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Abstract

This contribution contains a theoretical analysis on asymptotic sta-
bility requirements in blind source separation (BSS) algorithms. BSS
extracts independent component signals from their mixtures without
knowing either the mixing coeflicients or the probability distributions
of the source signals. It is known that some algorithms work surpris-
ingly well. “blind” means that no a prior information is assumed to
be available both on the mixture and on the sources. This feature
make BSS approach versatile because it is not relying on the model-
ing of some physical phenomena. Nevertheless, few papers mention
either convergence or stability of the estimators in the case where one
make wrong assumptions on the distribution of the sources. This pa-
per presents and discusses stability conditions for BSS algorithms to
avoid spurious stationary points in the case of instantaneous mixtures
of independent and identically distributed sources.
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1 The source separation approach

The problem addressed here is the recovery of m unknown sources, assumed
mutually independent, from the observation of a set of linear mixtures.

1.1 Notations and assumptions

Uppercase letters denote random variables, lowercase letters realisations.
Consider here the simplest noiseless case where n primary source signals
S(t) = [Si(t),-..,S,(t)]" are observed only through m(> n) instantaneous
mixtures of these signals X (t) = [X; (), ..., X,(t)], given by (for each time
instant t)

X(t) = AS(1) (1)

where A = (a;;) is the unknown nonsingular m x n matrix which does not
depend on time ¢. The symbol T is the transpose operator. This problem
is closely related to independent component analysis (ICA) introduced by
Comon [8].

In the following, it is assumed that the signals are stationary, hence we will
omit the time index. The i-th component of S is denoted S;(t) or S; (and
similarily for the other vectors) and has the probability density function (pdf)
ps;(S;). With the only assumption that S has independent components, its
joint pdfis p(S) = [[i—, ps,(Si). Let observe T realizations z(t) of X (¢) such
that z(t) = As(t). We shall only consider the noiseless case. The following
assumptions hold throughout:

1. components of S(¢) are mutually independent variables with zero mean
iid random variables, with non Gaussian marginal distributions and
such that
Vi, E[S;] = 0 (E|[.] denote the expectation operator).

2. matrix A is a square full rank matrix (n = m).

3. S = BX is an estimator of the source signals, which is achieved as soon
as BA is a n x n matrix with exactly one non-zero entry in each row
and each column.

Let g(S) = I, 9s,(Si) (denoted g for simplicity) be a proposed model
distribution for S.



1.2 Source separation criterion

Numerous techniques have been designed to identify the mixing matrix A
from only observations (see for a review Hyvérinen et al. [9] and Lee [10]).
Several papers from Cardoso [4], Comon [8], Cardoso and Amari [6] show that
it is possible to recover a satisfying estimation of the matrix B even when g
is different from p, under certain conditions (such as gg, being sub-Gaussian
if ps, is). If we know B = A~!, the original signals are easily recovered by
BX(t).

Therefore, the problem is to estimate B using X (1),..., X (7) from the sta-
tistical point of view. The mathematical framework of ICA is formulated in
Comon [8]. The basic idea is to minimize the dependency among the output
components. The dependency is usually measured by the Kullback-Leibler
divergence between the joint and marginal distributions of the outputs or by
the related mutual information of BX (t), noted I(BX). Typically, we would
minimize the criterion /(BX) w.r.t. B. Such a criterion is minimal when
components of BX are independent, where G(-) denote the cumulative den-
sity function (cdf) associated to g. However, to compute such a criterion in
the case of linear mixtures, we need an approximation of the distribution of
the sources (the best choice here would be to take for g the exact distribution
of the sources). Although a crude approximation of score function does not
affect a lot algorithm convergence in linear mixtuures, it no longer holds for
nonlinear ones [14].

2 Likelihood of the ICA model

It is not difficult to derive the likelihood in the noise-free ICA model. Let
the domain {2, A, (GB)pear, )} be a statistical model of the sources S:
a set of events, A an algebre on €2, and (Gp)pear,®) an application Q —
R™, differentiable and parametrized by B. In our case, we don’t know the
true distribution p of the sources, and we don’t assume that p belongs to
the parametric model (G)pear,w)- That is we are not doing maximum
likelihood (ML) estimation. Nevertheless, let define a pseudo log-likelihood :

