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Abstract

We introduce a machine free mathematical framework to get a natural formaliza-
tion of some general notions of infinite computation in the context of Kolmogorov
complexity. Namely, the classes MaxX→D

PR and MaxX→D
Rec of functions X → D which

are pointwise maximum of partial or total computable sequences of functions where
D = (D,<) is some computable partially ordered set. The enumeration theorem
and the invariance theorem always hold for MaxX→D

PR , leading to a variant KD
max

of Kolmogorov complexity. We characterize the orders D such that the enumera-
tion theorem (resp. the invariance theorem) also holds for MaxX→D

Rec . It turns out
that MaxX→D

Rec may satisfy the invariance theorem but not the enumeration theo-
rem. Also, when MaxX→D

Rec satisfies the invariance theorem then the Kolmogorov
complexities associated to MaxX→D

Rec and MaxX→D
PR are equal (up to a constant).

Letting KD
min = KDrev

max , where Drev is the reverse order, we prove that either
KD

min =ct KD
max =ct KD (=ct is equality up to a constant) or KD

min,K
D
max are ≤ct

incomparable and <ct KD and >ct K∅′,D. We characterize the orders leading to
each case. We also show that KD

min,K
D
max cannot be both much smaller than KD

at any point.
These results are proved in a more general setting with two orders on D, one

extending the other.
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1 Introduction

1.1 Non halting programs for which the current output is eventually the
wanted object, but one does not know when...

In this paper, we consider a particular kind of description methods in order to
define variants of Kolmogorov complexity. Let’s start with two paradigmatic
examples. Given n ∈ N and u ∈ Σ∗ (where Σ be some finite alphabet), how
do we get
- the value BB(n) of the busy beaver function BB : N → N,
- the value KΣ∗(u) of Kolmogorov complexity KΣ∗ : Σ∗ → N ?
The definitions of BB(n) and KΣ∗(u) lead to the following mechanisms.
- run all Turing machines with ≤ n states and all programs with length ≤ n,
- for each t, consider those machines and programs halting in ≤ t steps,
- look at the maximum number of cells visited by these machines,
- look at the minimum length of these programs.
In this way, one gets two computable functions bb : N × N → N and k :
Σ∗ × N → N, with one more integer argument (for time steps) such that, for
every fixed n ∈ N and u ∈ Σ∗, the maps t 7→ bb(n, t) and t 7→ k(u, t) are
respectively monotone increasing and decreasing and are both eventually con-
stant with respective values BB(n) and KΣ∗(u). Since neither BB nor KΣ∗

is computable, there is no computable functions of n or u which bound the
moment these maps become constant.

These examples lead us to introduce the following notion of description meth-
ods for objects of a partially ordered set D with a computable structure (cf.
Definition 2.3, 2.4).
A computable approximation from below (resp. from above) of objects of D is
a program for a computable function f : X×N → D (where X is some reason-
able set such as N or 2∗, cf. §1.5 Notations) such that, for every fixed x ∈ X,
the map t 7→ f(x, t) is monotone increasing (resp. decreasing) and eventually
constant. Nothing is assumed about the moment t 7→ f(x, t) becomes constant:
there may be no computable function of x majorizing it.
The associated decompressor — or description method — is the function F :
X → D such that F (x) is the limit value of f(x, t) when t→ +∞, i.e. the max-
imum (resp. minimum) value of the finite set {f(x, t) : t ∈ N}. We shall call
such functions F computably approximable from below (resp. from above).

Consider Σ∗ with the prefix ordering. The context of non halting (hence in-
finite) computations, cf. Chaitin, 1975 [4], and Solovay, 1977 [19], leads to
functions F : 2∗ → Σ∗ which are computably approximable from below. In
fact, if the output alphabet is Σ, the current output f(x, t) at time t is a
function f : 2∗ × N → Σ∗ which is a computable approximation from below
for words in Σ∗ such that F (x) is the max of the f(x, t)’s .
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Observe that, in case the ordered set D is noetherian (resp. well-founded), the
notion of approximation from below (resp. from above) of objects of D reduces
to that of computable function f : X × N → D which is monotone increas-
ing (resp. decreasing) with respect to its second argument. This is indeed the
case with the approximation from above of the values of KΣ∗ since (N, <) is
well-founded. Cf. also §2.4.6.

Other examples are developped in §2.4. In particular, there is one involving
quotients of regular languages by a fixed computably enumerable language.

1.2 Functions approximable from below (resp. from above) as decompressors
for variants of Kolmogorov complexity

The above mentioned context of non halting computations has recently led to
interesting variants K∞

Σ∗ : Σ∗ → N, K∞
N

: N → N of Kolmogorov complexity
introduced (in their prefix-complexity version H∞) in Becher & Chaitin [1].
This last Kolmogorov complexity K∞

N
has also proved to be equal to the

Kolmogorov complexity Kcard introduced in Ferbus & Grigorieff, 2002 [9,8]
where we compare some natural set theoretical semantics of integers, namely
Church iterators of functions, cardinals of computably enumerable sets, in-
dexes of computably enumerable equivalence relations. Comparison of these
semantics is done via associated Kolmogorov complexities which somehow
constitute measures of their “abstraction degree” and are defined in terms of
infinite or/and oracular computations.

The cornerstone of Kolmogorov complexity, namely the invariance theorem,
really deals with partial computable functions, not Turing machines. In fact,
Turing machines do not constitute such an abstract structured mathematical
framework as partial computable functions do. Going to this last framework
opens new natural considerations which would not be simply viewed with Tur-
ing machines.
In this paper we abstract from non halting computations on Turing machines
and develop a general machine-free mathematical framework using a partially
ordered set D. Namely, letting X be a basic space (cf. §1.5 Notations), we
introduce the classes of functions F : X → D

MaxX→D
PR , MinX→D

PR

which are partial computably approximable from below (resp. from above).
Which means that the f : 2∗ × N → D such that F (x) is the max or min of
the f(x, t)’s is partial computable rather than computable.
Of course, the Min classes are the Max classes associated to the reverse order.
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We also introduce the subclasses of functions

MaxX→D
Rec , MinX→D

Rec

which are computably approximable from below (resp. from above). It happens
that the MaxX→D

Rec class is closely related with the class based on non halting
Turing machines computations with outputs in D (modulo adequate coding
of D).

As for the above examples, the busy beaver function BB : N → N is in
MaxDRecand Kolmogorov complexity KΣ∗ : Σ∗ → N and its prefix-free variant
HΣ∗ : Σ∗ → N are in MinD

Rec with D = (N, <).

These classes lead to new variants of Kolmogorov complexity which would just
be ignored when considering Turing machines.

1.3 Main theorems

The development of Kolmogorov complexities KD
max, K

D
min associated to the

classes Max2
∗→D

PR and Min2
∗→D

PR is straightforward (cf. §3). The main results
of the paper deal with the comparison of KD

max, K
D
min with the classical Kol-

mogorov complexity KD and its relativized version K∅′,D to oracle ∅′. In §4,
we prove three theorems which give the main comparison relations (relative
to the “up to a constant” order ≤ct, cf. §1.5 Notations) between these com-
plexities.

The first theorem (Thm.4.1) is valid whatever be the partial order on D. It
states that K∅′,D <ct inf(KD

max, K
D
min) and that KD

max, K
D
min, though obviously

≤ct K
D, cannot be simultaneously much smaller than KD since

KD ≤ct (KD
max + log(KD

max)) + (KD
min + log(KD

min))

The second theorem (Thm.4.2) proves that either KD
max =ct K

D
min =ct K

D or
KD

max,K
D
min are ≤ct incomparable and both are <ct to KD. This dichotomy is

also characterized by a simple property on the order.

The third theorem (Thm.4.3) considers two partial orders <wk and <st on D,
the second extending the first. We give conditions (∗) and (∗∗) on the orders
such that
- (∗) insures that KDst

max =ct K
Dwk
max and KDst

min =ct K
Dwk
min ,

- (∗∗) insures that KDst
max <ct K

Dwk
max and KDst

max <ct K
Dwk
max and neither KDst

max nor
KDst

min is ≤ct min(KDwk
max, K

Dwk

min).

These conditions are almost complementary: (∗∗) is an effective version of the
negation of (∗).
An interesting case of this theorem is obtained when Σ = {1, ..., k} with the
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obvious order and <wk, <st are the prefix and the lexicographic orders on Σ∗

(the last one being isomorphic to the order on k-adic rational reals in [0, 1]).

1.4 The MaxRec and MinRec classes

In §5.2 and 5.3 we come back to the four classes Max2
∗→D

PR , Min2
∗→D

PR and
Max2

∗→D
Rec , Min2

∗→D
Rec . We compare them to that of partial computable func-

tions X → D and look at the syntactical complexity of their domains and
graphs.
In §5.4 we compute MaxX→D

PR ∩MinX→D
PR under simple conditions about the

partial order on D.

