N

N
N

HAL

open science

Approximation techniques for neuromimetic calculus

Vincent Vigneron, Claude Barret

» To cite this version:

Vincent Vigneron, Claude Barret. Approximation techniques for neuromimetic calculus. International

Journal of Neural Systems, 1999, 9 (3), pp.227-234. hal-00201583

HAL Id: hal-00201583
https://hal.science/hal-00201583
Submitted on 23 Jan 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00201583
https://hal.archives-ouvertes.fr

Approximation techniques for neuromimetic calculus

Vincent Vigneron, Claude Barret
Université d’Evry - CEMIF
40 rue du Pelvoux, CE 1455
91020 Evry Courcouronnes Cedex, France
vvigne,cbarret@iup.univ-evry.fr

Abstract

Approzimation Theory plays a central part in modern
statistical methods, in particular in Neural Network model-
ing. These models are able to approximate o large amount
of metric data structures in their entire range of definition
or at least piecewise. We survey most of the known re-
sults for metworks of neurone-like units. The connections
to classical statistical ideas such as ordinary Least Squares
are emphasized.

Notations

Small boldface letters are used to denote vectors
(e.g. u), the letter "T” to denote transposition, and
[|z|| to denote the Euclidean norm of a vector . Also,
subscripts are used for vector-component indexing (e.g.
u;) and parenthesis for time-indexing (e.g. v(t)). All
vectors are column vectors. The symbol E[-] will be
used for averages over the set of patterns.

1. Introduction

For recent years, the task of learning from exam-
ples has been considered in many cases to be equiva-
lent to multivariate function approximation, that is, to
the problem of approximating a smooth function from
sparse data, the examples. The interpretation of an
approximation scheme in terms of networks has also
been extensively discussed [13, 12, 18].

We have now a rather good understanding of simple
neural networks, which consist of two sort of objects :
the processing units ('neurons, cells’) and the weighted
connections between the units. The formers make sim-
ple computation (summation, thresholding), the latters
produce input values for these computations.

For a given task, building a network requires to
choose

e the network topologies : number of inputs, con-

nectivity, etc.

e the connection values with respect to the task to
learn, through the minimization of an error func-
tion E. This error is function of the adaptative pa-
rameters in the network, which can conveniently
group together into a single weight vector & with
components Ty,...,Tp.

This highlights the need to optimize the networks
in order to archieve the best generalization [2, page
332]. The problem of minimizing continuous functions
of many variables is one which has been widely stud-
ied, and many of the conventional approaches to this
problem are directly applicable to the training of neural
networks.

In this article we review several of the most impor-
tant practical algorithms. We investigate in section 2,
some of the simplest of them in more details, and dis-
cuss their limitations. We then describe a number of
heuristic modifications to gradient descent which aim
to improve their performance. Next, in section 3, we re-
view an important extension of conventional optimiza-
tion algorithms based on the concept of Ordinary Dif-
ferential Equation. Section 4 addresses the problem of
supervised learning in layered Neural Network with lin-
ear units and includes an analysis of the effect of noise
on training algorithms. We survey most of the known
results on linear networks. A good familiarity with lin-
ear algebra and basic calculus on the part of the reader
should be sufficient to follow the paper.

There are many standard monographs which cover
linear /non-linear optimization techniques, including
Polak [14], Gill & al. [8], Fletcher [6]. Most of the al-
gorithms which are described here are ones which have
been found to have good performance in a wide range
of applications. However, different algorithms will per-
form best on different problems and it is therefore not
possible to recommend a single optimization algorithm.

2. The problem of local minimization
2.1 Thegradient rule

For example, consider a function f depending of the
variables (z1,...,2,). Let X be the variables vector

(z5)-

Proposition 1 If f is two times derivable, a condition
for x* to be a local minimum of f is

(i) 5L(z*) =0

(ii) %(m*) > 0 (or, in the case this derivative is
negative, that the next derivative be non-null and
positive).

