanZk,n) ) (\/( 1 hkd?lﬁ,}) = o(1),

he72) (nhe®) k=1

Ea

3

which concludes the proof of (RF). Now we check that (W,,) satisfies the Lyapounov’s condition.
Set p > 2. Since K and VK are bounded and integrable, we have [pq[|VK(2)|[Pdz < oo and

Jga [ K (2)|Pdz < oco. It follows that
0—y
K
v ( hi )

- 1 - (dl)p/
E ([|Yen|? O| —— h
S w i) = 0oy 3o
—d-pyd | _
nh d— 2 Zh h) (1)’

o 2
S e () = 0ty i [ (52) o)
< ey Zh_dphd> =o(1),

f (y)dy>

= 0

Q

= 0
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which concludes the proof of Lemma fJ.

3.5 A.s. convergence rate of ([Vf.(8)]7, f.(0) — f(0))T
Let us at first assume that the following lemma holds.

Lemma 4 Let Assumptions (A1)i), (Al)iv), (A3), (A4)i), (A4)ii) and (A6) hold. With probability
one, the sequence

1 Vnhi [V fu(6) — (anw))]
v2loglogn «/nhd {fn — ]

is relatively compact and its limit set is £ = {1/ € R such that V7Y 1w < 1}.
The combination of either ([[§) or ([[9) and of Lemma [ gives the almost sure convergence rate of
(IVFaO)1T Ja(0) — £(0))"
e If (C1) holds, then, with probability one, the sequence
1 Vnhi 2V f,(6)
V2logTogn \ y/nd [7(6) — 1)

is relatively compact and its limit set is £ = {1/ € R4 such that v7¥ "1y < 1}.

e Ifa=(d+2¢+2)"", a=(d+2¢)~", and if there exist ¢,é > 0 such that lim,_.o nh% 272/
(2loglogn) = ¢ and lim,,—, o nhit?e /(2loglogn) = ¢, then with probability one, the sequence

1 V nhngrQan(e)

ValogTogn \ \fuhd [£.(0) - £(0) 2
is relatively compact and its limit set is
& = {v e R¥ such that (v = D(c,)B,(8))" X7 (v = D(e,&)By(0)) < 1}
e If (C’2) holds, then
nr Vfn(0) as,
< A fa(0) — (0) ) Bal6) (29)

We now prove Lemma [I. Set

—~ 1 0 o
F:f(9)<G ) d )aAn: nhﬁdiQd ’Qn:< hnd QId 0 >’

0 Jpa K?(2)dz 0 1 0 =

nﬁﬁd
let (,) be a sequence of R !-valued, independent and A(0, T')-distributed random vectors, and
set S, = Y 1, Qrer. In order to prove Lemma H, we first establish the following Lemma [ in
Section B.5.]), and then show in Section how Lemma [§ can be deduced from Lemma .

Lemma 5 Let Assumptions (A1)i), (A1)iv), (A3), (A4)i), (A4)ii) and (A6)ii) hold. With proba-
bility one, the sequence (T},) = (X~Y/2A,,S,/+/2loglogn) is relatively compact and its limit set is
the unit ball By, 1(0,1) = {y € R such that ||v|s < 1}.
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3.5.1 Proof of Lemma [

Set B, = E(S,SL), let ||z||2 (respectively ||A|l,) denote the euclidean norm (respectively the
spectral norm) of the vector x (respectively of the matrix A). The application of Theorem 2 in
Koval [[I] ensures that

li HEilﬁAnSnH?
1m sup

<1 as.
noe 2|50, By, T2 log log | Bull,

Since limy, 00 Ay BpA,, = 3 and loglog || By, ~ loglogn, we deduce that

limsup ||T,]2 <1 as. (30)

n—oo

Thus, the sequence (T},) is relatively compact and its limit set U is included in Bgy1(0,1). Now,
set Sgr1 = {w e R || = 1}, and let us at first assume that