In §6, we consider the possible development of Kolmogorov complexities based
on the classes Max2

∗→D
Rec and Min2

∗→D
Rec . This leads to look at the two following

problems:
- the existence of an enumeration,
- the invariance theorem.
For each problem, we characterize the orders D for which there is a positive
answer (cf. §6.1, 6.2).
It turns out (cf. Thm.6.2) that when the invariance theorem holds forMax2

∗→D
Rec

then every function in Max2
∗→D

PR has an extension (not necessarily total)
in Max2

∗→D
Rec . This insures that the Kolmogorov complexities associated to

Max2
∗→D

Rec and Max2
∗→D

PR coincide. In particular, K∞
Σ∗ is the complexity asso-

ciated to Max2
∗→D

Rec and Max2
∗→D

PR when D is Σ∗ with the prefix order.
Surprisingly, there are orders such that the invariance theorem holds forMax2

∗→D
Rec

whereas the enumeration theorem fails (compare Thm.6.1 and Thm.6.2).

1.5 Notations

1. Equality, inequality and strict inequality up to a constant between total
functions S → N are denoted as follows:

f ≤ct g ⇔ ∃c ∀s f(s) ≤ g(s) + c

f =ct g ⇔ f ≤ct g ∧ g ≤ct f ⇔ ∃c ∀s |f(s) − g(s)| ≤ c

f <ct g ⇔ f ≤ct g ∧ ¬(g ≤ct f) ⇔ f ≤ct g ∧ ∀c ∃s g(s) > f(s) + c

2. [Basic spaces] 2∗ denotes the set of binary words. We call basic spaces the
products of non empty finite families of spaces of the form N or Z or A∗ where
A is some finite alphabet. Basic spaces are denoted by S,X,Y, ...

3. [Partial recursive (or computable) functions] PRX→Y (resp. Rec[X → Y])
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denotes the family of partial (resp. total) computable functions from X to Y.

2 The Max and Min classes of functions

2.1 Infinite computations and monotone machines

Recall that a Turing machine is monotone if its current output may only
increase with respect to the prefix order on words: no overwriting is allowed.
This is indeed Turing’s original assumption [20], insuring that, in the limit
of time, the output of a non halting computation always converges, either
to a finite or to an infinite sequence. This concept was also considered by
Levin [14] and Schnorr [16,17], see [15] p.276. Such infinite computations with
possibly infinite outputs can be used to obtain highly random reals, cf. Becher
& Chaitin [1] and Becher & Grigorieff [3].
In this paper, when considering infinite computations, we retain the sole limit
outputs that are finite.

The following easy proposition links infinite computations, as considered for
the definition of K∞ and its prefix version H∞ introduced in [2], with the
general approach which is the subject of this paper.

Proposition 2.1 Let F : 2∗ → Σ∗ where Σ is some non empty finite alphabet.
The following conditions are equivalent:

i. F can be computed via possibly infinite computations on some monotone
Turing machine with output alphabet Σ, according to the following con-
vention: F (s) is defined if and only if the output remains constant after
some step.

ii. There exists a total computable function f : 2∗ × N → Σ∗ such that
- f(s, t) is monotone increasing in t with respect to the prefix order on
Σ∗,
- s ∈ dom(F ) if and only if {f(s, t) : t ∈ N} is finite and non empty,
- F (s) is the maximum value of {f(s, t) : t ∈ N}.

iii. Let λ denote the empty word. Idem as ii, with f such that

f(s, 0) = λ , f(s, t+ 1) ∈ {f(s, t)} ∪ {f(s, t)σ : σ ∈ Σ}

PROOF. iii ⇒ ii is trivial; i ⇔ iii : let f(s, t) be the current output at
time t when the input is s. As for ii ⇒ iii, let f̃(s, 0) = λ and f̃(s, t + 1)
be the prefix of f(s, t + 1) with length min(|f̃(s, t)| + 1, |f(s, t + 1)|). Then
{f̃(s, t) : t ∈ N} and {f(s, t) : t ∈ N} are simultaneously finite or infinite and,
when finite, their maximum elements are equal. 2
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2.2 Mathematical modelization: the Max and Min classes

Proposition 2.1 and the argumentation in §1.1–1.2 invite to a mathemati-
cal, machine-free modelization of the notion of function defined by infinite
computations. Namely that of function obtained as pointwise maximum of
a computable sequence of total computable functions. A construction which
makes sense for maps from a basic set X into any computable partially ordered
set D = (D,<), and leads to the class MaxX→D

Rec .
It is also quite natural – in fact, it is even much more natural from a mathe-
matical point of view – to consider the version of the above modelization using
partial computable functions instead of total computable ones. This leads to
the class MaxX→D

PR .
Natural and interesting important examples (cf. §2.4) are obtained when D is
among the following (obviously computable) partially ordered sets:

(N, <) , (Z, <) , (Σ∗, <prefix) , (Σ∗, <lexico)

and the reverse orders obtained by replacing < by >, where <lexico on Σ∗

depends on a total or partial order on the alphabet Σ.

Definition 2.2 (The maxD and minD operators) Let X be some basic set
and D = (D,<) be some partially ordered set. Let f : X×N → D be monotone
increasing in its second argument on its domain. We define maxDf : X → D
(resp. minDf : X → D) as the function

i. defined on the x’s in X for which the map t 7→ f(x, t) has finite non empty
range,

ii. and such that (maxDf)(x) (resp. (minDf)(x)) is the maximum (resp. min-
imum) element of {f(x, t) : t ∈ N}.

Definition 2.3
1. A computable partially ordered set D is a triple (D,<, ρ) such that ρ : N →
D is a bijective total map (in particular, D is infinite countable) and < is a
partial order on D such that {(m,n) : ρ(m) < ρ(n)} is computable.
2. Let X be a basic space. A function F : X → D is partial (resp. total)
computable if so is ρ−1 ◦ F : X → N.
A set Z ⊆ X × Dk is computable if so is (IdX, ρ, ..., ρ)

−1(Z) as a subset of
X × N

k, where IdX is the identity function on X.

Of course, we shall omit any reference to ρ when D is N or Z with the natural
order, or Σ∗ with the prefix or the lexicographic order (with respect to some
partial or total order of the elements of Σ).

Definition 2.4 (Max and Min classes) Let X be a basic space and D =
(D,<, ρ) be a computable partially ordered set. We let
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MaxX→D
Rec = {maxDf : f : X × N → D is total computable}

MaxX→D
PR = {maxDf : f : X × N → D is partial computable}

We respectively denote by MinX→D
PR and MinX→D

Rec the analog classes defined
with the minD operator, i.e. the classes MaxX→Drev

PR and MaxX→Drev

PR where
Drev = (D,>).

Proposition 2.1 can be rephrased in terms of the prefix ordering on Σ∗.

Proposition 2.5 If Σ is a finite alphabet then Max
2
∗→(Σ∗,<prefix)

Rec is the class
of functions computed via possibly infinite computations on monotone Turing
machines (cf. Proposition 2.1 i) with Σ as output alphabet.

2.3 Domains of functions in the Max/Min classes

We denote by Σ0
1∧Π0

1 the family of conjunctions of Σ0
1 and Π0

1 formulas. Let X

be a basic set and D be a computable ordered set. The arithmetical hierarchy
on N induces a hierarchy on D and X×D : a relation R ⊆ X×D is Σ0

n or Π0
n

or Σ0
n ∧ Π0

n if so is (IdX, ρ)
−1(R) ⊆ X × N.

Proposition 2.6 Let X be a basic set and D be a computable ordered set.
Every partial function in MaxX→D

PR or in MinX→D
PR has Σ0

1 ∧ Π0
1 graph and Σ0

2

domain.

PROOF. Let f : X×N → D be partial computable, monotone increasing in
its second argument on its domain. Then

(maxDf)(x) = z⇔∃t (f(x, t) is defined ∧ f(x, t) = z)

∧ ∀t (f(x, t) is defined ⇒ f(x, t) ≤ z)

x ∈ dom(maxDf)⇔∃z F (x) = z

Idem with MinX→D
PR . 2

2.4 Examples of functions in the Max and Min classes

The classes MaxX→D
Rec ,MinX→D

Rec contain many fundamental non computable
functions. To see that some functions are not in such classes, we shall use
Theorem 5.5 below (the proof of which does not depend on any result of this
§).

9



2.4.1 Kolmogorov and Chaitin-Levin program-size complexities

Proposition 2.7 Let D be (N, <). Kolmogorov and Chaitin-Levin program-
size complexities KN, HN : N → N (resp.KΣ∗ , HΣ∗ : Σ∗ → N) are in MinN→D

Rec \
MaxN→D

PR (resp. in MinΣ∗→D
Rec \MaxΣ∗→D

PR ).

PROOF. That K,H belong to MinN→D
Rec is a mere reformulation of the well-

known fact that they are computably approximable from above, i.e. they are
limits of decreasing computable sequences of total computable functions. That
these total functions are not in MaxN→D

PR is an obvious application of Theorem
5.5 below. 2

2.4.2 Busy beaver

Proposition 2.8 Let D be (N, <). Let BB : N → N be the busy beaver func-
tion, i.e. BB(n) is the maximum number of cells visited by the input head of
a Turing machine with n+ 1 states which halts with no input.
Then BB ∈MaxN→D

Rec \MinN→D
PR .

PROOF. Observe that BB = max bb where bb is the total computable func-
tion such that bb(n, t) is the maximum among 0 and the numbers of cells
visited by Turing machines with n + 1 states which halt in at most t steps.
An obvious application of Theorem 5.5 below shows thatBB is not inMinN→D

PR . 2

Remark 2.9 Variants of the busy beaver function can be very naturally de-
fined with ranges over various types of data structures. For instance, finite
graphs relative to the inclusion or embedding ordering.

