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Introduction

Let X 1 , . . . , X n be independent and identically distributed R d -valued random variables with unknown probability density f . The aim of this paper is to study the joint kernel estimation of the location θ and of the size µ = f (θ) of the mode of f . The mode is assumed to be unique, that is, f (x) < f (θ) for any x = θ, and nondegenerated, that is, the second order differential D 2 f (θ) at the point θ is nonsingular (in the sequel, D m g will denote the differential of order m of a multivariate function g).

The problem of estimating the location of the mode of a probability density was widely studied. Kernel methods were considered, among many others, by Parzen [START_REF] Parzen | On estimation of a probability density function and mode[END_REF], Nadaraya [START_REF] Nadaraya | On non-parametric estimates of density functions and regression curves[END_REF], Van Ryzin [START_REF] Van Ryzin | On strong consistency of density estimates[END_REF], Rüschendorf [START_REF] Rüschendorf | Consistency of estimators for multivariate density functions and for the mode[END_REF], Konakov [START_REF] Konakov | On asymptotic normality of the sample mode of multivariate distributions[END_REF], Samanta [START_REF] Samanta | Nonparametric estimation of the mode of a multivariate density[END_REF], Eddy ([5], [START_REF] Eddy | The asymptotic distributions of kernel estimators of the mode[END_REF]), Romano [START_REF] Romano | On weak convergence and optimality of kernel density estimates of the mode[END_REF], Tsybakov [START_REF] Tsybakov | Recurrent estimation of the mode of a multidimensional distribution[END_REF], Vieu [START_REF] Vieu | A note on density mode estimation[END_REF], Mokkadem and Pelletier [START_REF] Mokkadem | The law of the iterated logarithm for the multivariate kernel mode estimator[END_REF], and Abraham et al. ( [START_REF] Abraham | Simple estimation of the mode of a multivariate density[END_REF], [START_REF] Abraham | On the asymptotic properties of a simple estimate of the mode[END_REF]). At our knowledge, the behaviour of estimators of the size of the mode has not been investigated in detail, whereas there are at least two statistical motivations for estimating this parameter. First, a use of an estimator of the size is necessary for the construction of confidence regions for the location of the mode (see, e.g., Romano [START_REF] Romano | On weak convergence and optimality of kernel density estimates of the mode[END_REF]). As a more important motivation, let us underline that the high of the peak gives information on the shape of a density; from this point view, as suggested by Vieu [START_REF] Vieu | A note on density mode estimation[END_REF], the location of the mode is more related to the shape of the derivative of f , whereas the size of the mode is more related to the shape of the density itself. Moreover, the knowledge of the size of the mode allows to measure the pertinence of the parameter location of the mode.

Let us mention that, even if the problem of estimating the size of the mode was not investigated in the framework of density estimation, it was studied in the framework of regression estimation. Müller [START_REF] Müller | Adaptive nonparametric peak estimation Ann[END_REF] proves in particular the joint asymptotic normality and independence of kernel estimators of the location and of the size of the mode in the framework of nonparametric regression models with fixed design. In the framework of nonparametric regression with random design, a similar result is obtained by Ziegler ([32], [START_REF] Ziegler | Adaptive kernel estimation of the mode in a nonparametric random design regression model[END_REF]) for kernel estimators, and by Mokkadem and Pelletier [START_REF] Mokkadem | A companion for the Kiefer-Wolfowitz-Blum stochastic approximation algorithm[END_REF] for estimators issued from stochastic approximation methods. This paper is focused on semirecursive kernel estimators of θ and f (θ). To explain why we chose this option of semirecursive estimators, let us first recall that the (nonrecursive) wellknown kernel estimator of the location of the mode introduced by Parzen [START_REF] Parzen | On estimation of a probability density function and mode[END_REF] is defined as a random variable θ * n satisfying

f * n (θ * n ) = sup y∈R d f * n (y),
where f * n is Rosenblatt's estimator of f ; more precisely,

f * n (x) = 1 nh d n n i=1 K x -X i h n ,
where the bandwidth (h n ) is a sequence of positive real numbers going to zero and the kernel K is a continuous function satisfying lim x →+∞ K(x) = 0, R d K(x)dx = 1. The asymptotic behaviour of θ * n was widely studied (see, among others, [START_REF] Eddy | Optimum kernel estimates of the mode[END_REF], [START_REF] Eddy | The asymptotic distributions of kernel estimators of the mode[END_REF], [START_REF] Konakov | On asymptotic normality of the sample mode of multivariate distributions[END_REF], [START_REF] Mokkadem | The law of the iterated logarithm for the multivariate kernel mode estimator[END_REF], [START_REF] Nadaraya | On non-parametric estimates of density functions and regression curves[END_REF], [START_REF] Parzen | On estimation of a probability density function and mode[END_REF], [START_REF] Romano | On weak convergence and optimality of kernel density estimates of the mode[END_REF], [START_REF] Rüschendorf | Consistency of estimators for multivariate density functions and for the mode[END_REF], [START_REF] Samanta | Nonparametric estimation of the mode of a multivariate density[END_REF], [START_REF] Van Ryzin | On strong consistency of density estimates[END_REF], [START_REF] Vieu | A note on density mode estimation[END_REF]), but, on a computational point of view, the estimator θ * n has a main drawback: its update, from a sample size n to a sample size n + 1, is far from being immediate. Applying the stochastic approximation method, Tsybakov [START_REF] Tsybakov | Recurrent estimation of the mode of a multidimensional distribution[END_REF] introduced the recursive kernel estimator of θ defined as

T n = T n-1 + γ n 1 h d+1 n ∇K T n-1 -X n h n ,
where T 0 ∈ R d is arbitrarily chosen, and the stepsize (γ n ) is a sequence of positive real numbers going to zero. The great property of this estimator is that its update is very rapid. Unfortunately, for reasons inherent to stochastic approximation algorithms properties, very strong assumptions on the density f must be required to ensure its consistency. A recursive version f n of Rosenblatt's density estimator was introduced by Wolverton and Wagner [START_REF] Wolverton | Asymptotically optimal discriminant functions for pattern classification[END_REF] (and discussed, among others, by Yamato [START_REF] Yamato | Sequential estimation of a continuous probability density function and mode[END_REF], Davies [START_REF] Davies | Strong consistency of a sequential estimator of a probability density function[END_REF], Devroye [START_REF] Devroye | On the pointwise and integral convergence of recursive kernel estimates of probability densities[END_REF], Menon et al. [START_REF] Menon | Non-parametric recursive estimates of a probability density function and its derivatives[END_REF], Wertz [START_REF] Wertz | Sequential and recursive estimators of the probability density[END_REF], Wegman and Davies [START_REF] Wegman | Remarks on some recursive estimators of a probability density[END_REF], Roussas [START_REF] Roussas | Exact rates of almost sure convergence of a recursive kernel estimate of a probability density function: Application to regression and hazard rate estimate[END_REF], and Mokkadem et al. [START_REF] Mokkadem | Large and moderate deviations principles for recursive kernel estimators of a multivariate density and its partial derivatives[END_REF]). Let us recall that f n is defined as

f n (x) = 1 n n i=1 1 h d i K x -X i h i . (1) 
Its update from a sample of size n to one of size n + 1 is immediate since f n clearly satisfies the recursive relation

f n (x) = 1 - 1 n f n-1 (x) + 1 nh d n K x -X n h n .
This property of rapid update of the density estimator is particularly important in the framework of mode estimation, since the number of points where f must be estimated is very large. We thus define a semirecursive version of Parzen's estimator of the location of the mode by using Wolverton-Wagner's recursive density estimator, rather than Rosenblatt's density estimator. More precisely, our estimator θ n of the location θ of the mode is a random variable satisfying

f n (θ n ) = sup y∈R d f n (y). (2) 
Let us mention that, in the same way as for Parzen's estimator, the fact that the kernel K is continuous and vanishing at infinity ensures that the choice of θ n as a random variable satisfying (2) can be made with the help of an order on R d . For example, one can consider the following lexicographic order: x ≤ y if the first nonzero coordinate of xy is negative. The definition

θ n = inf y ∈ R d such that f n (y) = sup x∈R d f n (x) ,
where the infimum is taken with respect to the lexicographic order on R d , ensures the measurability of the kernel mode estimator.