Vw € Syp1, limsupw!T, >1 as. (31)
n—oo

The combination of (BJ) and (BI]) ensures that, with probability one, Ve > 0,Vny > 1,3n > ng such
that w? T, > 1 — ¢ and ||T,,||3 < 1 +&. Noting that || T, — w||3 = |Tnll3 + [|w]|3 — 2w T, it follows
that, with probability one, Ve > 0, ¥ng > 1, 3n > ng such that |7, —w||3 < 14+e+1-2(1—¢) = 3e.
Thus, with probability one, Sgy1 C U. To deduce that By, 1(0,1) C U, we introduce (e ), a sequence
of real-valued, independent, and A/ (0, 1)-distributed random variables such that (e) is independent
of (ex). Moreover, we set

Qn:< thdo2.[d+1 0 )7 S,n _ ZQk<6:>
k=1

hy? £

1
A, = V"hﬁd_QId—i_l (1) , and ¥ = < L0 )
0 L 0%

nhy,
We then note that the previous result applied to (7},) = (X~/2A,,S,/v/2loglogn) ensures that,
with probability one, Syro = {w € R¥2, ||w|]y = 1} is included in the limit set of Tj,. Now let
7 : RF2 — R be the projection map defined by 7((z1,...,24:2)7) = (22,...,2442)". We
clearly have 7(Sz42) = Bg11(0,1) and n(T},) = T},, and thus deduce that, with probability one,
By,1(0,1) is included in the limit set of 7},. To conclude the proof of Lemma fl. it remains to prove
(BT)). In fact, we shall prove that,

wl'A,S,,
N 0, i — > Vuly 8. 32
w# 17rln_)sol<1)p 2loglogn — s as (82)

Set v, = min{[nh;(d+2)]1/2;[nﬁ;d]l/z}, A, = vowl A, and V,, = E(AnSnSgAz;); we follow a
method used by Petrov [[lg] in the proof of his Theorems 7.1 and 7.2. Since lim V;, = oo, V7 > 0,

n—oo
there exists a non-decreasing sequence of integers nj such that ny — oo as k — oo and V,,, 1 <

(1+71)*F < Vy,, (k=1,2,...). Since limy, o Vs,—1/V;, = 1, we obtain V,,, ~ (1+7)*. Moreover, we
have

Vi, = Voo :Vnk(l_ ~ ) ~V

(33)



Set

x(n) = +/2V,loglog V,,, \/2 ke — Ve, ) loglog(Vy,, — Vi, ).

It follows from (B3) that ¢ (ng) ~ Tl/2x(nk_1). Then for any v €]0, 1] and k sufficiently large, we
have

P (A”ksnk - Anksnkfl > (1- W)T;Z)(nk))
z P (AnkSnk > (1- %W(nk)) -P <AnkSnk—1 > 771#(27%))

> P (AnkSn,c >(1- %)X(nk)> —P (AnkSnk_1 > %?X(nklo . (34)

Since Ay, S, is N (O, Vnk)—distributed, we have

1 o

P (A, 2 (1= Pxlm) = =

2
exp < )dt
1—1 )\/2Vn,, loglog Vi, 2
> [log Vy,]~ (1+m)(1-3)? (35)

for every p and sufficiently large k. Set f/nk = v%kwTAnankilAnkw; since A, Sy, _, is N(O, f/nk)—
distributed, we have

_ T t*
P(A,. S — - —— |dt.
( it 3 X(nk 1 V 27T/ k 1 loglogVnk 1 eXp < 2)
k

Let pmin(A) (respectively pmar(A)) denote the smallest (respectively the largest) eigenvalue of a
matrix A, set X, = A, B,A,, and note that

2
v min\~n
V?k*l Z ; N — 1p1 ( k— 1) (36)
Ve UnkpmaJ:(A AV nk—lAnk—lAnk)
with
pmax(A Ankl 127% 1Ank1 1Ank) S H‘Enk 1Ank1 1A A Ankl 1|9
< H‘E”k 1”‘ ‘Ank 1A Ay Ankll 9 (37)
It follows from (f]) and Assumption A6)ii) that
by bl o
H‘Ank 1A Ay AY_lk 1 = max e (§+12) 7 - 1~ I:ll ~ ; . (38)
2 nkhnk nkhnk Unk
;From (B6), (B7) and (BY), we deduce that, for sufficiently large k,
V?k,l > pmin(znkﬂ) > Pmin(2)
Vo 2Pmax(2nk71) 4pmaz(X)
and therefore, for sufficiently large k,
LT t*
An, S, > —X(nk 1)> < / exp <——>dt
< EPNE—1 o wf\/z;,z;,;@;\/2vnk Toglog Vo, 2
7W27pmzn(2)
< [logVnkil] 36pmaz(3) (39)
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The inequalities (B4), (B) and (BY) imply that