2.4.3 Cardinality of finite computably enumerable sets

The following example is completely investigated in [9,8].

Proposition 2.10 Let D be (N, <). Let cardRE : N → N be such that

cardRE(n) =




card(Wn) if Wn is finite

undefined otherwise

where card(Wn) is the number of elements of the computably enumerable set
Wn with code n.
Then cardRE ∈MaxN→D

Rec \MinN→D
PR .
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PROOF. Observe that cardRE = maxh where h(n, t) is total computable
and counts the number of elements of Wn obtained after t computation steps.
The domain of the partial function cardRE is known to be Σ0

2 complete, hence
not Σ0

1 ∧ Π0
1. Applying Theorem 5.5 below, we see that cardRE cannot be in

MinN→D
PR . 2

2.4.4 Interacting finite sets with a fixed computably enumerable set

If X, Y ⊆ N, let’s denote X − Y and X \ Y the sets

X − Y = {x− y : x ∈ X ∧ y ∈ Y ∧ x ≥ y} , X \ Y = {z : z ∈ X ∧ z /∈ Y }

Proposition 2.11 Let D be be the family P<ω(N) of finite subsets of N, or-
dered by set inclusion. If A ⊆ N is a fixed computably enumerable set which is
non computable then

i. the maps X 7→ X ∩A and X 7→ X − A are in MaxD→D
Rec \MinD→D

PR .
ii. the map X 7→ X \ A is in MinD→D

Rec \MaxD→D
PR .

PROOF. Let A = ϕ(N) where ϕ : N → N is total computable. Define total
computable maps f, g, h : D × N → D such that

f(X, t) = X ∩ ϕ({0, ..., t}) g(X, t) = X − ϕ({0, ..., t})

h(X, t) = X \ ϕ({0, ..., t})

It is easy to see that X ∩ A = (maxDf)(X) and X − A = (maxDg)(X) and
X \ A = (minDh)(X) . 2

2.4.5 Quotients of regular languages by a fixed computably enumerable lan-
guage

We now come to a very different example.

The family Reg of regular languages over alphabet Σ can be defined by regular
expressions which are words in the alphabet Σ̃ obtained by enriching Σ with
symbols +, ∗, ·, (, ).
Let ζ : Σ̃∗ → Reg be the surjective map such that, if u is a regular expression
then ζ(u) is the associated regular language, else ζ(u) = ∅.
Since equality of regular languages is decidable, there exists a computable map
η : N → Σ̃∗ such that ρ = ζ ◦ η : N → Reg is bijective.
Using decidability of inclusion of regular languages, we see that (Reg,⊆, ρ) is
a computable partially ordered set in the sense of Definition 2.3.
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It is known that, if L is a regular language and M ⊆ Σ∗ is any language (even
non computable) then

M−1L = {u ∈ Σ∗ : ∃v ∈M vu ∈ L}

is always regular and M−1L = M ′−1L for some finite subset M ′ ⊆ M . Recall
the core of the easy proof: if L is the set of words leading from state q0 to a
final state of automaton A and if the words in M lead from state q0 to the
states in X, then M−1L is the set of words leading from a state in X to a final
state.

Proposition 2.12 Let M ⊆ Σ∗ be a fixed computably enumerable language
which is non computable. Let FM : Reg → Reg be such that FM(L) = M−1L.
Then FM is in MaxReg→Reg

Rec \MinReg→Reg
PR .

PROOF. Let M = ϕ(N) where ϕ : N → Σ∗ is a total computable function.
Observe that FM = maxReg fM where fM : Reg × N → Reg is such that

fM(L, t) = (ϕ({0, ..., t})−1L

Observe that M is computable with oracle F since u ∈ M if and only if
M−1{u} = {λ}. Since M is not computable, F cannot be computable. Using
Theorem 5.5 point 1 (and the fact that F is total), we see that F is not in
MinReg→Reg

PR . 2

Using the above surjection ζ : Σ̃∗ → Reg , one can reformulate the above result
in terms of a partial computable preordering on words quite different of the
usual ones. This necessitates a straightforward extension to preorderings of
the material about the Max and Min classes.
Let µ : Reg → ∆∗ be the map which associates to a regular language L the
regular expression (obtained via some fixed algorithm) describing its minimal
automaton. Observe that ζ is a retraction of the injective map µ, i.e. ζ ◦ µ is
the identity map on Reg .

Proposition 2.13 Let D be Σ̃∗ with the following computable preordering:

u � v ⇔ ζ(u) ⊆ ζ(v)

Let M ⊆ Σ̃∗ be a fixed computably enumerable language which is non recucom-
putablersive. Then the map u 7→ µ(M−1ζ(u)) (which maps a regular expression
for L to one for M−1L) is in MaxD→D

Rec \MinD→D
PR .
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PROOF. Let F, f be as in the proof of Proposition 2.12. Since ζ ◦µ = IdReg,
we see that F̃ = µ ◦ F ◦ ζ makes the following diagram commute:

Reg
F

−−−→ Reg

ζ

x
xζ

Σ̃∗ F̃
−−−→ Σ̃∗

which allows to transfer the results of Proposition 2.12. 2

2.4.6 Noetherian or well-founded orderings

Suppose D is Noetherian (resp. well-founded) and let f : X × N → D. If
t 7→ f(x, t) is monotone increasing (resp. decreasing) then it is necessarily
eventually constant. In that case, the considered notion of approximation from
below (resp. from above) coincides with monotone approximation.
Fix n ≥ 1. An important case is the noetherian set (D,⊆) of ideals in the ring
of n-variables polynomials with real algebraic coefficients (this last hypothesis
insures that D is countable with a computable ordering).

2.5 Normalized representations

It sometimes proves useful to normalize the f in maxD f .

Proposition 2.14 Let X be a basic set and D = (D,<, ρ) be a computable
ordered set.
1. Every F ∈ MaxX→D

PR is of the form F = maxD f for some partial com-
putable f : X × N → D, monotone increasing in its second argument, such
that dom(f) = Z × N where Z is some Σ0

1 subset of D.

2. If F ∈MaxX→D
PR has Σ0

1 domain then one can suppose Z = dom(F ).

PROOF. 1. Let g : X ×N → D be partial computable, monotone increasing
in its second argument, such that F = maxD g. Let Z = {x : ∃t (x, t) ∈
dom(g)} be the first projection of dom(g). Let θ : X → D be the partial
computable function with domain Z such that θ(x) is the value first obtained
in {g(s, t) : t ∈ N} by dovetailing over computations of g(s, 0), g(s, 1), .... Let
also

∆
x,t = {g(x, u) : u ≤ t ∧ g(x, u) halts in ≤ t steps}

and define f with domain Z × N such that f(x, t) is the greatest element of
{θ(x)} ∪ ∆

x,t

13



2. Observe that Z necessarily contains dom(F ). If dom(F ) is Σ0
1 then f̂ = f ↾

(dom(F ) × N) is also partial computable and maxD f̂ = maxD f . 2

3 Kolmogorov complexities KD
max, K

D
min

Kolmogorov complexity theory goes through with the MaxX→D
PR and MinX→D

PR

classes with no difficulty.
First, we recall Kolmogorov complexity over elements of D.

3.1 Kolmogorov complexity KD

Classical Kolmogorov complexity for elements in D is defined as follows (cf.
Kolmogorov, 1965 [11], or Li & Vitanyi [15], Downey & Hirschfeldt [6], Gàcs
[10] or Shen [18]).

Definition 3.1 Let ϕ : 2∗ → D. We denote Kϕ : D → N the partial function
with domain range(ϕ) such that

Kϕ(d) = min{|p| : ϕ(p) = d}

I.e., considering words in 2∗ as programs, Kϕ(d) is the shortest length of a
program p mapped onto d by ϕ.

Theorem 3.2 (Invariance theorem, Kolmogorov, 1965 [11]) Let X be
a basic space and D = (D,<, ρ : N → D) be a computable partially ordered
set. When ϕ varies in the family PR2

∗→D of partial computable functions
2∗ → D, there is a least Kϕ, up to an additive constant:

∃ϕ ∈ PR2
∗→D ∀ψ ∈ PR2

∗→D Kϕ ≤ct Kψ

Such ϕ’s are said to be optimal in PR2
∗→D.

Definition 3.3 Kolmogorov complexity KD : D → N is Kϕ where ϕ is some
fixed optimal function in PR2

∗→D. Thus, KD is defined up to an additive
constant.

Of course, KD and KN are related.

Proposition 3.4 KD ◦ ρ =ct K
N.

PROOF. Since PR2
∗→D = {ρ ◦ ψ : ψ ∈ PR2

∗→N} and Kψ(n) = Kρ◦ψ(ρ(n))
for all ψ ∈ PR2

∗→N, we see that if ϕ is optimal in PR2
∗→N then ρ◦ϕ is optimal

14



in PR2
∗→D. 2

We also observe the following simple fact:

Proposition 3.5 sup{KD(d) : d ∈ X} = +∞ for every infinite X ⊆ D.