Let us also mention that, in order to make more rapid the computation of the kernel estimator of the location of the mode, Abraham et al. ( [START_REF] Abraham | Simple estimation of the mode of a multivariate density[END_REF], [START_REF] Abraham | On the asymptotic properties of a simple estimate of the mode[END_REF]) proposed the following alternative version of Parzen's estimator θ * n :

θ * n = argmax 1≤i≤n f * n (X i ).
Similarly, we could consider the following alternative version of our semirecursive estimator θ n :

θn = argmax 1≤i≤n f n (X i ).
However, to establish the asymptotic properties of θ * n , Abraham et al. [START_REF] Abraham | On the asymptotic properties of a simple estimate of the mode[END_REF] prove the asymptotic proximity between θ * n and θ * n , which allows them to deduce the asymptotic weak behaviour of θ * n from the one of θ * n . In the same way, we can conjecture that the asymptotic weak behaviour of θn could be deduced from the one of θ n , but, in this paper, we limit ourselves on establishing the asymptotic properties of θ n .

Let us now come back to the problem of estimating the size f (θ) of the mode. The ordinarily used estimator is defined as µ

* n = f * n (θ * n ) (f *
n being Rosenblatt's density estimator and θ * n Parzen's mode estimator); the consistency of µ * n is sufficient to allow the construction of confidence regions for θ (see, e.g., Romano [START_REF] Romano | On weak convergence and optimality of kernel density estimates of the mode[END_REF]). Adapting the construction of µ * n to the semirecursive framework would lead us to estimate f (θ) by

µ n = f n (θ n ). (3) 
However, this estimator has two main drawbacks (as well as µ * n ). First, the use of a higher order kernel K is necessary for (µ nµ) to satisfy a central limit theorem, and thus for the construction of confidence intervals of µ (and of confidence regions for (θ, µ)). Moreover, in the case when a higher order kernel is used, it is not possible to choose a bandwidth for which both estimators θ n and µ n converge at the optimal rate. These constations lead us to use two different bandwidths, one for the estimation of θ, the other one for the estimation of µ. More precisely, let fn be the recursive kernel density estimator defined as

fn (x) = 1 n n i=1 1 hd i K x -X i hi ,
where the bandwidth ( hn ) may be different from (h n ) used in the definition of f n (see ( 1)); we estimate the size of the mode by

μn = fn (θ n ), (4) 
where θ n is still defined by ( 2), and thus with the first bandwidth (h n ).

The purpose of this paper is the study of the joint asymptotic behaviour of θ n and μn . We first prove the strong consistency of both estimators. We then establish the joint weak convergence rate of θ n and μn . We prove in particular that adequate choices of the bandwidths lead to the asymptotic normality and independence of these estimators, and that the use of different bandwidths allow to obtain simultaneously the optimal convergence rate of both estimators. We then apply our weak convergence rate result to the construction of confidence regions for (θ, µ), and illustrate this application with a simulations study. This application enlightens the advantage of using semirecursive estimators rather than nonrecursive estimators. It also shows how the estimation of the size of the mode gives information on the relevance of estimating its location. Finally, we establish the joint strong convergence rate of θ n and μn .

Assumptions and Main Results

Throughout this paper, (h n ) and ( hn ) are defined as h n = h(n) and hn = h(n) for all n ≥ 1, where h and h are two positive functions.

Strong consistency

The conditions we require for the strong consistency of θ n and μn are the following.

(A1) i) K is an integrable, differentiable, and even function such that R d K(z)dz = 1.

ii) There exists

ζ > 0 such that R d z ζ |K(z)dz| < ∞. iii) K is Hölder continuous. iv) There exists γ > 0 such that z → z γ |K(z)| is a bounded function. (A2) i) f is uniformly continuous on R d . ii) There exists ξ > 0 such that R d x ξ f (x)dx < ∞.
iii) There exists η > 0 such that z → z η f (z) is a bounded function. iv) There exists θ ∈ R d such that f (x) < f (θ) for all x = θ.

(A3) The functions h and h are locally bounded and vary regularly with exponent (-a) and (-ã) respectively, where a ∈]0, 1/(d + 4)[, ã ∈ ]0, 1/(d + 2)[.

Remark 1 Note that (A1)iv) implies that K is bounded.

Remark 2

The assumptions required on the probability density to establish the strong consistency of the semirecursive estimator of the location of the mode are slightly stronger than those needed for the nonrecursive estimator (see, e.g., [START_REF] Mokkadem | The law of the iterated logarithm for the multivariate kernel mode estimator[END_REF], [START_REF] Romano | On weak convergence and optimality of kernel density estimates of the mode[END_REF]), but are much weaker than the ones needed for the recursive estimator (see [START_REF] Tsybakov | Recurrent estimation of the mode of a multidimensional distribution[END_REF]). 

Weak convergence rate

In order to state the weak convergence rate of θ n and μn , we need the following additional assumptions on K and f .

(A4) i) K is twice differentiable on R d . ii) z → z∇K(z) is integrable.
iii) For any (i, j) ∈ {1, . . . , d} 2 , ∂ 2 K/∂x i ∂x j is bounded integrable and Hölder continuous. iv) K is a kernel of order q ≥ 2 i.e. ∀s ∈ {1, . . . , q -1}, ∀j ∈ {1, . . . , d}, R d y s j K(y)dy j = 0 and R d |y q j K(y)|dy < ∞.

(A5) i) D 2 f (θ) is nonsingular.
ii) D 2 f is q-times differentiable, ∇f and D q f are bounded. iii) For any (i, j) ∈ {1, . . . , d} 2 , sup x∈R d D q ∂ 2 f /∂x i ∂x j < ∞, and for any k ∈ {1, . . . , d},

sup x∈R d D q (∂f /∂x k ) < ∞.
Remark 4 Note that (A4)ii) and (A4)iii) imply that ∇K is Lipschitz-continuous and integrable; it is thus straightforward to see that lim x →∞ ∇K(x) = 0 (and in particular ∇K is bounded).

We also need to add conditions on the bandwiths. Let us set

L θ (n) = n a h n and L µ (n) = n ãh n .
(In view of (A3), L θ and L µ are positive slowly varying functions, see Remark 3). In the statement of the the weak convergence rate of θ n and μn , we shall refer to the following conditions.

(C1) One of the following two conditions is fulfilled.

i) 1 d + 4 < ã < q d + 2q + 2 and ã q < a < 1 -2ã d + 2 ; ii) 1 d + 2q < ã ≤ 1 d + 4 and 1 d + 2q + 2 < a < 1 + ãd 2 (d + 2)
(C2) One of the following two conditions is fulfilled.

i) 0 < ã < 1 d + 2q and ã 2 < a < 1 d + 2q + 2 ; ii) ã = 1 d + 2q , lim n→∞ L µ (n) = ∞ and 1 2(d + 2q) < a < 1 d + 2q + 2 .
Remark 5 (C1) implies that lim n→∞ nh d+2q+2 n = 0 and lim n→∞ n hd+2q n = 0, whereas (C2) implies that lim n→∞ nh d+2q+2 n = ∞ and lim n→∞ n hd+2q n = ∞.

We finally need to introduce the following notation:

B q (θ) =   (-1) q q!(1-aq) ∇ d j=1 β q j ∂ q f ∂x q j (θ) (-1) q q!(1-ãq) d j=1 β q j ∂ q f ∂x q j (θ)   with β q j = R d
y q j K(y)dy, aq = 1 and ãq = 1, (5)

A = -D 2 f (θ) -1 0 0 1 , Σ = f (θ)G 1+a(d+2) 0 0 f (θ) R d K 2 (z)dz 1+ãd , (6) 
G is the matrix d × d defined by Theorem 1 Let θ n and μn be defined by ( 2) and (4), respectively, and assume that (A1)-(A5) hold.

G (i,j) = R d ∂K ∂x i (x) ∂K ∂x j ( 
i) If (C1) is satisfied, then

nh d+2 n (θ n -θ) n hd n (μ n -µ) D -→ N (0, AΣA) . ii) If a = (d + 2q + 2) -1 , ã = (d + 2q) -1
, and if there exist c, c ≥ 0 such that lim n→∞ nh d+2q+2 n = c and lim n→∞ n hd+2q n = c, then

nh d+2 n (θ n -θ) n hd n (μ n -µ) D -→ N (D(c, c)AB q (θ), AΣA) .
iii) If (C2) is satisfied, then

1 h q n (θ n -θ) 1 hq n (μ n -µ) P -→ AB q (θ).

Remark 6

The simultaneous weak convergence rate of nonrecursive estimators of the location and size of the mode can be established by following the lines of the proof of Theorem 1. More precisely, set

B * q (θ) =   (-1) q q! ∇ d j=1 β q j ∂ q f ∂x q j (θ) (-1) q q! d j=1 β q j ∂ q f ∂x q j (θ)   , Σ * = f (θ)G 0 0 f (θ) R d K 2 (z)dz ,
let θ * n be Parzen's kernel estimator of the location of the mode and μ * n = f * n (θ * n ) be the kernel estimator of the size of the mode defined with the help of θ * n and of Rosenblatt's density estimator f * n (the bandwidth ( hn ) defining f * n being eventually different from the banwidth (h n ) used to define θ * n ); Theorem 1 holds when θ n , μn , B q (θ), Σ are replaced by θ * n , μ * n , B * q (θ), Σ * , respectively.