Proof
Indeed, if * is a minimum, we have :

(1) f(z) — f(z*) > 0 for z # x* but close to z*, and

then
fl@)—f(z*) [<0 if z<2z*
T — x* >0 if x> z*.
Thus, lim M =0.
T—T* xr —x*

(i4) development of Taylor-Lagrange in the vicinity
of x* gives

2
f(x) = ")+ 2£()@z)+—%(x*+0(az—x)(
where 6 €]0,1].

Since gf(*) = 0, the sign of f(z)— f(x*) is the same

that 2 f(a: +6(z—2x*))(z—z*)? which, for z—2* < 1,

1sthesametothat0f8 f(*). Thus & f()>0.Ttis
easy to prove that these conditions are also sufﬁc1ent
We observe also that gf()< 0ifx <z, 2L(z) >0if

z > z*. Then %(x) and (z — z*) have the same sign
that z in the vicinity of z*, i.e

of
or

oz

(z —z*)==(z) > 0.

Hence it seems natural to try to attain z* from z(%,
with the successive approximations

o1
(t4+1) — (&) _ 2 (8
2 = 50 — 522 (50, 1)

where 7 is a positive “gain” parameter. O

_x*)2’(i) %(m

Example 2.1 Some real function Given the real
function f(zx) = @) 8’;() = ze®”) | then

1= 7el5))®

t 2
k=1

() = (

2(0)2
It can be easily seen that, for 0 < v < 2e~"z , the
terms series |x(*)| decrease toward zero. A

Suppose now that z(® = z* + €. Since ﬂ(x*) =0:

oz
of o f
W _ 0 O oy O _
z x 'yam(x)=x%+¢€ 'yamz(a: + ¢)e
Then:
2
2 — 2| = l|1 ~ 75 % (a" + be)

which deviation is far smaller than |e| for small values
of v, as %(x* + 0¢) is positive for small values of |e|.
Then, x converge toward z*. The Eq.1 we have rapidly
examined define the well-known “gradient rule”. These
results can be easily extended to the multivariate case.

Proposition 2 x* is a local minimum of f if and only
if
*)=0,Vi

(ii) the matriz of second partial derivatives is definite
positive, i.e Yh = (hy,... ,h,) # 0:

Z 5%3@,

*Vhih; > 0.

Proof

The item (i) is trivial. (i) is solved using a Taylor-
Lagrange development at the second order in the vicin-
ity of * [5]:

where 0 €]0,1[. As previously, it is easy to observe if
x is close to x*:

o (x*)(2; — =}

i
which can also be written
Vi) (x—-=z*) >0,

by denoting V f(x) the vector [g—zfl(w), .-
Indeed, developping g—; yields:

9
(@) =) (a4 i@ = =) (a: = 7). 01 €,
Hence,
Vi) (x—x*) = Z Z O (x* + 0;(x — x*))
B 7 ; 6.733‘:13,’ ¢
-3 g;f;i (2" +0(@ — ")) (w; — }

which is stricly positive if x is close enough to *, ac-
cording to Proposition 2.(i7). We can then use the
same type of algorithm in one dimension and propose
the following algorithm:

2zt = 2 _ AV f(x®). (2)
From Eq.2, we obtain:
le*D —*|? = (a9 —2* -1V f(@")) -
(20 — 2" =1V f(2®))
=[le® —2*||> = 29V f(z?) -
@ —z*) + 7|V (D))

For small v, the term with «? is negligible with re-
spect to the term with + which is negative. Thus,
the distance between (Y and z* is decreasing with
t. Moreover, the function f(2®) is diminishing:

f@D) = f (20 — 1 f(@®)).
A Taylor development gives :

F@®) = f(@®) ||V (@)

2 2
g N PO).
+ 3 2 830]-3:,-(33 + 604V f(2\Y))
Af(x®) of ()
6:3,- 6:13]'

Once more, we have proved that, for small v values,
the term with +? is negligible. f is decreasing again.
O

We note that such gradient descent is reminescent
of the Robbins-Monroe procedure for finding the zero
of a regression function.