PROOF. The result is well-known forKN and it transfers toKD using Propo-
sition 3.4. 2

3.2 Enumeration theorem for MaxX→D
PR

The classical enumeration theorem for partial computable functions goes through
the max operator, leading to an enumeration of MaxX→D

PR . First, we recall a
folklore result on enumeration of monotone partial computable functions.

Proposition 3.6 Let X be a basic set and D = (D,<, ρ) be a computable
ordered set. Let PRX×N→D,↑ be the family of partial computable functions X×
N → D which are monotone increasing in their last argument. There exists a
partial computable function ψ : N × X × N → D such that

{ψn : n ∈ N} = PRX×N→D,↑

where ψn : X × N → D denotes the function (x, t) 7→ ψ(n, x, t).

PROOF. Let φ : N × X × N → D be a partial computable function which
enumerates the family PRX×N→D of partial computable functions X×N → D,
i.e,

{φn : n ∈ N} = PRX×N→D

We modify φ to ψ so as to get an enumeration of PRX×N→D,↑. Consider an
injective computable enumeration (ni, xi, ti, di)i∈N of the graph of φ. Let

Z = {(ni, xi, ti, di) : ∀j < i (nj = ni ∧ xj = xi ∧ tj < ti ⇒ dj ≤ di)}

Let ψ : N×X×N → D be the partial computable function with graph Z. It is
clear that ψ is monotone increasing in its last argument, so that so are all ψn’s.
Also, if φn is monotone increasing in its last argument then {n} × graph(φn)
is included in Z, so that ψn = φn. Thus, the ψn’s enumerate PRX×N→D,↑. 2

Theorem 3.7 (Enumeration theorem for MaxX→D
PR ) Let X be a basic set

and D = (D,<, ρ) be a computable ordered set. There exists a function E :
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N × X → D in MaxN×X→D
PR such that

{En : n ∈ N} = MaxX→D
PR

where En : X → D denotes the function satisfying En(x) = E(n, x).

PROOF. Let ψ : N × X × N → D be a partial computable function which
enumerates PRX×N→D,↑. Let E : N × X → D be such that En = maxD ψn for
all n. For any F : X → D in MaxX→D

PR there exists n such that F = maxD ψn.
We then have

x ∈ dom(F )⇔{ψn(x, t) : t s.t. ψn(x, t) is defined} is finite non empty

⇔{ψ(n, x, t) : t s.t. ψ(n, x, t) is defined} is finite non empty

⇔ (n, x) ∈ dom(E)

⇔ x ∈ dom(En)

F (x) = greatest element of {ψn(x, t) : t s.t. ψn(x, t) is defined}

= greatest element of {ψ(n, x, t) : t s.t. ψ(n, x, t) is defined}

= E(n, x)

= En(x)

Which proves that E enumerates MaxX→D
PR . 2

3.3 Kolmogorov complexity KD
max and KD

min

The invariance theorem extends easily to Max2
∗→D

PR , leading to Kolmogorov
complexity KD

max : D → N.

Theorem 3.8 (Invariance theorem for Max2
∗→D

PR ) Let X be a basic space
and D = (D,<, ρ : N → D) be a computable partially ordered set. When F
varies in the family Max2

∗→D
PR there is a least KF , up to an additive constant:

∃U ∈Max2
∗→D

PR ∀F ∈ Max2
∗→D

PR KU ≤ct KF

Such U ’s are said to be optimal in Max2
∗→D

PR .

PROOF. The usual proof works. Let E : N × 2∗ → D in MaxN×2
∗→D

PR be an
enumeration of Max2

∗→D
PR . Define U : 2∗ → D such that U(0n1p) = E(n, p)

and U(q) is undefined if q is not of the form 0n1p for some n ∈ N and p ∈ 2∗.
If F ∈Max2

∗→D
PR and F = En then
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KF (d) = min{|p| : F (p) = d}

= min{|p| : E(n, p) = d}

= min{|p| : U(0n1p) = d}

= min{|0n1p| : U(0n1p) = d} − n− 1

≥min{|q| : U(q) = d} − n− 1

=KU(d) − n− 1

2

Definition 3.9 Kolmogorov complexity KD
max is defined up to an additive con-

stant as any KU where U is optimal in Max2
∗→D

PR .
Kolmogorov complexity KD

min is KD′

max where D′ is the reverse order of D.

4 Main theorems: comparing K, KD
max, K

D
min, K

∅′

4.1 The <ct hierarchy theorem

The main motivation of this section is to compare the Kolmogorov complexi-
ties

KD, KD
max, K

D
min, K

∅′ : D → N

Comparisons of KD
max, K

D
min and KD turn out to be a particular application of

more general results dealing with both KD
max and KD

min complexities relative
to two computable orders Dst = (D,<st, ρ) and Dwk = (D,<wk, ρ) on the
same set D, the strong one <st being an extension of the weak one <wk. A
question with naturally arises when considering for instance the prefix and
lexicographic orders on Σ∗.

In the case of N with the natural order or of Σ∗ with the prefix order, the
inequalities K∅′,D <ct K

D
max <ct K

D were obtained (modulo Proposition 2.5)
for the prefix version H∞ Becher & Figueira & Nies & Picci, 2005 [2],
We state our results as three theorems, the proofs of which are given in §4.5
to 4.10.

Theorem 4.1 (1st hierarchy theorem) Let D = (D,<, ρ) be a computable
ordered set.
1. K∅′,D <ct inf(KD

max, K
D
min)

2. KD
max, K

D
min are ≤ct smaller than KD but not simultaneously much smaller:

KD ≤ct (KD
max + log(KD

max)) + (KD
min + log(KD

min))

Theorem 4.2 (2d hierarchy theorem)
1. If (D,<) contains arbitrarily large finite chains then KD

max and KD
min are
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≤ct incomparable and both are <ct smaller than KD.
In fact, a much stronger property holds:

i. KD is not majorized by a computable function of KD
min,

ii. KD is not majorized by a computable function of KD
max,

iii. KD
max is not majorized by a computable function of KD

min,
iv. KD

min is not majorized by a computable function of KD
max,

I.e., for any total computable function α : N → N, the following sets are
infinite

{d ∈ D : KD
max(d) ≥ α(KD

min(d))} , {d ∈ D : KD(d) ≥ α(KD
min(d))}

{d ∈ D : KD
min(d) ≥ α(KD

max(d))} , {d ∈ D : KD(d) ≥ α(KD
max(d))}

2. If (D,<) does not contain arbitrarily large finite chains then

KD
min =ct K

D
max =ct K

D

Theorem 4.3 (3d hierarchy theorem) Let Dst = (D,<st, ρ) and Dwk =
(D,<wk, ρ) be two computable orders on the same set D (“wk” and “st” stand
for “weak” and “strong”) such that <st is an extension of <wk.
1. Let (∗) be the following condition

(∗) For all k there exists a strong chain with k elements which is a weak
antichain.

If (∗) holds then KDst
max <ct K

Dwk
max and KDst

min <ct K
Dwk

min .
In fact, a much stronger property holds: inf(KDwk

min , K
Dwk
max) is not majorized by a

computable function of KDst
max or KDst

min. I.e., for any total computable function
α : N → N, the following sets are infinite

{d ∈ D : inf(KDwk

min(d), KDwk
max(d)) ≥ α(KDst

max(d))}

{d ∈ D : inf(KDwk

min(d), KDwk
max(d)) ≥ α(KDst

min(d))}

2. Let (∗∗) be the following condition (which is an effective version, tailored
for infinite computations, of the negation of (∗), cf. §4.2).

(∗∗) There exists k such that for every partial computable f : 2∗ × N → D
which is monotone increasing in its second argument relative to the strong
order <st there exist partial computable functions f1, ..., fk : 2∗ × N → D
which are monotone increasing in their second argument relative to the
weak order <wk such that

{f(p, t) : t ∈ N} =
⋃

i=1,...,k

{fi(p, t) : t ∈ N}

If (∗∗) holds then KDst

min =ct K
Dwk

min and KDst
max =ct K

Dwk
max.
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Corollary 4.4 Let Σ be a finite or infinite countable alphabet, let <1, < be
computable orders on Σ such that <1 is partial but non trivial and < is a total
extension of <1. Consider on Σ∗ the following orders: the prefix order <prefix,
the lexicographic orders <lexico1

and <lexico associated to <1 and <. Then

KDprefix
max <ct K

D<lexico1
max <ct K

D<lexico
max , K

Dprefix

min <ct K
D<lexico1

min <ct K
D<lexico

min

PROOF. Let a, b, c, d ∈ Σ be such that a <1 b and c < d but c 6<1 d. Since
< extends <1, c and d are <1 incomparable. Observe that {anb : n ∈ N} is an
infinite increasing chain for <lexico1

and an antichain for the prefix order. Also,
{cnd : n ∈ N} is an infinite increasing chain for <lexico and an antichain for
the <lexico1

order. This gives condition (∗) relative to the pairs (<prefix, <lexico1
)

and (<lexico1
, <lexico) of orders on Σ∗. 2

4.2 (∗) is an effective version of the negation of (∗∗)

Recall Dilworth’s theorem.

Theorem 4.5 (Dilworth, 1950 [5]) Let D = (D,<) be an ordered set and
k ∈ N. If every antichain in D has at most k elements then D is the union of
k chains.