Part 1 and Part 2 in the case c = c = 0 (respectively Part 3) of Theorem 1 correspond to the case when the bias (respectively the variances) of both estimators θ n and μn are negligeable in front of their respective variances (respectively bias). When c, c > 0, Part 2 of Theorem 1 corresponds to the case when the bias and the variance of each estimator θ n and μn have the same convergence rate. Other possible conditions lead to different combinations; these ones have been omitted for sake of simplicity.

Theorem 1 gives the joint weak convergence rate of θ n and μn . Of course, it is also possible to estimate the location and the size of the mode separately. Concerning the estimation of the location of the mode, let us enlighten that the advantage of the semirecursive estimator θ n on its nonrecursive version θ * n is that its asymptotic variance [1 + a(d + 2)] -1 f (θ)G is smaller than the one of Parzen's estimator, which equals f (θ)G (see, e.g. Romano [START_REF] Romano | On weak convergence and optimality of kernel density estimates of the mode[END_REF] for the case d = 1 and Mokkadem and Pelletier [START_REF] Mokkadem | The law of the iterated logarithm for the multivariate kernel mode estimator[END_REF] for the case d ≥ 1); this advantage of semirecursive estimators will be discussed again in Section 2.3. The estimation of the size of the mode is of course not independent of the estimation of the location, since the estimator μn is constructed with the help of the estimator θ n . To get a good estimation of the size of the mode, it seems obvious that θ n should be computed with a bandwidth (h n ) leading to its optimal convergence rate (or, at least, to a convergence rate close to the optimal one). The main information given by Theorem 1 is that, for μn to converge at the optimal rate, the use of a second bandwidth ( hn ) is then necessary.

Let us enlighten that, in the case when θ n and μn satisfy a central limit theorem (Parts 1 and 2 of Theorem 1), these estimators are asymptotically independent, although, in its definition, the estimator of the size of the mode is heavily connected to the one of the location of the mode. As pointed out by a referee, this property was expected. As a matter of fact (and as mentioned in the introduction), the location of the mode is a parameter which gives information on the shape of the density derivative, whereas the size of the mode gives information on the shape of the density itself. This constatation must be related to the fact that the weak (and strong) convergence rate of θ n is given by the one of the gradient of f n , whereas the weak (and strong) convergence rate of μn is given by the one of fn itself; the variance of the density estimators converging to zero faster than the one of the estimators of the density derivatives, the asymptotic independence of θ n and μn is completely explained.

Let us finally say one word on our assumptions on the bandwidths. In the framework of nonrecursive estimation, there is no need to assume that (h n ) and ( hn ) are regularly varying sequences. In the case of semirecursive estimation, this assumption can obviously not be omitted, since the exponents a and ã stand in the expressions of the asymptotic bias B q (θ) and variance Σ. This might be seen as a slight inconvenient of semirecursive estimation; however, as it is enlightened in the following section, it turns out to be an advantage, since the asymptotic variances of the semirecursive estimators are smaller than the ones of the nonrecursive estimators.

Construction of confidence regions and simulations studies

The application of Theorem 1 (and of Remark 6) allows the construction of confidence regions (simultaneous or not) of the location and of the size of the mode, as well as confidence ellipsoids of the couple (θ, µ). Hall [START_REF] Hall | Effect of bias estimation on coverage accuracy of bootstrap confidence intervals for a probability density[END_REF] shows that, in order to construct confidence regions, avoiding bias estimation by a slight undersmoothing is more efficient than explicit bias correction. In the framework of undersmoothing, the asymptotic bias of the estimator is negligeable in front of its asymptotic variance; according to the estimation by confidence regions point of view, the parameter to minimize is thus the asymptotic variance. Now, note that

Σ = [1 + a(d + 2)] -1 I d 0 0 [1 + ãd] -1 Σ *
(where AΣA (respectively AΣ * A) is the asymptotic covariance matrix of the semirecursive estimators (θ n , μn ) (respectively of the nonrecursive estimators (θ * n , μ * n )). In order to construct confidence regions for the location and/or size of the mode, it is thus much preferable to use semirecursive estimators rather than nonrecursive estimators. Simulations studies confirm this theoritical conclusion, whatever the parameter (θ, µ or (θ, µ)) for which confidence regions are contructed is. For sake of succintness, we do not give all these simulations results here, but focuse on the construction of confidence ellipsoid for (θ, µ); the aim of this example is of course to enlighten the advantage of using semirecursive estimators rather than nonrecursive estimators, but also to show how this confidence region gives informations on the shape of the density, and, consequently allows to measure the pertinence of the parameter location of the mode.

To construct confidence regions for (θ, µ), we consider the case d = 1. The following corollary is a straightforward consequence of Theorem 1.

Corollary 1 Let θ n and μn be defined by ( 2) and (4), respectively, and assume that (A1)-(A5) hold. Moreover, let (h n ) and ( hn ) either satisfy (C1) or be such that lim n→∞ nh 2q+3 n = 0 and lim n→∞ n h2q+1 n = 0 with a = (2q + 3) -1 and ã = (2q + 1) -1 . We then have

(1 + 3a)nh 3 n [f ′′ (θ)] 2 f (θ) R K ′2 (x)dx (θ n -θ) 2 + (1 + ã)n hn f (θ) R K 2 (x)dx (μ n -µ) 2 D -→ χ 2 (2). (7) 
Moreover, [START_REF] Einmahl | A useful estimate in the multidimensional invariance principle[END_REF] still holds when the parameters f (θ) and f ′′ (θ) are replaced by consistent estimators.

Remark 7

In view of Remark 6, in the case when the nonrecursive estimators θ * n and μ * n are used, (7) becomes

nh 3 n [f ′′ (θ)] 2 f (θ) R K ′2 (x)dx (θ * n -θ) 2 + n hn f (θ) R K 2 (x)dx (μ * n -µ) 2 D -→ χ 2 (2) (8) 
(and, again, this convergence still holds when the parameters f (θ) and f ′′ (θ) are replaced by consistent estimators).

Let f ′′ n (respectively f * ′′ n ) be the recursive estimator (respectively the nonrecursive Rosenblatt's estimator) of f ′′ computed with the help of a bandwidth ȟn , and set

P n = (1 + 3a)nh 3 n [ f ′′ n (θ n )] 2 fn (θ n ) R K ′2 (x)dx , Q n = (1 + ã)n hn fn (θ n ) R K 2 (x)dx , P * n = nh 3 n [ f * ′′ n (θ * n )] 2 f * n (θ * n ) R K ′2 (x)dx , Q * n = n hn f * n (θ * n ) R K 2 (x)dx .
Moreover, let c α be such that P(Z ≤ c α ) = 1-α, where Z is χ 2 (2)-distributed; in view of Corollary 1 and Remark 7, the sets

E α = (θ, µ)/ P n (θ n -θ) 2 + Q n (μ n -µ) 2 ≤ c α E * α = (θ, µ)/ P * n (θ * n -θ) 2 + Q * n (μ * n -µ) 2
≤ c α are confidence ellipsoids for (θ, µ) with asymptotic coverage level 1α. Let us dwell on the fact that both confidence regions have the same asymptotic level, but the lengths of the axes of the first one (constructed with the help of the semirecursive estimators θ n and μn ) are smaller than the ones of the second one (constructed with the help of the nonrecursive estimators θ * n and μ * n ).

We now present simulations results. In order to see the relationship between the shape of the confidence ellipsoids and the one of the density, the density f we consider is the density of the N (0, σ 2 )-distribution, the parameter σ taking the values 0.3, 0.4, 0.5, 0.7, 0.75, 1, 1.5, 2, and 2.5. We use the sample size n = 100 and the coverage level 1α = 95% (and thus c α = 5.99). In each case, the number of simulations is N = 5000. The kernel we use is the standard Gaussian density; the bandwidths are

h n = n -1/7 (log n) , hn = n -1/5 (log n) , ȟn = n -1/9 .
Table 1 below gives, for each value of σ, the empirical values of θ n , θ * n , µ n , µ * n (with respect to the 5000 simulations), and:

b the empirical length of the θ-axis of the confidence ellipsoid E 5% ; b * the empirical length of the θ-axis of the confidence ellipsoid E * 5% ; a the empirical length of the µ-axis of the confidence ellipsoid E 5% ; a * the empirical length of the µ-axis of the confidence ellipsoid E * 5% ; p the empirical coverage level of the confidence ellipsoid E 5% ; p * the empirical coverage level of the confidence ellipsoid E * 5% . Confirming our theoritical results, we see that the empirical coverage levels of both confidence ellipsoids E * 5% and E 5% are similar, but that the empirical areas of the ellipsoids E 5% (constructed with the help of the semirecursive estimators) are always smaller than the ones of the the ellipsoids E * 5% (constructed with the help of the nonrecursive estimators).