127 Pmin (S

P (A, S, — Ang Sy > (1= )0(n)) > log Vi, ]~ FH00=27 [l v, ] s8omas(®
Thus, for sufficiently large k and 7, there exists ¢ > 0 such that ¢ does not depend on k and

P (Ang Sy = AngSny_y 2 (1= 7)ib(ng)) = e[k~ 0= — =),

Choosing j such that (1 + ) (1 —7/2)* < 1, we get

P (An Sy — AncSnyy > (1= 7)) > Sk (003
and thus Zk P(Anksnk - AnkSnk;—l > (1 - 7)¢(nk)) = Q. Applying Borel-Cantelli’s Lemma, we
obtain

P (Ap,Sny — AnpSny s > (1= Y(ng) io.) =1 (40)
Now,
C AwSel] vz || An AL |, 180, S
limsup ——— < limsup
k—oo  X(Mk-1) k—oo \/21)2%_1(wTAnklenkflAnkflw) loglog V,,,
vl | An ATL || 180, S
< limsup 2 .
k—00 \/21)3%71 (wT'Ew)loglog Vi, _,

Applying Theorem 2 in Koval [[L]] again, and using the fact that lim, .. A,B,A, = X, we obtain

lim sup,,_, [|AnSnll2/1/2[|Z]|5 loglogn < 1 a.s. Therefore,

vngfoll2 | An A7

Nk—1

S| VT,
msup ————— S 11m sup
k—o0 X(nk—l) k—o0 Unje_q V wl'Yw

Since [[An, ALY 2 = [pmaz (A} AnkAnkA;klil)]l/Q < 2vp,_,/Vp,, for sufficiently large k, we

Nk—1 Nk—1

obtain lim supy, o |An, Sne_y |/ X (1) < 2[|w]l21/TE]5/VwT Sw a.s. Set € €]0,1[ and
k = 2||lwlj2+/|X]ls/VwT Xw. Noting that

(1= )m) = 2ex(np—1) ~ [(L = 7)VT(L+7) 72 = 261+ 7) 72| x (),

and noting that v can be chosen sufficiently small and 7 sufficiently large so that (1 — ~)/7(1 +
)" Y2 —2k(1 +7)" Y2 > 1 — ¢, we obtain

P (A, Sn, > (1 —¢)x(ng) io0.) >P (A, S, > 1 —v)Y(ng) — 2kx(ng—1) 1i.o0.).

Taking ([f]) into account, we then obtain P (A4,, Sy, > (1 —)x(ng) i.0.) = 1. We thus get
limsup,,_, ., AnSn/x(n) > 1 a.s., which proves (B3), and concludes the proof of Lemma [f.
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3.5.2 Proof of Lemma

Now, set

) by | VK (95 ) —E (VK (5
Vi = h,,;d/{2 {K Gfl;(’“ —E K(e(ﬁXk);})}

k

and Ty, = E(V;V,]). In view of (24), (29) and (Rf), we have limy_o, Ty = I'. Tt follows that
Jko > 1 such that Vk > kg, I'y is inversible; without loss of generality, we assume kg = 1, and set

U, = F;lﬂf/k. Set p €]2,4[ and let £ be a slowly varying function; we have:

(1017 O(ﬁmﬁ[WW%?)ﬂ+%W%HK@$07)