Dilworth’s theorem leads to an equivalent form (†) of (∗) and condition (∗∗)
appears as an effective version of ¬(†), tailored for infinite computations.

Proposition 4.6 Let Dst = (D,<st) and Dwk = (D,<wk) be two orders on
the same set D such that <st is an extension of <wk.
Then (∗) is equivalent to the following condition (†) :

(†) For all k there exists a finite strong chain X which is not the union of k
weak chains

PROOF. (∗) ⇒ (†). Apply (∗) with k+1 and observe that a weak antichain
with k + 1 elements cannot be the union of k weak chains.
¬(∗) ⇒ ¬(†). Let k be an integer which contradicts (∗). Then, in any strong
chain, any weak antichain has < k elements. Apply Dilworth’s theorem to get
¬(†). 2

Remark 4.7 1. Clearly (∗∗) ⇒ ¬(†). We do not know whether the converse
implication holds or not. The problem is that the proof of Dilworth’s theorem
is not incremental as we now detail. Let X∪{d} be a strong chain with d >st x
for all x ∈ X and such that every weak antichain included in X has at most k
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elements. If X is covered by k weak chains C1, ..., Ck then d may be incompa-
rable to the top elements of all these k chains. Thus, though X ∪ {d} is also
the union of k weak chains, such chains may be quite different from the Ci’s.
Condition (∗∗) (as contrasted to ¬(†)), does insure such an incremental char-
acter.
2. In case <wk has a smallest element d, condition (∗∗) is equivalent to the
analog condition in which functions f, f1, ..., fk are replaced by total computable
g, g1, ..., gk. This can be seen by defining g, g1, ..., gk from f, f1, ..., fk as follows

g(p, 0) = d , g(p, t+ 1) =




f(p, t) if f(p, t) converges in ≤ t steps

g(p, t) otherwise

and the same with g1, ..., gk from f1, ..., fk.

4.3 KD
max, K

D
min are not simultaneously much smaller than KD

Lemma 4.8 Let D = (D,<, ρ) be a computable ordered set. Let c : 2∗×2∗ →
2∗ be a total computable injective map and let J : N × N → N and M ∈ N be
such that |c(p, q)| ≤ J(|p|, |q|) +M for all p, q ∈ 2∗. Then

KD ≤ct J(KD
min, K

D
max)

In particular (with the special convention log(0) = 0),

KD ≤ct (KD
max + log(KD

max)) + (KD
min + log(KD

min))

PROOF. Let U, V : 2∗ → D be optimal in Max2
∗→D

PR and Min2
∗→D

PR , i.e.
KD

max = KU and KD
min = KV . Let f, g : 2∗ × N → D be partial computable,

respectively monotone increasing and decreasing with respect to their 2d ar-
gument such that U = maxD f and V = minD g.

Define a partial computable function ϕ : 2∗ → D as follows:

• If r is not in range(c) then ϕ(r) is undefined. Else, from input r, get p and
q such that c(p, q) = r.

• Dovetail computations of the f(p, t)’s and g(q, t)’s for t = 0, 1, 2, ....
• If and when there are t′, t′′ such that f(p, t′) and g(q, t′′) are both defined

and have the same value then output their common value and halt.

By the invariance theorem, there is a constant N such that KD ≤ Kϕ +N .
Let d ∈ D and let p, q be shortest programs such that U(p) = V (q) = d, i.e.
KD

max(d) = |p| and KD
min(d) = |q|.

Observe that, whenever f(p, t′) and g(q, t′′) are both defined, we have f(p, t′) ≤
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d ≤ g(p, t′′). Also, since U(p) = maxD{f(p, t) : t ∈ N} and V (q) = minD{g(q, t) :
t ∈ N}, there are t′, t′′ such that f(p, t′) = d = g(q, t′′). Therefore, ϕ(c(p, q))
halts and outputs d. Therefore

KD(d) ≤ Kϕ(d) +N ≤ |c(p, q)| +N ≤ J(KD
min(d), K

D
max(d)) +N

The last assertion of the Lemma is obtained with the injective map

c(p, q) =





0|Bin(|p|)|1Bin(|p|)pq if |p| ≤ |q|

1|Bin(|q|)|0Bin(|q|)pq if |p| > |q|

(where Bin(x) denotes the binary representation of x) since

|c(p, q)| = |p|+|q|+2⌊log(min(|p|, |q|))⌋+3 ≤ (|p|+log(|p|))+(|q|+log(|q|))+3

2

4.4 KD
max, K

D
min and the jump

Proposition 4.9 1. Let X be a basic space. All functions in MaxX→D
PR and

MinX→D
PR are partial computable in ∅′. In particular, KD is recurcomputablesive

in ∅′.

2. KD
min and KD

max are computable in ∅′.

PROOF. 1. Proposition 2.6 insures that any F : X → D in MaxX→D
PR or

MinX→D
PR has Σ0

1 ∧ Π0
1 graph. Therefore two calls to oracle ∅′ suffice to decide

F (x) = d.

2. Let p0, p1, . . . be a length increasing enumeration of 2∗ and let U : 2∗ → D
be optimal in Max2

∗→D
PR , i.e. KU = KD

max. One can compute KD
max(d) with

oracle ∅′ as follows:

i. Using oracle ∅′, test successive equalities U(p) = d (cf. Point 1) for pro-
grams p = p0, p1, . . ..

ii. When such an equality holds (which necessarily does happen) then output
|p| and halt.

Idem with KD
min. 2
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4.5 Proof of Theorem 4.1 (1st hierarchy theorem)

1. Large inequality K∅′,D ≤ct inf(KD
min, K

D
max). Point 1 of Proposition 4.9 in-

sures that MaxDPR and MinD
PR are included in PR∅′ . Therefore K∅′,D ≤ct K

D
min

and K∅′,D ≤ct K
D
max, i.e. K∅′,D ≤ct inf(KD

min, K
D
max).

Strict inequality K∅′,D <ct inf(KD
min, K

D
max). Point 2 of Proposition 4.9 insures

that inf(KD
min, K

D
max) is computable in ∅′. Now, the well-known fact that if

ψ =ct K
D then ψ is not computable relativizes: if ψ =ct K

∅′,D then ψ is not
computable in ∅′. In particular, inf(KD

min, K
D
max) 6=ct K

∅′,D.
2. This is the contents of Lemma 4.8. 2

4.6 Inequalities KDst
max ≤ct K

Dwk
max and KDst

min ≤ct K
Dwk

min

The following result is straightforward.

Proposition 4.10 With the notations of Theorem 4.3,

KDst

min ≤ct K
Dwk

min , KDst

max ≤ct K
Dwk
max

PROOF. Since <st extends <wk, every partial computable function 2∗ → D
which is monotone increasing in its second argument relative to <wk is also
monotone increasing relative to <st. So that MaxDwk

PR ⊆MaxDst

PR. Which yields
KDst

max ≤ct K
Dwk
max. 2

4.7 If (∗) holds: proof of Point 1 of Theorem 4.3 (3rd hierarchy theorem)

We use the notations of Theorem 4.3.

Lemma 4.11 Let α : N → N be a total computable function.
If condition (∗) holds then there exists total functions F,G : N → D respec-
tively in MaxN→Dst

Rec and MinN→Dst

Rec and a constant c such that, for all i ∈ N,

KDwk
max(F (i)) ≥ α(i) , KDwk

min(F (i)) ≥ α(i) , KDst
max(F (i)) ≤ log(i) + c

KDwk
max(G(i)) ≥ α(i) , KDwk

min(G(i)) ≥ α(i) , KDst

min(G(i)) ≤ log(i) + c

PROOF. 1. Since (∗) holds, for all i ∈ N, there exists a finite strong chain
with 2α(i)+1 elements which is a weak antichain. Dovetailing over subsets of D
with 2α(i)+1 elements, one can effectively find such a strong chain Zi. Thus,
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there exists a total computable function σ : N × N → D such that, for all
i ∈ N,

• σ(i, 0) <st σ(i, 1) <st ... <st σ(i, 2α(i)+1 − 1)
• Zi = {σ(i, j) : j = 0, ..., 2α(i)+1 − 1} is a weak antichain.