1

Ur(B) =~ 3" log (| det Blg(BX,)), 2)
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where the vectors X;,¢t = 1,...,T are the observations (with the abusive
notation X; = X(¢)), and g is the density of Gp(dx) = |det B|g(Bz)dz.
Statistically, Up(B) is a contrast process if it converges in probability toward
a contrast function whose minimum is the solution [8]. Recall that, if the
minimum is not unique, the discretized form of the criterion remain a local
contrast, under mild conditions (see Pham [12]). The convergence of the min-
ima towards local minimum of the contrast function has yet not been fully
studied and is a major motivation for this work (see [13] for a very first sta-
bility analysis of the adaptive Herault-Jutten network). Major contributions
in stability analysis are due also to Von Hoff[16, 17|, Deville [18], Macchi and
Moreau [19], Fort [20] for the special case where the number of source is two,
or more generaly by Cardoso and Laheld [21] in the case of n sources where
skew symmetric components are major parts of the learning algorithm. In
fact, the requirement on Uy (B) is a bit broader since one only needs that its
gradient vanishes at the solution in order to define an estimator of A1,

Lemma 1 IfE[|log(|det B|lg(BX)))|] < oo, Ur(B) converges in probability
(C.P.):

lim Ur(B) “%" ~Ellog(| det Blg(BX))]

t—00

_ / log(| det Blg(BX))p(s)ds

>C(B,A™)
= K(g|lp) + H(p) + log | det A|. (3)

where K(g||p) denotes the Kullback-Leibler distance between the approzimate
gs and the true distribution p and H(p) the entropy of p. A

The process Ur(B) is called a contrast function, and Br =infg Ur(B) the
contrast estimate. C(B, A™!) is called a contrast function if the application
C(B, A™") has a strict minimum at the point B = A™L.

From inequality (3), it is clear that C(B, A™') > H(X) + log|det A| with
equality iff the distributions g (the pdf associated to G) and p are the same.
Yet, g # p and we need to prove that B = AA™!, where A is the product of
a scale matrix and a permutation matrix, is a minimum.

There are no general (necessary and sufficient) conditions ensuring that

K[| log(| det Blg(BX)))|] < oo, (4)
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but we can enumerate several necessary conditions. In the next section, we
recall former results given separatly by [1, 2, 12] and demonstrate theoreti-
cally why the function C'(B, A~!) has several minima of the form AA~1.

2.1 Candidates for constrast function maxima

Stationary points are the matrices of GL4(R), such that dUr(B) = 0. Those
points are good candidates for maxima and minima of our contrast function
[15]. Furthermore, such points are always solutions to our problems.The
proof is given in the following. The total differential of our contrast process
with respect to the inverse mixing matrix B can be written:

dUr(B) = —d(log | det B|) — %Z g(BIXt)d(g(BXt))

t=1

= —Trace(dBB™") — %ET:;/)(BXt)d(BXt)

t=1

! ! T
with ¢(u,...,v) = — [&‘g)),...,é;((;’))] . Denoting dW = dBB~! and Y; =
BX;, we have
1 T
dUr(B) = — Trace(dW) — — Y " ¢"(v})dBB™'Y,. (5)

t=1

The mapping dW does not correspond to a change of variable, although it
represents a local change of coordinate. As the only points of interest are
those of the form AA~!, we will see that with the change of parameters
W = BA™!, the Hessian matrix has a block diagonal form at each stationary
points. From the differential of dU; we have :

T

=-B -2 ¢(BX)X]. (6)

t=1

ddUr(B)
OB

Let By be a solution of B;IT—i-% Zthl #(BX)X] =0or Id—i-% ZtT:1 ¢(BrX;)(BrX;)" =
0. According to Comon’s definition [8], C' is a contrast function if

s+ El¢(BX)(BX)"] =0, (7)
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for matrices of the form AA~! where A is the product of a diagonal (scaling)
matrix and a permutation matrix (J;,(;)). We only need (and can) recover
the mixing matrix up to a permutation, thus we only require unicity of the
minima up to a permutation and scaling of the matrix A.