(kloglog k)r/2 (klog log k)P/2
5 hd dp/2 + hd dp/2
B (kloglog k:)p/2

- 0 <£(k) [k_[1+(g_1)(1_ad)] n k—[1+(§—1)(1—dd)]]>

so that 3, (kloglog k)~P/?E(||Ug||P) < oo. By application of Theorem 2 of Einmahl [{f], we de-
duce that > 7, Uy — > p_y e = o(v/nloglogn) a.s., where n, are independent, and N (0, I4+1)-

distributed random vectors. It follows that

Z F1/2F,;1/2f/k - Z e = o(y/nloglogn) a.s. (41)

k=1 k=1

Now,
Ay [Z QY2 VP — > Qkﬁk]
k=1 k=1

— A, i O [rl/Qr,gl/Qf/k _ ak}

k=1
n k k—1 0
= A Qr| )] [FWP Y2 - a]} - [Fl/Qr;V?Vj = g]} (with} " =0)
k=1 j=1 j=1 =

1 n

k
= An (Qk - QkJrl Z (P1/2P_1/2 - 5]) + AnQn Z <P1/2Fj_1/2‘7j — 8]‘)

J=1

:TT S
—_ =

= 803 (@ Qe [o (VEToRToRE) | + AuQu [o (Vaoglogn)] s

=1

=
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Moreover,

Z (Qr — Qrt1) [ (M)]
VEZS (n ™ = 1) o (vioEToEm 0

= o L
0 \V A (hk 2 — hk-ﬁl)
/1 d+2 n—1 {,-%2 -2
0 < hy " log logn> Yoy <hk P —hy g ) 0
0 0 (wﬁg log logn> - <h hk_f1>

el
2

Set ¢(s) = [h(s)]f% and ¢(s [ } > and let u; € [k, k +1]; since ¢/ and ¢ vary regularly
with exponent (a(d 4 2)/2 — 1 and (ad/2 — 1) respectively, we have

:: (hkd;2 k:1+2> = <Z¢ ug) ) =0 </1n ¢/(8)d8> =0 (hndf>
:Zi <B,;‘2i _ ﬁ;&) =0 CZi QZ;/(Uk)) =0 (/ln &'(s)ds) -0 (ﬁ;5> ’

so that A, zz;i (Qk — Qr+1) [0 (VEToglog k)| = o (Vioglogn). Since AnQy [0 (v/nloglogn)] =
0 (\/log log n), we deduce that

A S QPP AL Quen
v2loglogn v2loglogn

The application of Lemma ] then ensures that, with probability one, the sequence (AR Y r Q12
F;1/2T~/k/\/210g logn) is relatively compact and its limit set is £ = {v € R%! such that vTX "1y <
1}. Since

Q.

and

=o0(1) as.

~ ~ n —1/2\
An 22:1 Qka o An Zzzl ril/QFI;I/QVk + An Zk:l Qk (Id+1 B Fl/QFk ! > Vk
v2loglogn N v2loglogn v2loglogn

with lmg_ o0 (Lg41 — I’l/QI’;l/Q) = 0, Lemma [ follows.

3.6  Proof of Theorems [I] and

In view of ([[§) (and the comment below), Theorem [I] (respectively Theorem [)) is a straightforward

consequence of the combination of (R0), (RI) and (R2) (respectively (R7), (BY) and (RY)) together
with the following lemma, which establishes that the residual term R, (defined as in ([[4)) is
negligeable.

Lemma 6 Let Assumptions (A1)-(A5) hold. If (C2) holds, then lim, .o hn 'Ry = 0 a.s. Other-

wise, lim, oo \/NheR, =0 a.s.
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Proof of Lemma [§ We first note that a Taylor’s expansion implies the existence of ¢, such that
1¢n = Onll < |6, — 0] and

R, = (en - Q)T an(gn)

Let V be a compact set that contains 0; for n large enough, we get

IRl = 0 (1, = 81 [sup VFs(e) = V1@ + 6 - 01| )

0 (Hen 0l sup [V o) = V)] + 16— eu?) |

On the one hand, let us recall that the a.s. convergence rate of (6, —0) is given by the one of

[D2f(9)]71 Vfn(0) (see ([) and the comment below). One can apply (B7), [9), and (P9) and
obtain the exact a.s. convergence rate of 6,, — 6. However, to avoid assuming (A6), we apply here
Lemmas [[] and B (with |a| = 1 and (gn,bn) = (fn, hn)), and get the following upper bound of the
a.s. convergence rate of 8, — 0: for any v > 0 and € > 0 small enough,