2. Let f and g are partial computable functions 2∗ × N → D such that U =
maxDwk f and V = minDwk g are optimal in Max2

∗→Dwk

PR and Min2
∗→Dwk

PR , i.e.
KU = KDwk

max and KV = KDwk

min .
We observe that inequalities KDwk

max(F (i)) ≥ α(i) and KDwk

min(F (i)) ≥ α(i) are
equivalent to disequalities U(p) 6= F (i) and V (p) 6= F (i) for every p such that
|p| < α(i).
We define F,G : N → D as F = maxDst ℓ and F = minDst ℓ for some total
computable ℓ : N × N → D. Let

Xp = {f(p, t) : t s.t. f(p, t) converges}

Yp= {g(p, t) : t s.t. g(p, t) converges}

X t
p = {f(p, t′) ∈ Zi : t′ ≤ t and f(p, t′) converges in ≤ t steps}

Y t
p = {g(p, t′) ∈ Zi : t′ ≤ t and g(p, t′) converges in ≤ t steps}

Since Zi is a weak antichain and Xp, Yp are weak chains, each one of the sets
Zi ∩Xp and Zi ∩ Yp has at most one element. Thus,

⋃
|p|<α(i)(Xp ∪ Yp) has at

most 2(2α(i) − 1) = 2α(i)+1 − 2 elements in Zi. Since Zi has 2α(i)+1 elements
and the σ(i, j)’s are in Zi, the following definition makes sense:

ℓ(i, t) = σ(i, j) where j is least such that σ(i, j) /∈
⋃

|p|<α(i)

(X t
p ∪ Y

t
p )

Now, F (i) = (maxDst ℓ)(i) and G(i) = (minDst ℓ)(i) are of the form ℓ(i, t′i) and
ℓ(i, t′′i ) for some t′i, t

′′
i , hence they are not in

⋃
|p|<α(i)(Xp ∪ Yp). In particular,

since U(p) = maxDwkXp is in Xp and V (p) = minDwkYp is in Yp, we see that
F (i) and G(i) are not in {U(p), V (p)} for any |p| < α(i). Which proves that
KDwk

max(F (i)), KDwk

min(F (i)), KDwk
max(G(i)) and KDwk

min(G(i)) are all ≥ α(i).

3. Since F ∈ MaxN→Dst

Rec , the invariance theorem insures that KDst
max ≤ct KF .

Now, KF (F (i)) ≤ct log(i), hence the inequality KDst
max(F (i)) ≤ log(i) + c for

some constant c. Idem with KDst

min(G(i)). 2

Proof of Point 1 of Theorem 4.3. Apply Lemma 4.11 with α′ such that
α′ is monotone increasing and α′(i) ≥ max(α(i), i) for all i. Since α′(i) tends
to +∞ with i, so does F (i). Let i0 be such that log(i) + c ≤ i for all i ≥ i0.
Since α′ is increasing and α′ ≥ α, for all i ≥ i0 we have

KDwk
max(F (i)) ≥ α′(i) ≥ α′(⌊log(i) + c⌋) ≥ α′(KDst

max(F (i))) ≥ α(KDst

max(F (i)))
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Similarly, we haveKDwk

min(F (i)) ≥ α(KDst
max(F (i))) andKDwk

max(G(i)) ≥ α(KDst

min(G(i)))
and KDwk

min(G(i)) ≥ α(KDst

min(G(i))).
Finally, observe that {F (i) : i ≥ i0} and {G(i) : i ≥ i0} are infinite. Which
concludes the proof of Point 1 of Theorem 4.3. 2

4.8 Proof of Point 1 of Theorem 4.2 (2d hierarchy theorem)

Comparing KD to KD
max and KD

min.
Let <st be < and <wk be the empty order. Then

KDst

max = KD
max , KDst

min = KD
min , KDwk

max = KDwk

min = KD

The condition (in Point 1 of Theorem 4.2) that D contains arbitrarily large
chains insures condition (∗) about <st and <wk. Thus, we can apply (the just
proved) Point 1 of Theorem 4.3. This gives properties i and ii of Point 1 of
Theorem 4.2.

Comparing KD
max and KD

min.
We shall prove properties iii and iv of Point 1 of Theorem 4.2 using properties
i and ii and also Lemma 4.8.
Applying Lemma 4.8, let c be such that,

(†) KD ≤ 2 (KD
max +KD

min) + c

Property iii applied to α′(i) = 2 (α(i) + i) + c insures that the set

X = {d : KD(d) ≥ 2 (α(KD
min(d)) +KD

min(d)) + c}

is infinite. Now, using (†), we see that, for d ∈ X,

2 (α(KD
min(d)) +KD

min(d)) + c ≤ KD(d) ≤ 2 (KD
max(d) +KD

min(d)) + c

hence KD
max(d) ≥ α(KD

min(d)). Which proves iii. The proof of iv is similar. 2

4.9 If (∗∗) holds: proof of Point 2 of Theorem 4.3 (3d hierarchy theorem)

Lemma 4.12 With the notations of Theorem 4.3, if condition (∗∗) holds then

KDst

min ≥ct K
Dwk

min , KDst

max ≥ct K
Dwk
max

PROOF. 1. Let k be as in (∗∗). Let Ust be optimal inMaxDst

PR and f : 2∗×N →
D be partial computable such that maxDst f = Ust.
Due to Proposition 2.14, we can suppose that f has domain of the form Z×N
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and is monotone increasing in its second argument, with respect to the strong
order.
Applying (∗∗) to f , we get k partial computable functions f1, ..., fk, monotone
increasing in their second argument, with respect to the weak order, such that

(♯) {f(p, t) : t ∈ N} =
⋃

i=1,...,k

{fi(p, t) : t ∈ N}

Define g : 2∗ × N → D such that

g(q, t) =




fi(p, t) if q = 0i1k−ip for some p and 1 ≤ i ≤ k

undefined otherwise

Clearly, g is partial computable and monotone increasing in its second argu-
ment relative to the weak order <wk.
If p ∈ dom(Ust), then {f(p, t) : t ∈ N} is finite and non empty. Let f(p, tp)
be its <st greatest element. Condition (♯) insures that there exists i such that
{g(0i1k−ip, t) : t ∈ N} is finite and contains f(p, tp). Since g is <wk increasing
in t, the set {g(0i1k−ip, t) : t ∈ N} is a weak chain. Since <st extends <wk,
f(p, tp) is necessarily its <wk greatest element. Thus,

Ust(p) = f(p, tp) = (maxwkg)(0i1k−ip)

This proves that, for all d ∈ D,

KDst

max(d) = least |p| such that Ust(p) = d

= least |p| such that (maxwkg)(0i1k−ip) = d for some i

≥ least |q| − k such that (maxwkg)(q) = d

=KmaxDwk g(d) − k

Since, by the invariance theorem, KmaxDwk g ≥ct KDwk
max, we get the desired

inequality KDst
max ≥ct K

Dwk
max.

2. Considering the reverse orders, we get the inequality KDst

min ≥ct K
Dwk

min . 2

Proof of Point 2 of Theorem 4.3. Straightforward from the above Lemma
4.12 and Proposition 4.10. 2

4.10 Proof of Point 2 of Theorem 4.2 (2d hierarchy theorem)

As in §4.8, let <st be < and <wk be ∅, so that

KDst

max = KD
max , KDst

min = KD
min , KDwk

max = KDwk

min = KD
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Suppose all chains in (D,<) have length ≤ k. We shall prove condition (∗∗)
for the above orders <st and <wk.
Let f : 2∗ × N → D be partial computable, monotone increasing in its 2d
argument for the strong order, i.e. for the < order. Compute f(p, t) for t =
0, 1, ... to get the ≤ k distinct elements of the chain {f(p, t) : t ∈ N} (not
necessarily in increasing order) and let fi(p) be the i-th element so obtained
(if there is some). Then f0, ..., fk : 2∗ → D are partial computable and

{f(p, t) : t ∈ N} = {fi(p) : i s.t. fi(p) is defined}

which insures condition (∗∗).
Applying Point 2 of Theorem 4.3 (proved above), we get =ct equalities which
are exactly those of Point 2 of Theorem 4.2. 2

5 Complementary results about the Max and Min classes

In this section we further investigate the different Max and Min classes. The
results do not involve as many technicalities as those of §4.

5.1 Total functions in MaxX→D
Rec and MaxX→D

PR

As a straightforward corollary of Point 2 of Proposition 2.14, we get the fol-
lowing result.

Theorem 5.1 The classes MaxX→D
Rec and MaxX→D

PR contain the same total
functions:

MaxX→D
PR ∩DX = MaxX→D

Rec ∩DX

5.2 Comparing MaxX→D
PR ,MaxX→D

Rec and PRX→D, RecX→D

Proposition 5.2 Let X be a basic set and D = (D,<, ρ) be a computable
ordered set.
1. If < is empty then PRX→D = MaxX→D

PR and RecX→D = MaxX→D
Rec .

2. If < is not empty then MaxX→D
Rec contains non computable total functions.

In particular, PRX→D ⊂MaxX→D
PR and RecX→D ⊂MaxX→D

Rec (where ⊂ denotes
strict inclusion).

3. Whatever be <, PRX→D is not included in MinX→D
Rec ∪MaxX→D

Rec .
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PROOF. 1. Straightforward.
2. Inclusions PRX→D ⊆ MaxX→D

PR and RecX→D ⊆MaxX→D
Rec are obvious.