Let us now discuss the interest of the estimation of the size of the mode and the one of the joint estimation of the location and size of the mode. Both estimations give informations on the shape of the probability density and, consequently, allow to measure the pertinence of the parameter location of the mode. Of course, the parameter θ is significant only in the case when the high of the peak is large enough; since we consider here the example of the N (0, σ 2 )-distribution, this corresponds to the case when σ is small enough. Estimating only the size of the mode gives a first idea of the shape of the density around the location of the mode (for instance, when the size is estimated around 0.16, it is clear that the density is very flat). Now, the shape of the confidence ellipsoids allows to get a more precise idea. As a matter of fact, for small values of σ, the length of the µ-axis is larger than the one of the θ-axis; as σ increases, the length of the µ-axis decreases, and the one of the θ-axis increases (for σ = 2.5, the length of the θ-axis is larger than 20 times the one of the µ-axis). Let us underline that these variations of the lengths of the axes are not due to bad estimations results; Table 2 below gives the values of the lengths b (respectively b * ) of the θ-axis, a (respectively a * ) of the µ-axis of the ellipsoids computed with the semirecursive estimators θ n and μn (respectively with the nonrecursive estimators θ * n and μ * n ) in the case when the true values of the parameters f (θ) and f ′′ (θ) are used (that is, by straightforwardly applying ( 7) and ( 8)). 

Strong convergence rate

To establish the joint strong convergence rate of θ n and μn , we need the following additionnal assumption.

(A6) i) h and h are differentiables, their derivatives vary regularly with exponent (-a -1) and (-ã -1) respectively. ii) There exists n 0 ∈ N such that

n ≥ m ≥ n 0 ⇒ max mh -(d+2) m nh -(d+2) n ; m h-d m n h-d n = min mh -(d+2) m ; m h-d m min nh -(d+2) n ; n h-d n .
Remark 8 Assumption (A6)ii) holds when a = ã, and in the case a = ã, it is satisfied when

L θ (n) = (L µ (n)) d d+2
for n large enough.

Moreover, condition (C2) is replaced by the following one.

(C'2) Either (C2) i) is fulfilled or ã = 1 d + 2q , lim n→∞ (L µ (n)) d+2q 2 log log n = ∞, and 1 2(d + 2q) < a < 1 d + 2q + 2 .
Before stating the almost sure convergence rate of (θ T n , μn ) T , let us remark that Proposition 2.3 in Mokkadem and Pelletier [START_REF] Mokkadem | The law of the iterated logarithm for the multivariate kernel mode estimator[END_REF] ensures that the matrix G (and thus the matrix Σ) is nonsingular.

Theorem 2 Let θ n and μn be defined by ( 2) and ( 4), respectively, and assume that (A1)-(A6) hold.

i) If (C1) is fulfilled, then, with probability one, the sequence

1 √ 2 log log n nh d+2 n (θ n -θ) n hd n (μ n -µ)
is relatively compact and its limit set is the ellipsoid 

E = ν ∈ R d+1 such that ν T A -1 Σ -1 A -1 ν ≤ 1 . ii) If a = (d + 2q + 2) -1 , ã = (d + 2q) -1 ,
1 √ 2 log log n nh d+2 n (θ n -θ) n hd n (μ n -µ)
is relatively compact and its limit set is the ellipsoid

E = ν ∈ R d+1 such that A -1 ν -D (c, c) B q (θ) T Σ -1 A -1 ν -D (c, c) B q (θ) ≤ 1 .
iii) If (C'2) is satisfied, then

1 h q n (θ n -θ) 1 hq n (μ n -µ)
a.s.

-→ AB q (θ). Laws of the iterated logarithm for Parzen's nonrecursive kernel mode estimator were established by Mokkadem and Pelletier [START_REF] Mokkadem | The law of the iterated logarithm for the multivariate kernel mode estimator[END_REF]. The technics of demonstration used in the framework of nonrecursive estimators are totally different from those employed to prove Theorem 2. This is due to the following fondamental difference between the nonrecursive estimator θ * n and the semirecursive estimator θ n : the study of the asymptotic behaviour of θ * n comes down to the one of a triangular sum of independent variables, whereas the study of the asymptotic behaviour of θ n reduces to the one of a sum of independent variables. Of course, this difference is not quite important for the study of the weak convergence rate. But, for the study of the strong convergence rate, it makes the case of the semirecursive estimation much easier than the case of the nonrecursive estimation. In particular, on the oppposite to the weak convergence rate, the joint strong convergence rate of the nonrecursive estimators θ * n and μ * n cannot be obtained by following the lines of the proof of Theorem 2, and remains an open question.

Proofs

Let us first note that an important consequence of (A3) which will be used throughout the proofs is that

if βa < 1, then lim n→∞ 1 nh β n n i=1 h β i = 1 1 -aβ . (9) 
Moreover, for all ε > 0 small enough,

1 n n i=1 h q i = O h q-ε n + 1 n . ( 10 
)
As a matter of fact: (i) if aq < 1, (10) follows easily from ( 9); (ii) if aq > 1, since i h q i is summable, (10) holds; (iii) if aq = 1, since a(qε) < 1, using ( 9) again, we have n -1 n i=1 h q i = O(h q-ε n ), and thus [START_REF] Konakov | On asymptotic normality of the sample mode of multivariate distributions[END_REF] follows. Of course ( 9) and ( 10) also hold when (h n ) and a are replaced by ( hn ) and ã, respectively.

Our proofs are now organized as follows. Section 3.1 is devoted to the proof of the strong consistency of θ n and μn . In Section 3.2, we give the convergence rate of the derivatives of f n . In Section 3.3, we show how the study of the joint weak and strong convergence rate of θ n and μn can be related to the one of ∇f n (θ) and fn (θ). In Section 3.4 (respectively in Section 3.5), we establish the joint weak convergence rate (respectively the joint strong convergence rate) of ∇f n (θ) and fn (θ). Finally, Section 3.6 is devoted to the proof of Theorems 1 and 2.

Proof of Proposition 1

Since θ n is the mode of f n and θ the mode of f , we have:

0 ≤ f (θ) -f (θ n ) = [f (θ) -f n (θ n )] + [f n (θ n ) -f (θ n )] ≤ [f (θ) -f n (θ)] + [f n (θ n ) -f (θ n )] ≤ f (θ) -f n (θ) + f n (θ n ) -f (θ n ) ≤ 2 f n -f ∞ . (11) 
The application of Theorem 5 in Mokkadem et al. [START_REF] Mokkadem | Large and moderate deviations principles for recursive kernel estimators of a multivariate density and its partial derivatives[END_REF] with |α| = 0 and v n = log n ensures that for any δ > 0, there exists c(δ) > 0 such that P

[(log n) f n -E(f n ) ∞ ≥ δ] ≤ exp(-c(δ) n i=1 h d i /(log n) 2
). In view of (9), since ad < 1, we can write

n 2 exp -c(δ) n i=1 h d i (log n) 2 = n 2 exp -c(δ) nh d n (log n) 2 n i=1 h d i nh d n = o(1). Borell-Cantelli's Lemma ensures that lim n→∞ f n -E(f n ) ∞ = 0 a.s. Since lim n→∞ E(f n )-f ∞ = 0, it follows from (11) that lim n→∞ f (θ n ) = f (θ) a.s. Since f is continuous, lim z →∞ f (z) =
0 and θ is the unique mode of f , we deduce that lim n→∞ θ n = θ a.s. Now, we have

|μ n -µ| ≤ | fn (θ n ) -f (θ n )| + |f (θ n ) -f (θ)| ≤ fn -f ∞ + 2 f n -f ∞ ,
where the last inequality follows from [START_REF] Koval | A new law of the iterated logarithm in R d with application to matrixnormalized sums of randoms vectors[END_REF]. As previously, one can show that lim n→∞ fn -f ∞ = 0 and thus lim n→∞ μn = µ a.s. For |α| ∈ {0, 1, 2}, we have

Convergence rate of the derivatives of the density

lim n→∞ n n i=1 b q i E ∂ [α] g n (x) -∂ [α] f (x) = (-1) q q! ∂ [α]   d j=1 β q j ∂ q f ∂x q j   (x)
where β q j is defined in [START_REF] Eddy | Optimum kernel estimates of the mode[END_REF]. Moreover, if we set