14 n q 1+~
162~ 6] = 0( (log7) +Z@=1h@>:o< {ogn) 17 +h%€> as.  (42)

nhg+2 n nhg+2

On the other hand, we have

sup [V fu(@) = V(@) < sup|[Vu(@) = E (Vial@) | +sup |E (VFn(@)) = VF(@)]
ey ey ey

The application of Lemmas [I] and f| with |a| = 1, (gn,bn) = (fn, hn) ensures that, for any v > 0
and € > 0 small enough,

Supvan(x) _ Vf(x)H -0 < (logn)lﬂ n Z?Zl ﬁg) -0 ( M + B;}L—es) a.8. (43)

eV nh‘,ilJr2 n nh‘,ilJr2

Let £ denotes a generic slowly varying function that may vary from line to line.

e Let us first assume that (C1) holds. The application of () and ({3) ensures that for any
€ > 0 small enough,

nhg|0n — 0] sup |V fu(@) = V. (@)l] = O (£(n) [n=3 0722720 4 pi=ali=2)] ) o1 as.
zeV

Observe that by (C1)i), it is straightforward to see that 2a 4+ a(d +2) < 1 and a < a(q — ¢)

for any ¢ > 0 small enough, so that \/nhd||6, — 0| sup,cy |V fn(x) — V()| = o(1) a.s.
Moreover, the application of (f2) ensures that

b0 = (a0 ionen i) s

Now, by (C1)ii) we have 2a(d+2) —ad < 1 and ad+4a(q—¢) > 1 for any € > 0 small enough,

and thus it follows that \/nh2||6, — ]| = o(1) a.s., which ensures the first part of Lemma [g.
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e We now assume that (C2) holds. Since ag < ¢/(d + 2q) < 1, using ({), () and ([H), we have

1 -
B_qHHn =l sup IV fu(z) = V()]
- 0 <E(n) [n—1+—“<d; 2) y aldt20+2) +n—%—a(q—e>+7a“+§q”)}) to(1) as.  (44)

On the one hand, for any € > 0 small enough, it is straightforward to see that condition (C2)
implies the following inequalities:

a(d+2)+ald+2¢+2) <2 and a(d+2+2q) <1+ 2a(q—c¢), (45)
ag+a(d+2) <1 and aqg < 2a(q — ¢). (46)

Therefore, it follows from (4) and (i) that
1 .
= 10n = Ol sup [V fn(z) = VF(@)[| = o(l) as.
hn ey
On the other hand, observe again that by (fJ) and (f), we have
1 —(1—ag—a aq—2a(q—
EHen—en? - O(E(n) [n (1-fg—a(d+2)) 4 pdg—2a(q >]) =o(1) as.,

which concludes the proof of Lemma [g.

Acknowledgements We deeply thank two anonymous Referees for their helpfull suggestions and

comments.
References
[1] Abraham, C., Biau, G. and Cadre, B. (2003), Simple estimation of the mode of a multivariate
density. Canadian J. Statist. 31, pp 23-34.
[2] Abraham, C., Biau, G. and Cadre, B. (2004), On the asymptotic properties of a simple estimate
of the mode. ESAIM Prob. and Statist. 8, pp 1-11.
[3] Davies, H.I. (1973), Strong consistency of a sequential estimator of a probability density func-
tion. Bull. Math. Statist. 15, pp. 49-54.
[4] Devroye, L. (1979), On the pointwise and integral convergence of recursive kernel estimates of
probability densities. Utilitas Math. 15, pp. 113-128.
[5] Eddy, W.F. (1980), Optimum kernel estimates of the mode, Ann. Statist. 8, pp. 870-882.
[6] Eddy, W.F. (1982), The asymptotic distributions of kernel estimators of the mode, Z. Warsch.
Verw. Gebiete 59, pp. 279-290.
[7] Einmahl, U. (1987), A useful estimate in the multidimensional invariance principle. Probability
theory and related fields 76, pp. 81-101.
[8] Feller, W. (1970), An introduction to probability theory and its applications. Second edition
Volume 11, Wiley.
[9] Hall, P. (1992), Effect of bias estimation on coverage accuracy of bootstrap confidence intervals

for a probability density, Ann. Statist. 20, pp. 675-694.