Suppose there exists comparable distinct elements a < b in D. Let Z be some
computably enumerable non computable subset of X and let θ : N → X be a
total computable map with range Z. Define f : X×N → D total computable,
monotone increasing in t, such that

f(x, t) =




a if x /∈ {θ(n) : n ≤ t}

b otherwise

Then max f is total and (max f)−1(b) = Z and (max f)−1(a) = X \ Z. Since
Z is not computable, max f is not computable. Which proves RecX→D ⊂
MaxX→D

Rec

3. First, we consider the case where (D,<) has a minimal element d. Let
πZd : X → D be the partial computable function with domain Z (as in Point 2
of this proof) which is constant on Z with value d. We show that πZd is not in
MaxDRec. Suppose f : X×N → D is total computable, monotone in its second
argument, such that maxD f = πZd . Since d is minimal in D, (maxD f)(x) = d
if and only if ∀t f(x, t) = d. Thus, the computably enumerable set Z would
be Π0

1, hence computable, contradiction.
We now consider the case where (D,<) has no minimal element. Let γ : D →
D be the total computable function which associates to each d ∈ D the element
ρ(kd) where nd is the least k such that ρ(k) < d. Let (φ)

e∈X be an enumeration
of PRX×N→D which is partial computable as a function Φ : X × X × N → D.
We consider an enumeration (en, xn, tn, dn)n∈N of the graph of Φ and define a
partial computable function ϕ : X → D as follows:

ϕ(x) =




γ(dn) if n is least such that en = xn = x

undefined if there is no such n

It is clear that, for every e, if φ
e
(e, t) is defined for some t then ϕ(e) is defined

and ϕ(e) < φ
e
(e, t). In particular, if φ

e
is total then ϕ(e) < (maxD φ

e
)(e),

hence ϕ 6= maxD φ
e
. Which proves that ϕ is not in MaxX→D

Rec .
Arguing with Drev we get some function in PRX→D which is not in MinX→D

Rec .
Considering ϕ0, ϕ1 ∈ PRX→D such that ϕ0 /∈MaxX→D

Rec and ϕ1 /∈MinX→D
Rec and

a computable bijection σ : X×{0, 1} → X we get a partial computable function
ϕ : X → D which is not in MaxX→D

Rec ∪MinX→D
Rec by setting ϕ(σ(x, 0)) = ϕ0(x)

and ϕ(σ(x, 1)) = ϕ1(x). 2

5.3 Post hierarchy and the Max/Min classes

We keep notations of §2.3.
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Theorem 5.3 Let X be a basic set and D be a computable ordered set.
1. Let D′ be an initial segment of D (i.e. d′ ∈ D′ ∧ e < d′ ⇒ e ∈ D′).
Suppose D′ is Π0

1 and does not contain any strictly increasing infinite sequence
d′0 < d′1 < .... Then
i. Every D′-valued function in MaxX→D

PR has Σ0
1 ∧ Π0

1 domain.
ii. Every D′-valued function in MaxX→D

Rec has Π0
1 domain.

2. Let D′ be a final segment of D (i.e. d′ ∈ D′ ∧ e > d′ ⇒ e ∈ D′). Suppose
D′ is Σ0

1 and does not contain any strictly increasing infinite sequence. Then
i. Every D′-valued function in MaxX→D

PR has Σ0
1 domain.

ii. Every D′-valued function in MaxX→D
Rec is total.

PROOF. 1. Suppose that maxD f is D′-valued. Since D′ is an initial seg-
ment and f can be supposed monotone increasing in its second argument, if
(maxD f)(x) is defined then, for all t, f(x, t) is either undefined or in D′.
Now, since D′ has no infinite increasing sequence, the set {f(x, t) : t ∈
N s.t. f(x, t) ∈ D′} cannot be infinite. Thus, x ∈ dom(maxD f) if and only
if

∃t f(x, t) is defined ∧ ∀t (f(x, t) is defined ⇒ f(x, t) ∈ D′)

In case f is total computable, then the above equivalence is simply

x ∈ dom(maxDf) ⇔ ∀t f(x, t) ∈ D′

2. Since D′ is a final segment and f can be supposed monotone increasing
in its second argument, if (maxD f)(x) is defined then, for all t large enough,
f(x, t) is either undefined or in D′. Now, since D′ has no infinite increasing
sequence, the set {f(x, t) : t ∈ N s.t. f(x, t) ∈ D′} cannot be infinite. Thus,

x ∈ dom(maxDf)⇔∃t (f(x, t) is defined ∧ f(x, t) ∈ D′)

2

The next corollary is an application of the above theorem with the reverse of
the following D’s:

• D is the natural order on Z and D′ = N,
• D is the natural order on N or of the prefix order on Σ∗ and D′ = D,

Corollary 5.4 1. Every N-valued function in MinX→Z

PR (resp. MinX→Z

Rec ) has
Σ0

1 ∧ Π0
1 (resp. Π0

1) domain.
2. Let D be N with the natural order or Σ∗ with the prefix partial order. Then
every function in MinX→D

PR (resp. MinX→D
Rec ) has Σ0

1 domain (resp. is total).
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5.4 Max ∩Min classes

Theorem 5.5 Let X be a basic set and D = (D,<, ρ) be a computable ordered
set.
1. Every function F : X → D in MaxX→D

PR ∩MinX→D
PR is the restriction of a

partial computable function X → D to some Σ0
1 ∧ Π0

1 subset of X.
In particular, every total function in MaxX→D

PR ∩MinX→D
PR is computable.

2. Suppose D has no maximal (resp. minimal) element. Then the restriction
of any partial computable function X → D to any Σ0

1 ∧ Π0
1 subset of X is in

MaxX→D
PR (resp. MinX→D

PR ).

3. Suppose D has no maximal or minimal element. Then MaxX→D
PR ∩MinX→D

PR

coincides with the family of restrictions of partial computable functions X → D
to Σ0

1 ∧ Π0
1 subsets of X.

PROOF. 1. Let F = maxD f = minD g where f, g : X × N → D are partial
computable and f (resp. g) is monotone increasing (resp. decreasing) in its
second argument. Let’s check that F (x) is defined if and only if

(∗) (∃t′, t′′ f(x, t′) = g(x, t′′)) ∧ (∀u, v f(x, u) ≤ g(x, v))

In fact, if F (x) is defined then

F (x) = f(x, t′) = g(x, t′′) for some t′, t′′,
g(x, u) ≤ F (x) ≤ f(x, v) for all u, v such that g(x, u), f(x, v) are defined.

Conversely, from (∗) we see that, for u ≥ t′ and v ≥ t′′, f(x, u) = f(x, t′) =
g(x, t′′) = g(x, v). Hence the finiteness of {f(x, u) : u} and {g(x, v) : v}.
This proves that the domain of F is Σ0

1 ∧ Π0
1.

Let G : X → D be the partial computable function defined as follows:

Dovetail computations of f(x, 0), f(x, 1), . . . , g(x, 0), g(x, 1), . . . until we get
t′, t′′ such that f(x, t′), g(x, t′′) are both defined and equal. Output this com-
mon value.

Applying (∗), if F (x) is defined, then so is G(x) and F (x) = G(x). Thus, F is
the restriction of a partial computable function to some Σ0

1 ∧ Π0
1 set.

2. Suppose there is no maximal element. Since the order < is computable, by
dovetailing, one can define a total computable function γ : D → D such that
γ(d) > d for all d ∈ D. Let F : X → D be partial computable and let Z ⊆ X

be Σ0
1 ∧ Π0

1 definable:

x ∈ Z ⇔ (∃t R(x, t)) ∧ (∀t S(x, t))
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where R, S ⊆ X ×N are computable. Letting γ(t) denote the t-th iterate of γ,
we define f : X × N → D as follows:

f(x, t) =





F (x) if F (x) converges in ≤ t steps

and (∃t′ ≤ t R(x, t′)) ∧ (∀t′ ≤ t S(x, t′))

γ(t)(F (x)) if F (x) converges in ≤ t steps

and ∃t′ ≤ t ¬S(x, t′)

undefined otherwise

It is easy to check that maxD f is the restriction of F to Z.
The assertion with MinX→D

PR is obtained with the order reverse to D.
3. Straightforward from Points 1 and 2. 2

Remark 5.6 Theorem 5.3 shows that Points 2, 3 of the above theorem do not
hold for general ordered sets D.

6 Max2
∗→D

Rec and Min2
∗→D

Rec and Kolmogorov complexity

Since there is no computable enumeration of total computable functions, it
seems a priori desperate to get an invariance theorem for the class MaxX→D

Rec .
Nevertheless, there are important cases where such a result does hold. For
instance, when D is N with its usual ordering.
The purpose of this section is to characterize the orders D such that an in-
variance theorem holds for the class Max2

∗→D
Rec (resp. Min2

∗→D
Rec ).

First, we deal with the enumeration theorem.