Let A;; be the set of solutions of the integral equations 1 +E[¢; (A ;)A)is;] =
0,Vi,j € {1,...,n}. For any permutation o of {1,...,n}, we define A, the
matrix whose components are A; 5(;)00(;),;- Then let B, A = At Yet,

i+ E[¢(B, X) (B, X)"] = Ia + E[$(A, S) (AS)"] (8)

That is for each element (i,7) we have d;; + E[¢; (A;S)(AS)T] = 0. Further
computations lead to:

Dij=106;;+E| ¢ (Z )\z‘,a(z‘)5a(i),k5k> (AUS)]T
k
- 5 + E[¢z( a(z ) j,a(j)Sa(j)]
- { ; iz (9)
1+ E[¢i (N o(i)So(i)) Njo(5)Sey] =0 if i =j

2.2 Existence of solutions

In section 2.1, we demonstrated that B, is a good candidate for a local
minimum. Let us prove the ezistence of such solutions (or some conditions
on the distributions p and g¢) and the unicity. In this goal, we examine if
the Hessian matrix Ilil[a2 g;gB)] is positive definite. This may not always be
the case. In [3], Amari proposed a modification of the algorithm so that the
Hessian becomes always positive definite. If such a stablhty point B, exists

(satisfying B~! + E[¢(BX)X] = 0), this is achieved if & g]_ng) >0, i.e.

T

B — 5 ) ¢/(BX)X[X, > 0. (10)

t=1



2.2.1 Hessian matrix form

= —bj 1b&l, the entries of the Hessian matrix VU can be

written
0*Ur(B) 0 |, 1w
Todb — o |t T 2L o(BX)(Xo)e (11)
K “ t=1
1 T
(VEU)ijke = b by — : 3¢ (BX0)(X0)e(X0)i0in. (12)
t=1

B, is a strict minimum of C (B, A™1) iff E[V%] is positive definite, i.e.

E[(VED)ijed = (AT (AATY5 — Bl (AS) X X;]0in (13)
= (AAD) (AN jp — B[¢' (AS) X X;]6i > 0 (14)

Assume A is a diagonal matrix (recall that A is the solution of I; +

E[¢(AS)(AS)T] = 0), hence

1
E(VEU)ijre] = ik 3~ El$) (A Sk) Xe X516k (15)
2
1
= agza,]kA )\ Z agpaquE[qS;c (/\kSk)Squ]éik (16)
P,q
1
= Gljky - Z aepiqBld), (Ao Sk) Splbik (17)
p

because p # q = E[¢}, (\eSk)SpSy] = 0. Note that if Q(B) = 3,0 bijbre(V5U)ijne
is a positive definite quadratic form, then W — Q(W A~!) and

QW Zzw”’wkp pj O VBU)zgch (18)
1jké pq
- Z WipWrpUipkg (19)
ipkq

with Uipk:q = ZJK ;Jl q_el(vBU)kaé



So it is equivalent to prove that
1

Z aJJI ;Zl]E[ V2 z]kﬁ AA Z aUJ vf a’eiajk Az)\k -

—Zau] O, agyay [m(xksk)sp]aik

M : Z 5up5va[¢k (/\kSk)S 10k

1
Uzykf = jkézf - E[¢]c ()\IcSk)S ]5]Z51k
Ai Ak

Uiukv = 5uk (51)1

is positive definite. Suppose the transformed Hessian Uy,

Uijk@ (Sjkézf E[¢ ()\ iSi )S ]5]£62k

Ai Nk
has a matrix form as
Usjij - Ujiij 0
Uijji - Ujiji
U — jji Vg | ;
0 Usiii
-~ 0 -
which leads to define for all 7 < j:
kij = —E[§;(XiSi) S]]
1
Qi =
TN
I S ]
Vi = Uiy = (%’ '”vjz‘)
Ui = Ui = aij + Kij,
The simplified solution where \; =1 is
. (—E[qs;(si)ms;] 1 >
Y 1 —E[4; (S;)]ELS?]

Uy =1 —E[¢}(XS:)S?]



It is straightforward to derive from equations (26) and (27) the stability
conditions, (1) U; < 0 (see Amari et al. [3]), (i7) the real part of the eigen-
values of U;; are negatives (U;; being symetric, its eigenvalues are real). The
eigenvalues of U;; are the solutions of

(ki — 2)(r5i —2) —ay; =0 (28)

i.e.

1
2o = 5 (ig + i iy — e)? + d03;) (29)

The conditions z; < 0 and x5 < 0 implies from Eq. 29 that z; + z, =
Kij + K,ji) < 0 and

Kij + Kji < i\/ (kij — £ji)* + 4o (30)
(kij + Kji)* > (w35 — ki) + 4o (31)

2

or —Kgjkji > ai;, which is equivalent to write

—E [¢5(MiS:)(A;5;)21E[ ¢5(X;5;) (MiSi)?] > 1. (32)

Formula (32) allows to check the stability conditions online (see [371), by esti-
mating the values E[¢}(A;S;)] and E[();S;)?] with respectively 7 >, ; ¢}(BrX;)
and %ZtT:l(BTXt)Q. Similar but less general proof can be found in [7].