24



[10]

[11]

[12]

[13]

[14]

[15]

[24]

[25]

[26]

[27]
[28]

Konakov, V.D. (1973), On asymptotic normality of the sample mode of multivariate distribu-
tions, Theory Probab. Appl. 18, pp. 836-842.

Koval, V. (2002), A new law of the iterated logarithm in R? with application to matrix-
normalized sums of randoms vectors. Journal of Theoretical Probability 15, pp. 249-257.

Menon, V.V., Prasad, B. and Singh, R.S. (1984), Non-parametric recursive estimates of a
probability density function and its derivatives. Journal of Statistical Planning and inference
9, pp. 73-82.

Mokkadem, A. and Pelletier, M. (2003), The law of the iterated logarithm for the multivariate
kernel mode estimator. ESAIM: Probab. Statist. 7, pp. 1-21.

Mokkadem, A. and Pelletier, M. (2007), A companion for the Kiefer-Wolfowitz-Blum stochastic
approximation algorithm, Ann. Statist., 35, 1749-1772.

Mokkadem, A., Pelletier, M. and Thiam, B. (2006), Large and moderate deviations principles
for recursive kernel estimators of a multivariate density and its partial derivatives. Serdica
Math. J. 32, pp. 323-354.

Miiller H.G. (1989) Adaptive nonparametric peak estimation Ann. Statist., 17, 1053-1069.

Nadaraya, E.A. (1965), On non-parametric estimates of density functions and regression
curves. Theory Probab. Appl. 10, pp. 186-190.

Parzen, E. (1962), On estimation of a probability density function and mode. Ann. Math.
Statist. 33, pp. 1065-1076.

Petrov, V.V. (1995), Limit theorems in probability theory, Clarendon Press, Oxford.

Romano, J. (1988), On weak convergence and optimality of kernel density estimates of the
mode. Ann. Statist. 16, pp. 629-647.

Rosenblatt, M. (1956), Remarks on some-non-parametric estimates of density function. Ann.
Math. Statist. 27, pp. 832-837.

Roussas, G. (1992), Exact rates of almost sure convergence of a recursive kernel estimate
of a probability density function: Application to regression and hazard rate estimate. J. of
Nonparam. Statist. 3, pp. 171-195.

Riischendorf, L. (1977), Consistency of estimators for multivariate density functions and for
the mode. Sankhya Ser. A, 39, pp. 243-250.

Samanta, M. (1973), Nonparametric estimation of the mode of a multivariate density, South
African Statist. J. 7, pp. 109-117.

Tsybakov, A.B. (1990), Recurrent estimation of the mode of a multidimensional distribution,
Problems Inform. Transmission 26, 31-37

Van Ryzin, J. (1969), On strong consistency of density estimates. Ann. Math. Statist. 40, pp
1765-1772.

Vieu, P. (1996), A note on density mode estimation, Statist. Probab. Lett. 26, 297-307

Wegman, E.J. and Davies, H.I. (1979), Remarks on some recursive estimators of a probability
density. Ann. Statist. 7, pp. 316-327.

25



[29] Wertz, W. (1985), Sequential and recursive estimators of the probability density. Statistics 16,
pp. 277-295.

[30] Wolverton, C.T. and Wagner, T.J. (1969), Asymptotically optimal discriminant functions for
pattern classification. IEEE Trans. Inform. Theory 15, pp. 258-265.

[31] Yamato, H. (1971), Sequential estimation of a continuous probability density function and
mode. Bull. Math. Satist. 14, pp. 1-12.

[32] Ziegler, K. (2003), On the asymptotic normality of kernel regression estimators of the mode
in the random design model. J. Statist. Plann. Inf. 115, pp. 123-144.

[33] Ziegler, K. (2004), Adaptive kernel estimation of the mode in a nonparametric random design
regression model. Probab. Math. Satist. 24, pp. 213-235.

26