Example 2.2 This can be illustrated with a two-
variables exemple [7]. Consider the function f(x)

e*i 823 The derivatives of f(-) with respect to = yield
(2L, 21 = (22, f(x), 1622 f (). Then, Eq.2 gives

8x1’ Bxo

Clearly, if 16y f(2(®) is in]0,2[, then ® converge to-

it =a(1-20f (@)
o =201 - 16vf(x))

; warf)0. Moreover the decreasing behaviour is different:

argt) decrease as (1—2vf(x))t, by contrast to a:gt) which
decgliase as (1 — 16vf(x))t, which is faster. A
RpE

J

2.2 Newton method

The algorithms which are described in this paper
involve taking a sequence of steps through parameter
space: we must decide the direction in which to move
and then how far to move in that direction. With sim-
ple gradient descent, the direction of each step is given
by the local negative gradient of some error function f
and the step size is determined by an arbitrary learning
parameter. We might expect that a better procedure
would be to move along the direction of the negative
gradient to find the point at wich f is minimized. This
procedure is referred to as line search we now consider
in the following.

As it has been seen in the previous section, vari-
ous convergence speeds can occur depending on g—gi.
Suppose A f(x) is the second derivative matrix, i.e.
(2=

Ozjx;
trix, whose eigenvalues are all real and positive. Let
A1 > A2 > ... >)\, the eigenvalues of Af(x*) and
(01,02, - - ., ¢n] the orthogonal basis associated.

If we choose the starting point of the gradient algo-
rithm near * but in the direction of ¢;, we obtain:

. Af(x) is a symetric definite positive ma-

2 =z* +e¢;, e 1.
At the next step:

2 =20 _ AV f(x* + edy).

Let us compute 1) with a second-order Taylor de-
velopment (see [7]). Neglecting the term with 72, we
get:

l2® —a*|* = [|2© — 2*|]> = 27V f (2" + edi)ed.
If € is small enough, we have:
Vi@ +epi) = V(@) + Af(x")edi = Af(x")eds.

hence, for small € and 7, and using the definition of
eigendecomposition, A f(x*) - ¢; = Ai¢;, we obtain:

e = 2|2 » [- & = 236N 64l
then, since ||¢;]|> = 1:
l® - 2*|* ~ (1 - 2yXi).

It is clear that 2(*) converge towards 2* with a speed
in proportion of the eigenvalue associated with the cho-
sen direction. In particular, in the case of strong dis-
parity between the eigenvalues, it can lead to a very
bad convergence.

To assure a “good” rate of convergence, it is de-
sirable to choose a modified gradient algorithm, the
Newton method.

24D =20 — A f@O) V@YD), ()

which, in the vicinity of *, behaves in a homogeneous
manner in all the directions.

2.3 Inexact gradient and Newton method

Newton method is computational prohibitive since it
would require O(n®) operations to inverse the Hessian
matrix (n being the number of parameters). Alterna-
tive approaches, known as quasi-Newton, build up an
approximation to the inverse Hessian over a number of
steps.

The quasi-Newton approach involves generating
a sequence of matrices M which represent increas-
ingly accurate approximations to the inverse Hessian
(A f)~! using only information on the first derivatives
of the error function. From the Newton formula (3),
we see that the weight vectors at steps ¢t and ¢t + 1 and
related to the corresponding gradients by

2D — 20 = ~Af(@ ") (V@) - V(2)

which is known as the quasi-Newton condition. The
approximation M of the inverse Hessian is com-
puted so as to satisfy this condition also. The

two most commonly used update formulae are the
Davisdon-Fletcher-Powell (DFP) and the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) procedures. Full
description approach is beyond the scope of this pa-
per, but it is well established that DFP or BFGS are
extremely robust with respect to gradient errors. In
practice, these approaches work better when z(® is
sufficiently close to the problem solution, but may not
work well otherwise.

Proposition 3 Let §* be the Newton direction and &
the direction computed by the inezact gradient gt =
(V (D) - v f(x®)). At step 0, & is a rotation of
&* through the angle 05.