3 More on stationary points

In this section, we exhibit cases where we can obtain false solutions. In the
next section, we will show that the algorithm converges towards any point of
stability, we have already shown that some interesting stable points are good
solution of our problem. However, we need to ensure that we don’t converge
toward any other stationary point that does not correspond to interesting
solutions.

3.1 Unicity

Let g be a probability density function with enough regularity such that log g
has a power series expansion which converges over all its domain of definition,

9



say log g(X) = Y oy A X". Then the score function ¢ is

_9X)_ d

log g(X), (33)

which can be rewriten ¢(X) = > 52 kN X T = 3700 e XFLAf g = k).
Thus solving the equation 1 + E[¢(AX)AX] = 0 reduces to solve

1+ mAEXF] = 0. (34)
k=0

As g is a pdf over R, then necessarily n({X|g(X) > 1}) < 1 (n being a
Lebesgue measure). As a particular case, we will focus on densities of the
exponential form ¢g(X) = Cexp(P(X)), where C is a normalization con-
stant, and P is a polynomial. In order for g to be a probability density
function, it must verify ['>°exp(P(X))dX = &. A sufficient and neces-
sary condition is that the largest nonzero power of P be even and asso-
ciated with a negative coefficient. Hence, we add a condition on P such
that [7>°CX exp(P(X))dX = 0. With the usual conventions, Y = BX,
X = AS (Y(t) = Vi(t),...,Y.(t)]" is a random variable). Let’s denote
M = BA. Since the sources S are supposed to be independent, we try to
obtain all possible solutions of M such that

1 +E[p(MS)(MS)T] = 0. (35)

Now let us see what we obtain if P is a simple polynomial, for example
P(X) = —5.X?%. Then ¢(X) = —X?~1 with k an integer. Solving Eq. (35)
is similar to solve for each couple (i, j) the equation 6;; — E[Y;?*Y;] = 0. Using
the multilinearity property of the moments and mutually independence, we

have

Sij= Y, Miay ... Miq, MyE[S,, ...S,,5] (36)
A1 yeeey Q5D

0ij = Z Moy -« - Mo, Mjyla, ... a1 0 (37)
al,...,ak,b

8 =y Mf,Mj, (38)

10



Thus, for ¢(X) = Zﬁ:o ApXP, we have

k
8= (2; /\PMina) Mjq. (39)
-

a

Example 1 Consider the case the case of 2 signals with ¢(x) = —x3 and
b
d

a® B¥lfa c] [a*+d* adc+b3d] [1 0 (40)
S &b dl |[Ba+d® f+dt ] |01
By simple algebraic operations, one can prove that the following table con-
tains some ezxact solutions

consider the product matrizc M = BA = [Z ] . Equation (35) can be written

in this case

a b ¢ d
1 0 0 1
1 0 0 -1
1 0 0 »p
p 0 0 1
p 0 0 -1
p 0 0 p
-1 0 0 -1
-1 0 0 p
0 1 1 0
0o 1 -1 0
0 1 p 0
0o p 1 0
0 p -1 0
0 p p 0
0 -1 -1 0
0 -1 p 0
A U
pop PP
p P p P
where p is the imaginary number (such that p> = —1). One can easily verify
that the combinations a = ¢ = d = —b = %, a=-c=d=>b= {%@ and

11



a=c=—-d=0>b= q&—i are also solutions of the previous equation. The last

three solutions are not simple permutations each one from each other and are
still mizing the sources. \
But consider the use of the following function g(x) = Cexp(—%) the score

function is ¢(x) = —%x?’ and the last equation becomes
1l a*4+0* dc+b’d] _[1 0 (41)
2|a+d* ct+dt | |0 1]

. 1 1] . . . . .
In that case, the matrixc M = [ ] 18 a trivial solution which gives false

-1 1
results [11].
Not so simple computations leads to a solution of the more general equation

a4 b afe+bkd ] 10
ckfa+dtb T4 dkt T 0 1

1
_ _ k+1 -
Cc = —d = k+\1/g (44)

Whether increasing the number of sources will likely lead to more or less
of such mizing solutions is not completely clear. However, as the dimension
increases, we are looking for roots of polynomials of more variables. Lastly,
we have to look at the Gaussian case, where ¢(x) = —z. The roots of the
equation are solutions of MM' = T,, that is we can obtain any rotation of
the sources as a solution. It is clear that for a particular function ¢, we may
have a infinite number of spurious solutions, which is a well-known result [8].