M q = sup x∈R d D q ∂ [α] f (x) , then lim n→∞ n n i=1 b q i sup x∈R d E ∂ [α] g n (x) -∂ [α] f (x) ≤ M q q! R d z q |K(z)| dz.
Lemma 2 Let U be a compact set of R d and assume that (A1)iii), (A3), (A4) and (A5)ii) hold. Let (g n ) and (b n ) be defined as in [START_REF] Menon | Non-parametric recursive estimates of a probability density function and its derivatives[END_REF]. Then, for all γ > 0 and |α| = 1, 2, we have

sup x∈U ∂ [α] g n (x) -E ∂ [α] g n (x) = O (log n) 1+γ n i=1 b d+2|α| i a.s.
Lemma 1 is proved in Mokkadem et al. [START_REF] Mokkadem | Large and moderate deviations principles for recursive kernel estimators of a multivariate density and its partial derivatives[END_REF]. We now prove Lemma 2. Set

v n = [ n i=1 b d+2|α| i ] 1/2 [(log n) 1+γ ] -1/2
. Applying Proposition 3 in Mokkadem et al. [START_REF] Mokkadem | Large and moderate deviations principles for recursive kernel estimators of a multivariate density and its partial derivatives[END_REF], it holds that for any δ > 0, there exists c(δ) > 0 such that

P sup x∈U v n ∂ [α] g n (x) -E ∂ [α] g n (x) ≥ δ ≤ exp -c(δ) n i=1 b d+2|α| i 2v 2 n . Since lim n→∞ n i=1 b d+2|α| i /(v 2 n log n) = ∞ we have, for n large enough, c(δ) n i=1 b d+2|α| i /(2v 2 
n ) ≥ 2 log n, and Lemma 2 follows from the application of Borel-Cantelli's Lemma.

Relationship between ((θ n

-θ) T , ( μn -µ)) T and ([∇f n (θ)] T , fn (θ) -f (θ)) T By definition of θ n , we have ∇f n (θ n ) = 0 so that ∇f n (θ n ) -∇f n (θ) = -∇f n (θ). ( 13 
)
For each i ∈ {1, . . . , d}, a Taylor expansion applied to the real valued application ∂f n /∂x i implies the existence of ε n (i) = (ε

(1) n (i), . . . , ε (d) n (i)) t such that ∂fn ∂x i (θ n ) -∂fn ∂x i (θ) = d j=1 ∂ 2 fn ∂x i ∂x j (ε n (i)) θ (j) n -θ (j) , ε (j) n (i) -θ (j) ≤ θ (j) n (i) -θ (j) ∀j ∈ {1, . . . , d} . Define the d × d matrix H n = (H (i,j) n ) 1≤i,j≤d by setting H (i,j) n = ∂ 2 fn ∂x i ∂x j (ε n (i))
; Equation ( 13) can be then rewritten as

H n (θ n -θ) = -∇f n (θ). Now, set R n = fn (θ n ) -fn (θ). ( 14 
)
We can then write:

D 2 f (θ) -1 H n (θ n -θ) μn -µ = -D 2 f (θ) -1 ∇f n (θ) fn (θ) -f (θ) + 0 R n . ( 15 
)
Let U be a compact set of R d containing θ. The combination of Lemmas 1 and 2 with |α| = 2, g n = f n and b n = h n ensures that for any γ > 0 and ε > 0 small enough,

sup x∈U ∂ [α] f n (x) -∂ [α] f (x) = O (log n) 1+γ n i=1 h d+4 i + n i=1 h q i n a.s. = O (log n) 1+γ nh d+4 n + h q-ε n + 1 n = o(1) a.s. ( 16 
)
Since D 2 f is continuous in a neighbourhood of θ and since lim n→∞ θ n = θ a.s., [START_REF] Müller | Adaptive nonparametric peak estimation Ann[END_REF] ensures that lim n→∞ H n = D 2 f (θ) a.s. It follows that the weak and a.s. behaviours of ((θ nθ) T , (μ nµ)) T are given by the one of the right-hand-sided term of (15).

Weak convergence rate of ([∇f

n (θ)] T , fn (θ) -f (θ))
T Let us at first assume that the following lemma holds.

Lemma 3 Let Assumptions (A1)i), (A1)iv), (A3), (A4)i) and (A4)ii) hold. Then

W n =   nh d+2 n ∇f n (θ) -E ∇f n (θ) n hd n fn (θ) -E fn (θ)   D -→ N 0, Σ .
The application of Lemma 1 gives

lim n→∞   n n i=1 h q i E ∇f n (θ) n n i=1 hq i E fn (θ) -f (θ)   =   (-1) q q! ∇ d j=1 β q j ∂ q f ∂x q j (θ) (-1) q q! d j=1 β q j ∂ q f ∂x q j (θ)   . ( 17 
)
1) If aq < 1 and ãq < 1, by using [START_REF] Hall | Effect of bias estimation on coverage accuracy of bootstrap confidence intervals for a probability density[END_REF], it is straightforward to see that

lim n→∞ 1 h q n E ∇f n (θ) 1 hq n E fn (θ) -f (θ) = B q (θ). ( 18 
)
2) Let us now consider the case aq ≥ 1 and ãq ≥ 1. We have

nh d+2 n E (∇f n (θ)) = nh d+2 n n i=1 h q i n n n i=1 h q i E (∇f n (θ)) ,
with, in view of [START_REF] Konakov | On asymptotic normality of the sample mode of multivariate distributions[END_REF], for all ε > 0 small enough,

nh d+2 n n i=1 h q i n = O n 1 2 (1-(a-ε)(d+2)) n -aq+aε = o(1).
Applying [START_REF] Nadaraya | On non-parametric estimates of density functions and regression curves[END_REF], it follows that lim n→∞ nh d+2 n E(∇f n (θ)) = 0. Proceeding in the same way for E( fn (θ)), we obtain

lim n→∞   nh d+2 n E ∇f n (θ) n hd n E fn (θ) -f (θ)   = 0. ( 19 
)
The combination of either [START_REF] Parzen | On estimation of a probability density function and mode[END_REF] or [START_REF] Petrov | Limit theorems in probability theory[END_REF] and of Lemma 3 gives the weak convergence rate of ([∇f n (θ)] T , fn (θ)f (θ)) T :

• If (C1) holds, then

nh d+2 n ∇f n (θ) n hd n ( fn (θ) -f (θ)) D -→ N (0, Σ) . (20) 
• If a = (d+2q +2) -1 , ã = (d+2q) -1 , and if there exist c, c ≥ 0 such that lim n→∞ nh d+2q+2 n = c and lim n→∞ n hd+2q n = c, then

nh d+2 n ∇f n (θ) n hd n ( fn (θ) -f (θ)) D -→ N (D(c, c)B q (θ), Σ) . (21) 
• If (C2) holds, since aq < 1 and ãq < 1, (9) implies that

1 h q n ∇f n (θ) 1 hq n ( fn (θ) -f (θ)) P -→ B q (θ). ( 22 
)
Proof of Lemma 3 To prove Lemma 3, we first prove that

lim n→∞ E W n W T n = Σ, (23) 
and then check that (W n ) satisfies Lyapounov's condition. Set

Y k,n = 1 nh -d-2 n h -d-1 k ∇K θ -X k h k -E ∇K θ -X k h k Z k,n = 1 n h-d n h-d k K θ -X k hk -E K θ -X k hk ,
and note that

E W n W T n = n k=1   E Y k,n Y T k,n E Y k,n Z k,n E Y T k,n Z k,n E Z 2 k,n   .
Now, for any s, t ∈ {1, . . . , d}, we have

E ∂K ∂x s θ -X k h k ∂K ∂x t θ -X k h k = R d ∂K ∂x s θ -y h k ∂K ∂x t θ -y h k f (y)dy = h d k f (θ)G s,t + o(h d k ), and since, E ∂K ∂xs θ-X k h k = O(h d k ), we deduce that E ∇K θ-X k h k -E ∇K θ-X k h k ∇K θ-X k h k -E ∇K θ-X k h k T = f (θ)Gh d k 1 + o(1) (24) 
which implies that lim n→∞

n k=1 E(Y k,n Y T k,n ) = f (θ)[1 + a(d + 2)] -1 G.
In the same way, we have

E K θ -X k hk -E K θ -X k hk 2 = hd k f (θ) R d K 2 (z)dz 1 + o(1) (25) 
and thus lim n→∞

n k=1 E(Z 2 k,n ) = f (θ)[1 + ãd] -1 R d K 2 (z)dz. Moreover, set h * n = min(h n , hn ); we have E ∇K θ -X k h k K θ -X k hk = h * d k R d ∇K h * k h k z K h * k hk z f (θ -h * k z)dz. Noting that f (θ -h * k z) = f (θ) + h * k R k (θ, z) with |R k (θ, z)| ≤ ∇f ∞ z , we get E ∇K θ -X k h k K θ -X k hk = h * d k f (θ) R d ∇K h * k h k z K h * k hk z dz + h * k R d ∇K h * k h k z K h * k hk z R k (θ, z)dz .
Since the function z → ∇K(z) K(z is odd (in each coordinate), the first right-handed integral is zero, and, since h * k equals either h k or hk , we get

E ∇K θ -X k h k K θ -X k hk ≤ h * (d+1) k ∇f ∞ K ∞ R d z ∇K(z) dz + ∇K ∞ R d z |K(z)|dz = O h * (d+1) k
.