Proof
Define a quadratic function f(z) = 1a” Az where A is
a positive definite matrix defined by

a1 ¢+t ¢=¢!
T2 \¢=¢)
Select p € [0;1] and define (%) = ? G -I_— Zg) . Then,

we have the following vectors:
f@®) = S(1+1?), V(@)

V2 ((—
— (A+ AT)\p©@ = V2 K
(A+A4%)z 2 \utc
and Af(z©) = A.
Using these definitions, one can easily establish that
the Newton direction is

5 = —Af @) V()

__V2 (1 —C#> _ _2©
2 \1+uC ’

hence, (®) 4 §* is the exact solution V(. However, the
quasi-Newton direction actually computed using the in-
exact gradient g(® is':

s 410 L+
0= AlgO—Q(_C+<_1
__@<—1—€u)
o2 \mw-1)°

Notice that [V f(z@)|| = [lgV|| and (||| = [|3].
More specifically, ¢‘©) can be considered as a rotation of

C+¢t) 2 \p+¢

nitializing the procedure using the identity matrix corre-
sponds to taking the first step in the direction of the negative
gradient. At each step of the algorithm, the direction Mg is guar-
anteed to be a descent direction, since the matrix M is positive
definite.

—<+<1> V2 (—C—u

)

V f(2(®) through an angle §, = cos ™! (%) while &

can be considered as a rotation of §* through an angle
2,2
05 = cos™ ! (%)
Further, it comes that the angle between ¢ and
V(x©) is:

(=) (P 1) =4
”‘“S< W2+)23 +1))

Notice that as ¢ approaches zero, the matrix A be-
comes successively more ill-conditioned and errors in
g® are magnified by successively greater factors when
used in the computation of the search direction §. O

2.4 The gradient descent method

It could seem that what the previous algorithm
solve any minimisation problem of a regular fonction.
In pratice, Af and V[are not easily/directly com-
putable. Sometimes, in the neural networks theory,
V f is not easily computable but, we can observe eas-
ily a random variable, say G (&,), whose average value
is Vf:

EG(&,z)] =V /.
Let us examine the algorithm :
24D = 20 — G(g, zV). @)
One can immediatly note that the condition v — 0 is
necessary? to stabilize the algorithm on z*. Suppose
v =) decrease towards zero. Eq.4 is

w(t+1) — w(t) _ ’Y(t+1)G(£(t+1),w(t)). (5)

Suppose also ¢t and T fixed, but with large values:

T
2T — (6 _ 27(t+k)G(§(t+k),w(t +k—1))
k=1

T
—2® _ (Z A+ .
j=1

T
1
(t+k) (¢ (t+k) _
e S A RGED (e 1k — 1)),
2 =1 Y =

2Except if the variance V[G(€,z)] — 0, which never occurs.

For very small values v(**%) and if the law of G(:) is
not very sensitive to slow variations of x, we have (by
approximation):

T
2HT) 5 g0 = (3744
j=1

T

1

b (LHR) G) (D)

7 ~% "y (TR, 2®),
2t SAE et

However, if E]T:l y{t+) > 1 (for large T) and the

variables G(€**) (")) are independent, we can apply
the Large Numbers law:

1
Z?:l fy(t-i-j)

This can be shown by examining the variance of the
deviation z(t+T) — 2(1):

T
Z,y(t+k)G(§(t+k),m(t)) ~EGE,x) =V/.
k=1

T

1 2

S e
=1 k=1

which is very small if o | ~®? converge. Thus, as-
suming (i) Y ro, 7v® = oo and (ii) 352, A < oo,
the algorithm in Eq.5 converge [5]. In other words, We
are assured of convergence, if the learning rate parame-
ter v is made to decrease at each step of the algorithm
in accordance with the requirements of the theorem
[11]. These can be satisfied by choosing y(¥) o % al-
though such a choice leads to very slow convergence®
and very long computation times.

Example 2.3 Here, we demonstrates the mini-
mization of the following function in R :

ﬂm:@+ﬁ—£F§—ﬁHma—mf

where p is a positive parameter. Because of the way
the curvature bends around the origin, such function is
notoriously difficult in optimization examples because
of the slow convergence with which most methods ex-
hibit when trying to solve this problem. This point is
due to the ill-conditioned Hessian matriz. This func-
tion has a unique minimum at the point T = [%,1]
where f(x) = 0. We demonstrate in Fig.1 a number
of techniques for its minimization starting at the point
x = [—2;0,5]. BFGS and Newton find easily the right

3In most artcle, for practical reasons, a constant value of + is
often used as this generally leads to (seemingly) better results,
but guarantee of convergence is lost.