6.1 MaxX→D
Rec and the enumeration theorem

Theorem 6.1 (Enumeration theorem for MaxX→D
Rec ) Let X be a basic set

and D = (D,<, ρ) be a computable ordered set. The following conditions are
equivalent:
i. There exists a smallest element in D.
ii. There exists a function Ẽ : N × X → D in MaxN×X→D

Rec such that

{Ẽn : n ∈ N} = MaxX→D
Rec

where Ẽn : X → D denotes the function x 7→ Ẽ(n, x).
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PROOF. i ⇒ ii. Let α ∈ D be the smallest element of D. As in §3.2, let
ψ : N × X × N → D be partial computable monotone increasing in its last
argument such that E = maxD ψ is an enumeration of MaxX→D

PR . Consider an
injective computable enumeration (ni, xi, ti, di)i∈N of the graph of ψ. Since α is
the smallest element, we can define a total computable function ψ̃ : N×X×N →
D as follows:

X(n, x, t) = {di : i ≤ t ∧ ni = n ∧ xi = x ∧ ti ≤ t}

ψ̃(n, x, t) = greatest element of {α} ∪X(n, x, t)

Suppose ψn is total, we show that maxD ψ̃n = maxD ψn. Fix some x. Observe
that {ψ̃n(x, t) : t ∈ N} is {ψn(x, t) : t ∈ N} or {α} ∪ {ψn(x, t) : t ∈ N}. Thus,
{ψ̃n(x, t) : t ∈ N} and {ψn(x, t) : t ∈ N} are simultaneously finite or infinite,
and when finite they have the same greatest element. Since ψn is total, this
proves that (maxD ψ̃n)(x) = (maxD ψn)(x). Thus, every function in MaxX→D

Rec

is of the form maxD ψ̃n for some n.
Set Ẽ = maxD ψ̃. Then Ẽ is in MaxN×X→D

Rec and the Ẽn’s enumerate MaxX→D
Rec .

ii ⇒ i. We prove ¬i ⇒ ¬ii. Suppose D has no minimum element. By dove-
tailing one can define a total computable map γ : D → D such that d 6≤ γ(d)
for all d.
Let E = maxD g : N × X → D where g : N × X × N → D is total computable
monotone increasing in its last argument. We define a total computable map
f : X → D such that f 6= En for all n. Let θ : N → X be some computable
bijection. Set f(θ(n)) = γ(g(n, θ(n), 0)). Then

g(n, θ(n), 0) 6≤ f(θ(n)) and g(n, θ(n), 0) ≤ (maxDg)(θ(n)) = En(θ(n))

Thus, f(θ(n)) 6= En(θ(n)). Hence f 6= En for all n. 2

6.2 Max2
∗→D

Rec and the invariance theorem

If D contains a smallest element then the enumeration theorem of §6.1 allows
to get an invariance result for the class Max2

∗→D
Rec .

Surprisingly, it turns out that an invariance result can be proved for partially
ordered sets with no smallest element, hence which fail the enumeration the-
orem.
Also, in case the class Max2

∗→D
Rec has optimal functions then they prove to be

also optimal for the bigger class Max2
∗→D

PR .

Theorem 6.2 Let X be a basic space and D = (D,<, ρ : N → D) be a
computable partially ordered set. Let (∗) be the following condition on D :
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(∗) The set of minimal elements of D is finite and every element of D dom-
inates a minimal element

1. If D satisfies (∗) then

i. Every function in Max2
∗→D

PR has an extension (not necessarily total) in
Max2

∗→D
Rec .

ii. The invariance theorem holds for Max2
∗→D

Rec .
iii. Every U in Max2

∗→D
Rec which is optimal for Max2

∗→D
Rec is also optimal for

the class Max2
∗→D

PR .
In particular, the Kolmogorov complexity associated to Max2

∗→D
Rec coin-

cides (up to a constant) with that associated to Max2
∗→D

PR .

2. If D does not satisfy (∗) then the invariance theorem fails for Max2
∗→D

Rec .
Moreover, counterexamples can be taken in the class Rec2

∗→D of total com-
putable functions 2∗ → D :

∀G ∈Max2
∗→D

Rec ∃F ∈ Rec2
∗→D KG 6≤ct KF

PROOF. 1. Suppose (∗) holds and let M = {m0, ..., mk} be the set of min-
imal elements. For i ≤ k, let Di = {d ∈ D : d ≥ mi}. Some of the Di’s
may be finite, though not all of them (else D would be finite). Let ℓ ≤ k be
such that Di is infinite for i ≤ ℓ and finite for ℓ < i ≤ k. Since the Di are
computable, for i ≤ ℓ, there exists a computable map ρi : N → Di such that
Di = (Di, < ∩ (Di ×Di), ρi) is a computable partially ordered set.
A. Since Di has a smallest element, namely mi, MaxDi

Rec satisfies the enumer-
ation theorem (cf. Theorem 6.1). The proof of Theorem 3.8 applies, insuring
that MaxDi

Rec satisfies the invariance theorem.
Let gi : 2∗ × N → Di be total computable such that maxDi gi = Ui : 2∗ → Di

is optimal in MaxDi

Rec.
Let’s check that Ui is also optimal in MaxDi

PR. Let Fi ∈ MaxDi

PR and Fi =
maxDi fi where fi : 2∗×N → Di is partial computable monotone increasing in
its second argument and has domain Zi×N where Zi ⊆ 2∗ is computably enu-
merable (cf. Proposition 2.14). Define a total computable map f̃i : 2∗×N → Di

such that

f̃i(p, t) =




fi(p, t) if p is seen to be in Zi in ≤ t steps

mi otherwise

Set F̃i = maxDi f̃i. If p ∈ Z then f̃i(p, t) = fi(p, t) for t large enough, so that
Fi(p) = (maxDi fi)(p) = (maxDi f̃i)(p) = F̃i(p). Thus, F̃i extends Fi. Which
trivially yields K

F̃i
≤ KFi

. Since F̃i ∈ MaxDi

Rec, we have KUi
≤ct KF̃i

. Hence
KUi

≤ct KFi
.

B. We group the functions gi and Ui of Point A to get a total computable
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g : 2∗ × N → D and the associated U = maxD g in MaxDRec. Define g as
follows:

g(q, t) =




gi(p, t) if q is of the form 0i1p with i ≤ ℓ, p ∈ 2∗

m0 otherwise

For i ≤ ℓ and d ∈ Di, we have

KU(d) ≤ KUi
(d) + i+ 1 for all i ≤ ℓ and d ∈ Di

Suppose F is in MaxDPR is of the form F = maxD f where f : 2∗ × N → D is
partial computable. For i ≤ ℓ, let Fi = maxDi fi where fi : 2∗ → Di is such
that

fi(p, t) =




f(p, t) if f(p, t) is defined and is in Di

undefined otherwise

Clearly, Fi is the restriction of F to F−1(Di). Thus, KF (d) = KFi
(d) for all

d ∈ Di.
Since Fi ∈ MaxDi

PR and Ui is optimal in MaxDi

PR, there exists ci such that
KUi

≤ KFi
+ ci. Thus, for d ∈ Di, we have

KU(d) ≤ KUi
(d) + i+ 1 ≤ KFi

(d) + ci + i+ 1 ≤ KF (d) + ci + i+ 1

Let a be the maximum value of KF on the finite set
⋃
ℓ<j≤kDj . Set c =

sup({ci + i+ 1 : i ≤ ℓ} ∪ {a}). Then KU(d) ≤ KF (d) + c for all d ∈ D. Which
proves that U , which is in MaxDRec, is optimal in MaxDPR.
C. If V in Max2

∗→D
Rec is optimal for Max2

∗→D
Rec then KV ≤ct KU (where U is as

in B). Since U is is optimal in MaxDPR, so is V .

2. Suppose (∗) fails. Observe that, for every finite subset Z of D, there exists
d such that z 6≤ d for all z ∈ Z. Else, the set of minimal elements of Z would
satisfy (∗).
Let D<ω be the set of finite sequences of elements of D. By dovetailing we can
define a total computable function γ : D<ω → D such that, for all (d0, ..., dk) ∈
D<ω,

di 6≤ γ(d0, ..., dk) for all i = 0, ..., k

Let b : N → 2∗ be such that b(0) is the empty word and b(2n + 1) = b(n)0
and b(2n + 2) = b(n)1. As is well known (cf. Li & Vitanyi [15], p.12), b is a
total computable bijection which is length increasing: i < j ⇒ |b(i)| ≤ |b(j)|,
so that

{bi : i ≤ 2k − 2} = {q ∈ 2∗ : |q| < k}

Let G = maxD g where g : 2∗ × N → D is total computable. Define a total
computable F : 2∗ → D as follows:

F (p) = γ(g(b0, 0), ..., g(b22|p|−2, 0))
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By definition of F , we see that g(q, 0) 6≤ F (p) for all q such that |q| < 2|p|.
In particular, if |q| < 2|p| and G(q) is defined, since g(q, 0) ≤ G(q) we
have F (p) 6= G(q). This insures that KG(F (p)) ≥ 2|p|. Since, obviously,
KF (F (p)) ≤ |p|, we get KG(F (p)) ≥ KF (F (p))+ |p|. Which proves that KG−
KF takes arbitrarily large values, hence G cannot be optimal in Max2

∗→D
Rec .

Since F is total computable, this also proves the last assertion of Point 2. 2

Applying Theorem 6.2 to N and Z with the natural orderings, we get the
following result. It is interesting to compare Point 1 with Proposition 2.5.

Corollary 6.3 1. The invariance theorem holds for the class Max2
∗→N

Rec . More-
over, optimal functions in Max2

∗→N

Rec are optimal for the class Max2
∗→N

PR . In
particular, the Kolmogorov complexity associated to Max2

∗→N

Rec coincides (up
to a constant) with that associated to Max2

∗→N

PR .

2. The invariance theorem fails for the classesMin2
∗→N

Rec , Max2
∗→Z

Rec andMin2
∗→Z

Rec .

Since Reg with the inclusion ordering (cf. §2.4.5) has a minimum and a maxi-
mum element (namely ∅ and Σ̃), we get:

Corollary 6.4 The invariance theorem holds for the classes Max2
∗→Reg

Rec and
Min2

∗→Reg
Rec . In particular, the associated Kolmogorov complexities coincide (up

to a constant) with those associated to Max2
∗→Reg

PR and Min2
∗→Reg

PR .
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