We then deduce that

E ∇K θ -X k h k -E ∇K θ -X k h k K θ -X k hk -E K θ -X k hk = O min(h k , hk ) d+1 + O h d k hd k = O h d+1 2 k h d+1 2 k , (26) 
and thus, in view of [START_REF] Hall | Effect of bias estimation on coverage accuracy of bootstrap confidence intervals for a probability density[END_REF],

n k=1 E Y k,n Z k,n = O   1 (nh -d-2 n )(n h-d n ) n k=1 h -d+1 2 k h 1-d 2 k   = o(1),
which concludes the proof of ( 23). Now we check that (W n ) satisfies the Lyapounov's condition. Set p > 2. Since K and ∇K are bounded and integrable, we have R d ∇K(z) p dz < ∞ and

R d |K(z)| p dz < ∞. It follows that n k=1 E ( Y k,n p ) = O 1 (nh -d-2 n ) p 2 n k=1 h (-d-1)p k R d ∇K θ -y h k p f (y)dy = O 1 (nh -d-2 n ) p 2 n k=1 h (-d-1)p k h d k = o(1), n k=1 E Z k,n p = O 1 (n h-d n ) p 2 n k=1 h-dp k R d K θ -y hk p f (y)dy = O 1 (n h-d n ) p 2 n k=1 h-dp k hd k = o(1),
which concludes the proof of Lemma 3.

3.5 A.s. convergence rate of ([∇f n (θ)] T , fn (θ) -f (θ))

T Let us at first assume that the following lemma holds.

Lemma 4 Let Assumptions (A1)i), (A1)iv), (A3), (A4)i), (A4)ii) and (A6) hold. With probability one, the sequence

1 √ 2 log log n   nh d+2 n ∇f n (θ) -E ∇f n (θ) n hd n fn (θ) -E fn (θ)   is relatively compact and its limit set is E = ν ∈ R d+1 such that ν T Σ -1 ν ≤ 1 .
The combination of either ( 18) or ( 19) and of Lemma 4 gives the almost sure convergence rate of ([∇f n (θ)] T , fn (θ)f (θ)) T :

• If (C1) holds, then, with probability one, the sequence

1 √ 2 log log n   nh d+2 n ∇f n (θ) n hd n fn (θ) -f (θ)   (27) 
is relatively compact and its limit set is 

E = ν ∈ R d+1 such that ν T Σ -1 ν ≤ 1 . • If a = (d + 2q + 2) -1 , ã = (d + 2q) -1 ,
is relatively compact and its limit set is

E = ν ∈ R d+1 such that (ν -D(c, c)B q (θ)) T Σ -1 (ν -D(c, c)B q (θ)) ≤ 1 .
• If (C'2) holds, then

1 h q n ∇f n (θ) 1 hq n [ fn (θ) -f (θ)] a.s. -→ B q (θ). ( 29 
)
We now prove Lemma 4. Set

Γ = f (θ) G 0 0 R d K 2 (z)dz , ∆ n =   1 √ nh -d-2 n I d 0 0 1 √ n h-d n   , Q n = h -d-2 n I d 0 0 h-d n ,
let (ε n ) be a sequence of R d+1 -valued, independent and N (0, Γ)-distributed random vectors, and set S n = n k=1 Q k ε k . In order to prove Lemma 4, we first establish the following Lemma 5 in Section 3.5.1, and then show in Section 3.5.2 how Lemma 4 can be deduced from Lemma 5.

Lemma 5 Let Assumptions (A1)i), (A1)iv), (A3), (A4)i), (A4)ii) and (A6)ii) hold. With probability one, the sequence (T n ) ≡ (Σ -1/2 ∆ n S n / √ 2 log log n) is relatively compact and its limit set is the unit ball B d+1 (0, 1) = ν ∈ R d+1 such that ν 2 ≤ 1 .

Proof of Lemma 5

Set B n = E(S n S T n ), let x 2 (respectively |||A||| 2 ) denote the euclidean norm (respectively the spectral norm) of the vector x (respectively of the matrix A). The application of Theorem 2 in Koval [START_REF] Koval | A new law of the iterated logarithm in R d with application to matrixnormalized sums of randoms vectors[END_REF] ensures that lim sup n→∞ 

Σ -1/2 ∆ n S n 2 2 Σ -1/2 ∆ n B n ∆ n Σ -1/
Thus, the sequence (T n ) is relatively compact and its limit set U is included in B d+1 (0, 1). Now, set S d+1 = w ∈ R d+1 , w 2 = 1 , and let us at first assume that ∀w ∈ S d+1 , lim sup

n→∞ w T T n ≥ 1 a.s. ( 31 
)
The combination of ( 30) and ( 31) ensures that, with probability one, ∀ε > 0,

∀n 0 ≥ 1, ∃n ≥ n 0 such that w T T n > 1 -ε and T n 2 2 ≤ 1 + ε. Noting that T n -w 2 2 = T n 2 2 + w 2 2 -2w T T n , it follows that, with probability one, ∀ε > 0, ∀n 0 ≥ 1, ∃n ≥ n 0 such that T n -w 2 2 ≤ 1+ε+1-2(1-ε) = 3ε.
Thus, with probability one, S d+1 ⊂ U. To deduce that B d+1 (0, 1) ⊂ U, we introduce (e k ), a sequence of real-valued, independent, and N (0, 1)-distributed random variables such that (e k ) is independent of (ε k ). Moreover, we set

Qn = h -d-2 n I d+1 0 0 h-d n , Sn = n k=1 Qk e k ε k ∆n =   1 √ nh -d-2 n I d+1 0 0 1 √ n h-d n 
 , and Σ = 1 0 0 Σ .

We then note that the previous result applied to ( Tn ) ≡ ( Σ-1/2 ∆n Sn / √ 2 log log n) ensures that, with probability one, S d+2 = {w ∈ R d+2 , w 2 = 1} is included in the limit set of Tn . Now let π : R d+2 -→ R d+1 be the projection map defined by π((x 1 , . . . , x d+2 ) T ) = (x 2 , . . . , x d+2 ) T . We clearly have π(S d+2 ) = B d+1 (0, 1) and π( Tn ) = T n , and thus deduce that, with probability one, B d+1 (0, 1) is included in the limit set of T n . To conclude the proof of Lemma 5, it remains to prove [START_REF] Yamato | Sequential estimation of a continuous probability density function and mode[END_REF]. In fact, we shall prove that,

∀w = 0, lim sup n→∞ w T ∆ n S n √ 2 log log n ≥ √ w T Σw a.s. ( 32 
) Set v n = min{[nh -(d+2) n ] 1/2 ; [n h-d n ] 1/2 }, A n = v n w T ∆ n and V n = E A n S n S T n A T n ;
we follow a method used by Petrov [START_REF] Petrov | Limit theorems in probability theory[END_REF] in the proof of his Theorems 7.1 and 7.2. Since lim n→∞ V n = ∞, ∀τ > 0, there exists a non-decreasing sequence of integers

n k such that n k → ∞ as k → ∞ and V n k -1 ≤ (1 + τ ) k ≤ V n k , (k = 1, 2, . . .). Since lim n→∞ V n-1 /V n = 1, we obtain V n k ∼ (1 + τ ) k . Moreover, we have V n k -V n k-1 = V n k 1 - V n k-1 V n k ∼ V n k τ τ + 1 . (33) 
Set

χ(n) = 2V n log log V n , ψ(n k ) = 2(V n k -V n k-1 ) log log(V n k -V n k-1 ).
It follows from [START_REF] Ziegler | Adaptive kernel estimation of the mode in a nonparametric random design regression model[END_REF] that ψ(n k ) ∼ τ 1/2 χ(n k-1 ). Then for any γ ∈]0, 1[ and k sufficiently large, we have

P A n k S n k -A n k S n k-1 ≥ (1 -γ)ψ(n k ) ≥ P A n k S n k ≥ (1 - γ 2 )ψ(n k ) -P A n k S n k-1 ≥ γψ(n k ) 2 ≥ P A n k S n k ≥ (1 - γ 2 )χ(n k ) -P A n k S n k-1 ≥ γ √ τ 3 χ(n k-1 ) . ( 34 
) Since A n k S n k is N 0, V n k -distributed, we have P A n k S n k ≥ (1 - γ 2 )χ(n k ) = 1 √ 2π ∞ (1-γ 2 ) √ 2Vn k log log Vn k exp - t 2 2 dt ≥ [log V n k ] -(1+µ)(1-γ 2 ) 2 (35) 
for every µ and sufficiently large k.