®

Figure 1: R? Function minimization. (1) BFGS
method (25 iterations), (2) Newton method (40 itera-
tions), (3) Steepest Descent method with constant step
(no convergence in 250 iterations).

search direction (Fig.1.1) while in constrast the Steep-
est Descent fail to find the minimum (Fig.1.3). A

An important advantage of the sequential approach
over “batch” methods arises if there is a high degree
of redundant information in the data set [2]. The gra-
dient descent method updates the weigths after each
pattern presentation, and so will be unaffected by the
replication of data.

3. Stochastic approximation algorithms

The results of §2.4 can be generalized in order to
study other algorithms proposed in the Theory of Neu-
ral Networks [17]. By contrast, G(§,) is no more the
opposite of a “random gradient” but more generaly a
“random function” of x. this function denoted h(x) is
supposed regular, valued in R™. We have:

E[G(§,z)] = h(z).
3.1 Ordinary Differential Equation

The Eq.4 can also be written
2
D) — 26 _ ,y(k)G(g(k),w(t)) +~) 0(£(k)7m(t))_

where O(-) is an error term (negligeable in most
of the cases) and) such that > 52 () =

00, Y pey 'y(k)z < o0o. Hence,

2D g0 o 4D gD 20y,

Simple induction shows that:

T
:E(t+T) _ m(t) ~ (Z ,Y(t+k)> h(m), (6)

k=1

which shows that the variation on x between ¢t and ¢t+7T
si proportional to h(x).
Let us introduce a new scale of time:

t
) = (34,
k=0

then lim u® = co. Suppose also that
t—o0

x(u®) = £®

i.e. at time u(t), x take the value (®). The equation
6 gives:

x(u

(t+T)

) = x(u®) & @) — u®)h(x(u®)).

i.e. in a simpler form:

X _ (). (7)

Oou

The behaviour of & can be compared with the solu-
tion of a (“rescaled”) differential equation. this equa-
tion is usually called the Ordinary Differential Equa-
tion (ODE) [5].

The particularity of the ODE is that for ¢ very large,
the law of is uniformly close to the law of the ODE so-
lution. Moreover, the trajectory of @ is close to the tra-
jectory of the ODE solution. In conclusion, the study of
these algorithms is comparable to the associated ODE.

3.2 Lyapounov function and attractor

In the case of a gradient descent, the associated
ODE is:

ox

— =h(x)=-Vf(z

7 = h(z) = -V f(@),
for simplicity, let us take again . The local minima
x* of f are constant solutions. Moreover, such a point
x* is an attractor. Indeed, the differentiation of f for
a solution x of the ODE is given by the chain rule:

of _Of 0z B 9
@) = oL 2T = Vi(@)h(@) = — V@)

f decrease along the trajectories of the ODE. x(u)
converge toward a point x*. More generaly, it would
be useful to caracterise the points «*, which verify nec-
essarily:

h(z") =

Let «* be a zero of h(-). I'(x*) is a domain of attraction
*

for «* if, when (% is in T'(x*):
(4) £ stay in T'(z*) and Jim = x*
t—oco

(i) When ||2(®) — 2*|| is small, |[|[2® — 2*|| is small
Vt.

Such points are called “attractors” for Eq.6. How-
ever, zeros can not be easily shown to be attactors for
most functions h(-). It can be done indirectly using
a Lyapounov function: it is a fuction V', continuously
differentiable and definite on a vicinity I' of &* such
that

(0) V(z
(#9) If " is not bounded, 1i_>m V(z) = oo.

)=0and V(z) > 0if # z.

(t9) VV (z) - h(z) if = # x*.