(42)

that 1s:

3.2 Conditions for unicity

Previous section 3.1 demonstrates that, with some kinds of ¢ functions, sta-
tionary points exist which do not correspond to the solutions. In this section
we propose a theoretical criterion to choose the correct pdf g = p. If we know
the distribution of sources, we can try to find the solutions of (see Eq. 35)
P'(X) or
I=-FE—=X"] (45)
p(X)

12



which can be formulated also as

8 = — / j %g; (MS);p(S)dS (46)
_ pSl (’U,) 1
= /psi ™ uj| det M~ [p(M~"u)du, (47)

3.2.1 Sensitivity on the function ¢

Suppose that pdf p is such that no possible wrong solutions are possible, then
we can try to evaluate the sensibility of the solution obtained using g when
the difference ||[p — g|| vanishes. Let define for one function f and for some
definitive positive matrix I' the function

:/f(u)\detf|p(Fu)du. (48)

Remark that the form of T}, s is similar to the one given in Eq. 47. And let
I's be a solution of the equation T}, ;(I') = 0. Note that 7" is linear in f.

Let define dr 5 a distance measure between two distribution, such that

dr g = Ty (1) = Ty (D) (49
= | [0 = hp et Ty (50
/ () = b} det Tlp(Tu)d (51

Using infinite norm || - [loo
o < 10) = () o 1. (52

because [ p(z)dz = 1. Moreover, the p-norm (with p > 1) || - ||, applied to
Eq. (50) using Holder inequality gives

dr g < 17 () — h(w)], ( [ e r\p(ru»qdu) g (53)

u
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Because [ (|det'[p(I'u))%du = [detT|?" [ p?(v)dv, the right term of Eq.
(53) measure the distance between f and h using || - ||,-norm, Then for all
p21andi+%=1 (p could be c0),

dr,pn < || f(u) = h(u)llp| det D1 Ipll,, (54)

for instance,
dr,pp < ||f (w) — h(w)]l1] det T]|p/lo. (55)
Remark 1 Of course, in our case, we would have f(Y) =1+ %—QYT and
h(Y)=1+4¢(Y)YT. O

Further, if I'; is unique solution of T, ;(I') = 0, and if the mapping I' —
T,,;(T') defines a continuous application from R"*" to R, then I' should con-
verge to I'y as || f — h|| — 0.

3.2.2 Exploiting the Jacobian sensitivity

An other assumption is that dr sj is invertible and derivable at the first
order (at least, we have computed an explicit form in the section 3.1). In
that case, we can find a neighborhood V of I'; inside which dr j is invertible.
The Taylor expansion of d;}f’h around 0 at the first order is:

dp's,(0) = di’s,(0) + dg s, (0)a + O(av), (56)

where O(-) is the integral rest of the formula and o = dp fp. drpp = 0 if
I'=T. Then

=T+ [d'r’f,h(O)]_la + O(a). (57)
Back to BSS problems, we can replace:
[ =BA (58)
I'y=1 (59)
a=drp (60)
rpn=H. (61)

Recall that H has the same matrix representation as the Hessian in the
previous section, but it is seen as a linear mapping instead of a quadratic
form. From the equation (57), we draw:

BA=T+H'a+0O(a) (62)

14



We can straigthforward derive if lim O(a) = 0

a—0
|BA=1| <13 Ml (63)

we can avoid wrong stationary points if we choose a close enough function g.
Replacing « in Eq. (63) by its value resp. in Eq. (60) and (55), we find:

N _ - g1
|Ba-1| < (nf ~ hllp [det(BA - D) ||p||q)
Choosing p = oo and ¢ = 1, it comes (after grouping into the same member):

|BA—1|| <13 01F = Blco. (64)

The final theorem (64) which put in evidence the factor H ! is useful and
advantageous for many different reasons among which the following: (%) it
provides a short summary of the way the iterative scheme progresses, (i7) it
allows score functions selection, (iii) it proposes stability conditions of the
criterion used,etc. ..

4 Conclusion

The last equation provides a boundary on the approximation of the sepa-
rating matrix in case of BSS problems. It shows theoretically that we can
avoid wrong stationary points (1) for a close enough score function even if
the model distribution chosen is wrong whether ||| is big or not,(2) for a
crude score function estimated if ||#|| is small. This point should be the
subject of a further study as well as the efficiency of the algorithm.
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