Set Ṽn k = v 2 n k w T ∆ n k B n k-1 ∆ n k w; since A n k S n k-1 is N 0, Ṽn k - distributed, we have P A n k S n k-1 ≥ γ √ τ 3 χ(n k-1 ) = 1 √ 2π ∞ γ √ τ 3 2 Vn k-1 Ṽn k log log Vn k-1 exp - t 2 2 dt.
Let ρ min (A) (respectively ρ max (A)) denote the smallest (respectively the largest) eigenvalue of a matrix A, set Σ n = ∆ n B n ∆ n , and note that

V n k-1 Ṽn k ≥ v 2 n k-1 ρ min (Σ n k-1 ) v 2 n k ρ max (∆ n k ∆ -1 n k-1 Σ n k-1 ∆ -1 n k-1 ∆ n k ) (36) 
with

ρ max (∆ n k ∆ -1 n k-1 Σ n k-1 ∆ -1 n k-1 ∆ n k ) ≤ Σ n k-1 ∆ -1 n k-1 ∆ n k ∆ n k ∆ -1 n k-1 2 ≤ Σ n k-1 2 ∆ -1 n k-1 ∆ n k ∆ n k ∆ -1 n k-1 2 . ( 37 
)
It follows from ( 9) and Assumption A6)ii) that

∆ -1 n k-1 ∆ n k ∆ n k ∆ -1 n k-1 2 = max n k-1 h -(d+2) n k-1 n k h -(d+2) n k ; n k-1 h-d n k-1 n k h-d n k ∼ v 2 n k-1 v 2 n k . (38) 
¿From (36), (37) and (38), we deduce that, for sufficiently large k,

V n k-1 Ṽn k ≥ ρ min (Σ n k-1 ) 2ρ max (Σ n k-1 ) ≥ ρ min (Σ) 4ρ max (Σ)
and therefore, for sufficiently large k,

P A n k S n k-1 ≥ γ √ τ 3 χ(n k-1 ) ≤ 1 √ 2π ∞ γ √ τ 6 ρ min (Σ) ρmax(Σ) √ 2Vn k-1 log log Vn k-1 exp - t 2 2 dt ≤ log V n k-1 -γ 2 τ ρ min (Σ) 36ρmax (Σ) . (39) 
The inequalities (34), ( 35) and (39) imply that

P A n k S n k -A n k S n k-1 ≥ (1 -γ)ψ(n k ) ≥ [log V n k ] -(1+µ)(1-γ 2 ) 2 -log V n k-1 -γ 2 τ ρ min (Σ) 36ρmax(Σ) .
Thus, for sufficiently large k and τ , there exists c > 0 such that c does not depend on k and

P A n k S n k -A n k S n k-1 ≥ (1 -γ)ψ(n k ) ≥ c k -(1+µ)(1-γ 2 ) 2 -k -1 .
Choosing µ such that (1 + µ) (1γ/2) 2 < 1, we get

P A n k S n k -A n k S n k-1 ≥ (1 -γ)ψ(n k ) ≥ c 2 k -(1+µ)(1-γ 2 ) 2 and thus k P(A n k S n k -A n k S n k-1 ≥ (1 -γ)ψ(n k )) = ∞.
Applying Borel-Cantelli's Lemma, we obtain

P A n k S n k -A n k S n k-1 ≥ (1 -γ)ψ(n k ) i.o. = 1. (40) Now, lim sup k→∞ A n k S n k-1 χ(n k-1 ) ≤ lim sup k→∞ v n k w 2 ∆ n k ∆ -1 n k-1 2 ∆ n k-1 S n k-1 2 2v 2 n k-1 (w T ∆ n k-1 B n k-1 ∆ n k-1 w) log log V n k-1 ≤ lim sup k→∞ v n k w 2 ∆ n k ∆ -1 n k-1 2 ∆ n k-1 S n k-1 2 2v 2 n k-1 (w T Σw) log log V n k-1
.

Applying Theorem 2 in Koval [START_REF] Koval | A new law of the iterated logarithm in R d with application to matrixnormalized sums of randoms vectors[END_REF] again, and using the fact that lim n→∞ ∆ n B n ∆ n = Σ, we obtain lim sup n→∞ ∆ n S n 2 / 2 |||Σ||| 2 log log n ≤ 1 a.s. Therefore,

lim sup k→∞ A n k S n k-1 χ(n k-1 ) ≤ lim sup k→∞ v n k w 2 ∆ n k ∆ -1 n k-1 2 |||Σ||| 2 v n k-1 √ w T Σw a.s. Since |||∆ n k ∆ -1 n k-1 ||| 2 = [ρ max (∆ -1 n k-1 ∆ n k ∆ n k ∆ -1 n k-1 )] 1/2 ≤ 2v n k-1 /v n k , for sufficiently large k, we obtain lim sup k→∞ A n k S n k-1 /χ(n k-1 ) ≤ 2 w 2 |||Σ| || 2 / √ w T Σw a.s. Set ε ∈]0, 1[ and κ = 2 w 2 |||Σ||| 2 / √ w T Σw. Noting that (1 -γ)ψ(n k ) -2κχ(n k-1 ) ∼ (1 -γ) √ τ (1 + τ ) -1/2 -2κ(1 + τ ) -1/2 χ(n k ),
and noting that γ can be chosen sufficiently small and τ sufficiently large so that (1γ)

√ τ (1 + τ ) -1/2 -2κ(1 + τ ) -1/2 > 1 -ε, we obtain P (A n k S n k > (1 -ε)χ(n k ) i.o.) ≥ P (A n k S n k > (1 -γ)ψ(n k ) -2κχ(n k-1 ) i.o.) .
Taking (40) into account, we then obtain

P (A n k S n k > (1 -ε)χ(n k ) i.o.) = 1.
We thus get lim sup n→∞ A n S n /χ(n) ≥ 1 a.s., which proves [START_REF] Ziegler | On the asymptotic normality of kernel regression estimators of the mode in the random design model[END_REF], and concludes the proof of Lemma 5.

Proof of Lemma 4

Now, set

Ṽk =   h -d/2 k ∇K θ-X k h k -E ∇K θ-X k h k h-d/2 k K θ-X k hk -E K θ-X k hk   and Γ k = E( Ṽk Ṽ T k ).
In view of ( 24), ( 25) and ( 26), we have lim k→∞ Γ k = Γ. It follows that ∃k 0 ≥ 1 such that ∀k ≥ k 0 , Γ k is inversible; without loss of generality, we assume k 0 = 1, and set Ũk = Γ -1/2 k Ṽk . Set p ∈]2, 4[ and let L be a slowly varying function; we have:

E Ũk p (k log log k) p/2 = O   h -dp/2 k E ∇K θ-X k h k p + h-dp/2 k E K θ-X k h k p (k log log k) p/2   = O h d-dp/2 k + hd-dp/2 k (k log log k) p/2 = O L(k) k -[1+( p 2 -1)(1-ad)] + k -[1+( p 2 -1)(1-ãd)] so that k (k log log k) -p/2 E( Ũk p ) < ∞. By application of Theorem 2 of Einmahl [7], we de- duce that n k=1 Ũk -n k=1 η k = o( √ n log log n) a.s.
, where η k are independent, and N (0, I d+1 )distributed random vectors. It follows that

n k=1 Γ 1/2 Γ -1/2 k Ṽk - n k=1 ε k = o( n log log n) a.s. (41) 
Now, 

∆ n n k=1 Q k Γ 1/2 Γ -1/2 k Ṽk - n k=1 Q k ε k = ∆ n n k=1 Q k Γ 1/2 Γ -1/2 k Ṽk -ε k = ∆ n n k=1 Q k   k j=1 Γ 1/2 Γ -1/2 j Ṽj -ε j - k-1 j=1 Γ 1/2 Γ -1/2 j Ṽj -ε j   (with 0 j=1 = 0) = ∆ n n-1 k=1 (Q k -Q k+1 )   k j=1 Γ 1/2 Γ -1/2 j Ṽj -ε j   + ∆ n Q n n j=1 Γ 1/2 Γ -1/2 j Ṽj -ε j = ∆ n n-1 k=1 (Q k -Q k+1 ) o k log log k + ∆ n Q n o n log

3.6

Proof of Theorems 1 and 2

In view of (15) (and the comment below), Theorem 1 (respectively Theorem 2) is a straightforward consequence of the combination of ( 20), ( 21) and [START_REF] Roussas | Exact rates of almost sure convergence of a recursive kernel estimate of a probability density function: Application to regression and hazard rate estimate[END_REF] (respectively ( 27), ( 28) and ( 29)) together with the following lemma, which establishes that the residual term R n (defined as in ( 14)) is negligeable.