We have the following result

Proposition 4 If such a Lyapounov function exists, T’

is an attractor domain for x*. |
Proof
Let ¢(u) = V(x(u)), the derivative of 9 is using again
chain-rule:

0

20 () = VV (@(u)) ha(w)) <0,

and %(u) is non-zero except in x*. Hence, 9 is a
strictly decreasing function, and in the case I' is not
bounded, the limit of 1(u) exists when u — oco. This
limit is zero and x(u) — x* or this limit is strictly
positive which is impossible.

Indeed, in this case () is moving in a crown around
x*, but not so close to x*:

da > 0 s.t. ||lz(u) —x*|| > a
= 3b > 0s.t. VV(x(u))h(x(u)) < —b
= ¢(2(0)) — bt > (1)

Moreover,

Ve > 0,3d s.t. ||z(u) —z*|| <d = V(z) <c.

Since ¢ is a decreasing function, if x(0) is near x*,
V(x(u)) stay small, i.e. x(u) is close to x*.
O

Example 3.1
equation in B2 [7]

8.’1}1
ou
Oz
ou

which can be written:

ox

= -V (@) - g(@),

with f(x) = e@+2), Vf = [2L 211 and g(x) =
(2z1€%2,2x2e"t). We have:

%1:1”2 2(f(z) - V[V /(@) (~V f(z) - g(x))]

=2(f(z) = D[=IVF(@)]* -

Since (f(x) — 1) > 0, we just have to verify that

Let us consider the differential

= —23;'1 (e(E%-{—Z%) — ez2)
= —2$2(e(z%+$g) — exl)

Vi(z)Tg(x) > 0.

V f (@) g())]-

It is easy to show that:
V@) g(x) = 4f (x)[zle™ + 23¢™] > 0

Then, V(z) = ||f(z) — 1||? is a Lyapounov function
for this differential equation, the point (0,0) is the only
attractor of R? since V(x) — oo when x — oco. A

3.3 Remarks concerning constant-step algo-
rithms

For an algorithm such that the learning rate ~ in
Eq.8 is constant:

2D = 2O 4G, z0) (8)

we cannot talk of real convergence since the vari-
ance of (1D — (*) stays around 42. For very small
values of 7, the behaviour of this algorithm is compara-
ble the one of an algorithm with decreasing rate. The
difference is in the case z* is an ODE attractor, then
xz® don’t converge toward x* but is rapidly oscillating
around x*. Under the effect of a succession of hasards,
it can escape the vicinity of x*. These phenomenons
are not under the scope of this article and won’t be de-
tailled here. The results with constant-step algorithms
should be considered valuable only in the mean term,
not at the long term.

In practice, those algorithms are the most often used
for the following reason : if under some effects, the ob-
jective (i.e. the attractor *) is slowly moving through
time, a constant-step algorithm is capable to follow it
without much difficulties. By contrast a decreasing
step algorithm which can loose its target when 7 is
not so small.

4. Linear calculus, optimization or regu-
larization

A prominent feature of modern Artificial Neural
Network classifiers is the nonlinear aspects of neural
computation. So why bother with linear networks ?
Nonlinear computations are obviously crucial but, by
focusing on these arguments we miss subtle aspects of
dynamic, structure and organization that arise in the
network during training. Furthermore, general results
in the nonlinear case are rare or impossible to derive
analytically. One often forgets by instance that when
learning starts with small random initial weights the
networks is operating in its linear regime* [1]. Finally,

4Several authors defend the idea that even when training is
completed several units in the networks are operating in their
linear range

the study of linear networks leads to some interesting
questions and paradigms which could not have been
guessed by advance.

In classical statistical discriminant analysis by ex-
ample, to discriminate between two pattern classes, one
uses a discriminant function

g(x) = wle + wo, (9)
where,

e input vectors xi,x2,...,xy in d-dimensions are
given with a corresponding set of m-dimensional
target vectors y,...,TnN.

e wy, w = (wy,...,wy) are the weights of the
Fisher discriminant fonction (DF)

w— S-! (j(l) _ 5(2)) wp = _%wT (fu) + j(z))

. mg-i) is the j-th pattern vector from the i-th class,

e where the sample covariance matrix is

2 n;) ; »

(i) — 1 5 (4)
and 2 = -3 701, 2.7 a mean sample vector.