Lemma 6 Let Assumptions (A1)-(A5) hold. If (C2) holds, then lim n→∞ h-q n R n = 0 a.s. Otherwise, lim n→∞ n hd n R n = 0 a.s.

Proof of Lemma 6

We first note that a Taylor's expansion implies the existence of ζ n such that ζ nθ n ≤ θ nθ and

R n = (θ n -θ) T ∇ fn (ζ n ) = (θ n -θ) T ∇ fn (ζ n ) -∇f (ζ n ) + ∇f (ζ n ) -∇f (θ) .
Let V be a compact set that contains θ; for n large enough, we get On the one hand, let us recall that the a.s. convergence rate of (θ nθ) is given by the one of D 2 f (θ) -1 ∇f n (θ) (see [START_REF] Mokkadem | Large and moderate deviations principles for recursive kernel estimators of a multivariate density and its partial derivatives[END_REF] and the comment below). One can apply ( 27), [START_REF] Wegman | Remarks on some recursive estimators of a probability density[END_REF], and ( 29) and obtain the exact a.s. convergence rate of θ nθ. However, to avoid assuming (A6), we apply here Lemmas 1 and 2 (with |α| = 1 and (g n , b n ) = ( fn , hn )), and get the following upper bound of the a.s. convergence rate of θ nθ: for any γ > 0 and ε > 0 small enough,

θ n -θ = O (log n) 1+γ nh d+2 n + n i=1 h q i n = O (log n) 1+γ nh d+2 n + h q-ε n a.s. (42) 
On the other hand, we have Let L denotes a generic slowly varying function that may vary from line to line.

• Let us first assume that (C1) holds. The application of (42) and (43) ensures that for any ε > 0 small enough,

n hd n θ n -θ sup x∈V ∇ fn (x) -∇f (x) = O L(n) n -1 2
(1-a(d+2)-2ã) + n ã-a(q-ε) +o(1) a.s.

Observe that by (C1)i), it is straightforward to see that 2ã + a(d + 2) < 1 and ã < a(qε)

for any ε > 0 small enough, so that n hd n θ nθ sup x∈V ∇ fn (x) -∇f (x) = o(1) a.s. Moreover, the application of (42) ensures that n hd n θ nθ 2 = O L(n) n -1 2 (1-2a(d+2)+ãd) + n 1 2 (1-ãd-4a(q-ε))

a.s. Now, by (C1)ii) we have 2a(d + 2)ãd < 1 and ãd + 4a(qε) > 1 for any ε > 0 small enough, and thus it follows that n hd n θ nθ 2 = o(1) a.s., which ensures the first part of Lemma 6.

  x)dx, and, for any c, c ≥ 0, D(c, c) = √ cI d 0 0 √ c where I d is the d × d identity matrix.

Remark 9 (

 9 C'1) implies that lim n→∞ nh d+2q+2 n /log log n = 0 and lim n→∞ n hd+2q n /log log n = 0, whereas (C'2) implies that lim n→∞ nh d+2q+2 n /log log n = ∞ and lim n→∞ n hd+2q n /log log n = ∞.

ForLemma 1

 1 any d-uplet [α] = α 1 , . . . , α d ∈ N d , we set |α| = α 1 + • • • + α d and, for any function g, let ∂ [α] g(x) = ∂ |α| g/(∂x α 1 1 . . . ∂x α d d )(x) denote the [α]-th partial derivative of g. Assume (A3)-(A5) hold. Let (g n ) and (b n ) be defined as follows: g n = f n and b n = h n or g n = fn and b n = hn . (12)

  and if there exist c, c ≥ 0 such that lim n→∞ nh d+2q+2 n / (2 log log n) = c and lim n→∞ n hd+2q n /(2 log log n) = c, then with probability one, ∇f n (θ) n hd n fn (θ)f (θ)  

  Set φ(s) = [h(s)] -d+22 and φ(s) = h(s) -d 2 , and let u k ∈ [k, k + 1]; since φ ′ and φ′ vary regularly with exponent (a(d + 2)/2 -1) and (ãd/2 -1) respectively, we have k-Q k+1 ) o √ k log log k = o √ log log n . Since ∆ n Q n o √ n log log n = o √ log log n , we deduce that ∆ n = o(1) a.s.The application of Lemma 5 then ensures that, with probability one, the sequence (∆n n k=1 Q k Γ 1/2 Γ -1/2 k Ṽk / √ 2 log log n) is relatively compact and its limit set is E = {ν ∈ R d+1 such that ν T Σ -1 ν ≤ k I d+1 -Γ 1/2 Γ -1/2 k Ṽk √ 2 log log n with lim k→∞ (I d+1 -Γ 1/2 Γ -1/2 k ) = 0, Lemma 4 follows.

R

  n = O θ nθ sup x∈V ∇ fn (x) -∇f (x) + ζ nθ = O θ nθ sup x∈V ∇ fn (x) -∇f (x) + θ nθ 2 .

  sup x∈V ∇ fn (x) -∇f (x) ≤ sup x∈V ∇ fn (x) -E ∇ fn (x) + sup x∈V E ∇ fn (x) -∇f (x) .The application of Lemmas 1 and 2 with |α| = 1, (g n , b n ) = ( fn , hn ) ensures that, for any γ > 0 and ε > 0 small enough,sup x∈V ∇ fn (x) -∇f (x) = O (log n) 1+γ n hd+2

  Remark 3 Let us recall that a positive function (not necessarily monotone) L defined on ]0, ∞[ is slowly varying if lim t→∞ L(tx)/L(t) = 1, and that a function G varies regularly with exponent ρ, ρ ∈ R, if and only if it is of the form G(x) = x ρ L(x) with L slowly varying (see, for example, Feller[START_REF] Feller | An introduction to probability theory and its applications[END_REF] page 275). Typical examples of regularly varying functions are x ρ , x ρ log x, x ρ log log x, x ρ log x/ log log x, and so on.

	Proposition 1 Let θ n and μn be defined by (2) and (4), respectively. Under (A1)-(A3),
	lim n→∞	θ n = θ a.s. and lim

n→∞ μn = µ a.s.

Table 1

 1 

	σ	0.3	0.4	0.5	0.7	0.75	1	1.5	2	2.5
	θ n -0.002 0.004 0.001 0.003 θ * n 0.003 0.005 0.001 0.005 -0.008 0.016 0.002 0.014 -0.005 -0.009 0.003 -0.020 -0.046 0.014 b 1.154 1.346 1.805 2.898 3.160 5.218 10.094 17.866 17.405
	b *	1.166	1.458 1.968 3.300	3.582	5.925 12.943 21.946 23.715
	µ n µ * n	1.335 1.312	0.989 0.782 0.564 0.979 0.783 0.562	0.522 0.512	0.401 0.388	0.263 0.269	0.196 0.193	0.155 0.163
	a	0.444	0.399 0.365 0.322	0.315	0.283	0.247	0.224	0.210
	a *	0.514	0.459 0.420 0.369	0.363	0.327	0.287	0.261	0.246
	p	98.7% 97.8% 98.2% 98.4% 97.7% 97.8% 97.5%	97.2%	98.4%
	p *	98.6% 98.1% 98.4% 98.2% 96.8% 96.6% 96.9%	97.7%	98.2%

Table 2

 2 

	σ	0.3	0.4	0.5	0.7	0.75	1	1.5	2	2.5
	b	0.159 0.327 0.571 1.357 1.572 3.227 8.895 18.260 31.899
	b * 0.190 0.390 0.682 1.622 1.879 3.858 10.631 21.825 38.127
	µ 1.333 0.998 0.798 0.570 0.532 0.399 0.266	0.199	0.159
	a	0.465 0.403 0.360 0.303 0.294 0.255 0.208	0.180	0.161
	a * 0.509 0.441 0.395 0.332 0.322 0.279 0.228	0.197	0.176

  2 2 log log |||B n ||| 2 ≤ 1 a.s. Since lim n→∞ ∆ n B n ∆ n = Σ and log log |||B n ||| 2 ∼ log log n, we deduce that

	lim sup n→∞	T n 2 ≤ 1 a.s.
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• We now assume that (C2) holds. Since ãq ≤ q/(d + 2q) < 1, using ( 9), ( 42) and (43), we have

On the one hand, for any ε > 0 small enough, it is straightforward to see that condition (C2) implies the following inequalities:

ãq + a(d + 2) < 1 and ãq < 2a(qε).

Therefore, it follows from ( 44) and ( 45) that

On the other hand, observe again that by ( 42) and (46), we have

+ n ãq-2a(q-ε) = o(1) a.s., which concludes the proof of Lemma 6.