When one omits the covariance matrix S, one has the
Euclidean distance Classifier [4]. The neural network
can itself form linear discriminant hyperplane in a high-
dimensional feature space and discriminate compli-
cated objects. Gallinari et al. [3] and Koford [10] show
that when ny = na, training of cost function with f
linear (which become ADALINE, a prototype of mod-
ern SLP) leads to a weight vector w equivalent to the
weights of standard Fisher DF, which is asymptotically
optimal when classes are gaussian with common covari-
ance matrix. Raudys [16] indicated that if ny = ny and
with whitened data such that E[z] = E[y] = 0) [15], af-
ter the first back-propagation learning step in a batch
mode of the SLP, one obtains the weights equivalent
to the Fuclidean Distance Classifier. Lets onsider a
two layered linear network which computes the linear
function y = (éx = Az (Fig.2).

As usual, we assume that a set of d-dimensional
input patterns/vectors z1,Zsz,...,ZN IS given with
a correponding set of m-dimensional target vectors
Y1,---,yn. The patterns are whitened (i.e. E[z] =
EJy] = 0) [15]. The problem of linear regression can be
stated in the following manner : find an d X m matriz
A which minimizes the Lo loss function

Ly = trace[(y — Az)T (y — Az)],

Yy
m output units
p hidden units
d input units
T

Figure 2: The basic Neural Network with an d —
p — m architecture comprising one input layer, one
hidden layer and one output layer with n,p, m units
respectively.

given y and . A minimum will always exist, since
L is a convex differentiable function. Learning algo-
rithms consist in slowly altering the connection weights
to archieve this minimization. L- is continuous, dif-
ferentiable and bounded below by zero and therefore
it must reach its minimum for a matrix satisfaying
Ay, = Sy, where ¥, = Elzz?] and 3, = Elyz7]
are the variance-covariance matrix. In the case where
Y.z 18 positive definite, the unique optimal A is given
by

A=%,%70 (10)
The derivative of Ly with respect to the weights A
is
VLy(A) = (2A%,; — 25,,;).

Thus, the gradient descent learning rule can be ex-
pressed as At = A®) _ VL, (A), where 7 is the
constant learning rate. After the first learning iteration
for the weights A, one obtains
A(l) = A(O) — T)VLQ (A) = A(O) - 7](214(0) Ezz - QZym)

=A© (I =2n%e) — (I = (I —2nZy,))
= A0G,, — (I - Gy.),
where Gy, = I — 203;, and Gy, = I — 2n¥,,. Now

we will analyse the changes of the weight vector in the
second and following iterations :

A® = AW _p24Wx,, — 23,)
- (A(O)Gm —(I- Gw)) (I = 2754s) — (I — Gya)
=AOG2 — (I - Gyo)T + Gaaz),

and further, simple induction shows that
AR = AOGk — 3 ¥ 11 -GE)
which can also be written

A®) = AO(T = 29%,,)F — 2,370 (T (T - 20%)").
(11)

By definition matrix X, is not singular, so it has
an inverse. Stopped learning stands in k < oco. Using
the first terms of the expansion (I — 2n¥,,)* =T —
2knL,p + @(27))22373 —... in (11) for small 5 and
k and results in

AR~ A k(I —n(k — 1)8,.) (I + A9 S,,)

Further (I—8%;;)"! = I+8%,,+... with supposition
that n and k£ are small gives

AW~ AO) _opk(D,, + AVT,,) x
X (I - ﬂ(k - 1)E:cw)_1 . (12)

When the prior weights are very small one shall as-
sume A(®) = 0. Then we obtain from (12) :

AR = XS, (Sep + M), (13)

with A\ = —ﬁ. Equations (13) and (10) are equiv-
alent when £, the number of iterations, increase. Com-
pare with the definition of the ridge estimate A(a) =
Yye(Eze +)71, a > 0 proposed by Hoerl and Ken-
nard [9], the iterative scheme of a linear Neural Net-
work is equivalent to computing the LS ridge estimate
of the covariance (X, + AI) instead of the usual X,
Of course A is the ordinary LS estimate.

Our analysis links Stopped Learning in linear neural
networks to classical statistical techniques in general,
and Ridge estimation in particular.

5. Epilog

This article is the occasion to familiarize with the
“use” of optimisation and approximation techniques in
neural networks computation. Even propositions are
not strongly precise and don’t pretend to be exhaus-
tive, the methods and results constitute the essential
of these well-known algorithms. The use of these algo-
rithms overtakes the neuromimetic context.

Much debate has occured over past years between
advocates of linesearch techniques and devotees of gra-
dient descent. Some arguments center upon simplicity

or elegance which are non-scientific ones. More tan-
gible are arguments such as linesearch codes are cited
as superior with respect to scale invariance and with
respect to cost-per-iteration, while others are often re-
garded as superior for nonconvex problems. However,
when computing a search direction with a linesearch
method, a very small amount of error in the computed
gradient may result in a computed search almost dia-
metrically opposite the desired direction. Although the
example presented in §2.3 page 4 represents a extreme
case of bad conditioned matrix, linesearch algorithms
are nevertheless in principe highly vulnerable to the
slightest inaccuracies or noise in gradient evaluations.

References

[1] P. Baldi and K. Hornik. Learning in linear neural net-
works : A survey. IEEE Transactions on Neural Net-
works, 6(4), July 1995.

C. Bishop. Neural networks for pattern recognition.

Clarendon Press, 1885.
L. Bottou and P. Gallinari. A framework for the coop-

eration of learning algorithms. In Neural Information
Processing Systems, pages 781-788, San Mateo, 1991.

Morgan Kaufmann.
O. Duda and P. Hart. Pattern Classification and Scene

Analysis. Wiley, New York, second edition, 1973.
M. Duflo. Méthodes récursives aléatoires. Masson,

1990.
R. Fletcher. Practical methods in optimization. John

Wiley, New-York, second edition, 1987.
J. Fort. Bases mathématiques pour les réseaux de neu-

rones artificiels. unpublished, 1994. Chapitre 4.
P. Gill, W. Murray, and M. Wright. Practical optimsi-

sation. Academis Press, 1981.
A. Hoerl and R. Kennard. Ridge regression : Biased

estiomation for nonorthogonal problems. Technomet-
rics, 12:55-67, 1970.

J. Koford and G. Groner. The use of an adaptative
threshold element to design a linear optimal pattern
classifier. IEEE Trans. on Inf. Theory, 12(1):42-50,

1966.
Z. luo. On the convergence of the lms algorithm

with adaptative larning rate for linear feedforward net-

works. Neural Computation, 3(2):226-245, 1991.
J. Moody. The effective number of parameters: an

analysis of generalization and regularization in nonlin-
ear learning systems. In S. H. J. Moody and R. Lipp-
mann, editors, Advances in Neural Information Pro-
cessing Systems, volume 4, pages 847-854, Paolo Alto,

CA, 1989. Morgan Kaufmann.
T. Poggio and F. Girosi. A theory of networks for

approximation and learning. A.l. memo 1140, Mas-

sachusetts Institute of Technology, 1989.
E. Polak. Computational Methods in Optimisation: a

unified approch. Academis Press, New-York, 1971.
C. Rao and H. Toutengurg. Linear Models. Least

Squares and Alternatives. Springer series in Statistics.
Springer, Berlin, 1996.

[10]

[11]

[12]

10

[16] S. Raudys and T. Cibas. Regularization by early stop-
ping in single layer perceptron training. In J. V.
C. Von der Malsburg, W. von Seelen and B. Send-
hoff, editors, Proceedings Int. Conf. on Artificial Neu-
ral Networks, pages 77-82. Springer, 1995.

V. Vigneron. Méthodes d’apprentissage statistiques et
problémes inverses. Applications & la spectrographie.
These de doctorat, Université d’Evry, May 1997.

H. White. Learning in artificial neural networks: a sta-
tistical perspective. Neural Computation, 1:425-464,
1989.

[17]

[18]

