
HAL Id: hal-00201574
https://hal.science/hal-00201574

Submitted on 1 Feb 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

About some specificities of embedded multiagent system
design

Jean-Paul Jamont, Michel Occello

To cite this version:
Jean-Paul Jamont, Michel Occello. About some specificities of embedded multiagent system design.
IEEE/WIC/ACM International Conference on Intelligent Agent Technology, 2007, Silicon Valley,
United States. pp.55-59. �hal-00201574�

https://hal.science/hal-00201574
https://hal.archives-ouvertes.fr


About some specificities of embedded multiagent systems design

Jean-Paul Jamont and Michel Occello
Pierre Mendes-France University

LCIS-INPG Laboratory
51 Rue Barthelemy de Laffemas, 26000 Valence, France

{jean-paul.jamont,michel.occello}@iut-valence.fr

Abstract

Multiagent systems (MAS) satisfy to design requirements
for open physical complex systems. However, up to now,
no method allows to build software/hardware hybrid multi-
agent systems : we introduce the DIAMOND method.

1 Introduction

Control systems, processing systems, communication
systems and interactive systems can be seen as OPCS
(open physical complex systems)because they are supported by
new wireless technologies, they are more and more dis-
tributed and decentralized. They involve numerous soft-
ware/hardware entities which enable logical/physical inter-
actions between them and their shared environment. Our
work deals with the modelling and the design of OPCS us-
ing MAS, arguing that two types of needs emerges in this
specific context : needs concerning specific system archi-
tectures (our contribution is the MWAC model(Multi-Wire-

less-Agent Communication)based on our previous work on wire-
less sensor networks [4]) and needs concerning methods.
In this paper, we focus on methodological specificities and
on our contribution, the DIAMOND method(Decentralized Ite-

rative Approach for Multiagent Open Networks Design). We try to an-
swer to some questions asked by this kind of applications
all along the lifecycle and in the choice of formalisms.

2 The approach

A few works deal with embedded MAS, but new appli-
cations are strongly concerned by this domain as pervasive
computing or industrial applications of MAS [8]. Even if
we are at the beginning of the expansion of embedded MAS,
we are sure that embedded MAS methods will be the con-
tinuation of traditional embedded system design lifecycle.
Multiagent approaches focus on software parts and forget

the hardware aspects. These aspects are generally taken into
account only during the deployment step [3], and are lim-
ited to the choice of the plateform where the agents must
be deployed. The hardware/software hybrid systems design
is thus very partially covered by MAS methods. An alter-
native to this type of lifecycle is the codesign approach. A
codesign method unifies the development of both hardware
and software parts by the use of a unified formalism. The
partitioning step is pushed back at the end of the lifecy-
cle. We can thus settle that the choice of a specific lifecycle
model which support a codesign approach [1] is required.

Figure 1. Our lifecyle

Because of the complex features of our systems, the life-
cycle model must enable late modification of specifications.
Furthermore, it is necessary to come back on previous de-
sign steps (refinement) and to explore the space of solution
of the hardware/software compromise. The design process
must accept genericity (incremental criteria are in favourof
the genericity). Finally, we must identify and keep a trace
of all the parameters of the different retained solutions. The
evaluation of different lifecycle models in respect with these
previous criteria leads to adopt a spiral lifecycle [2].

Four main stages, distributed on a spiral cycle (fig 1),



may be distinguished within DIAMOND. Therequirements
definitionprecises what the user needs and characterizes the
global functionalities. The second stage is amultiagent-
oriented analysiswhich consists in decomposing a prob-
lem in a multiagent solution. The third stage of DIAMOND
starts with ageneric designwhich aims to build the MAS
(once agents’tasks have been defined) without distinguish-
ing hardware/software parts. Finally, theimplementation
stage consists in partitioning the system in a hardware part
and a software part to produce code and hardware synthesis.

3 Requirements Definition

This preliminary stage starts by an analysis of the physi-
cal context of the system (identifying workflow, main tasks,
etc...). Then, we study the different actors and their par-
ticipative user cases (using UML use case diagrams), and
the services requirements (using UML sequence diagrams)
of these actors. The UML sequence diagram can include
physical interaction.

The second step consists in an original contribution: the
study of particular modes for a system that we call ”running
modes” and ”stop modes”. It is generally wishable that the
system works in autonomy. But working with physical sys-
tems requires to identify many particular possible behaviors
: In which state must the system be when going under main-
tenance? How to calibrate the system entities? What must
be the state of all the entities when an emergency stop oc-
curs (robot in safety area...)? Even in a decentralized intel-
ligence context, the conditions defining these modes must
remain easily understandable. The users of the system must
respect laws and norms. These are very strong because the
human safety can easily be altered in a physical context.

This activity puts forward a restricted running of the sys-
tem. It allows to specify the first elements necessary for
a minimal fault-tolerance. This activity allows to take into
account the safety of the physical integrity of the users pos-
sibly plunged in the physical system.

We have defined fifteen differents modes grouped in
three families. Thestop modeswhich are related to the dif-
ferent procedures for stopping and to define the associate
recognition states. Therunning modeswhich focus on the
definition of the recognition states of normal running, test
procedures etc. Thefailure operations modeswhich con-
centrate the security procedures (for example allowing to a
human maintenance team to work on the system) or to spec-
ify rules for restricted running).

4 Multiagent-oriented analysis

The multiagent stage is handled in a concurrent way at
two different levels. At the society level, the MAS is consid-
ered as a whole. At the individual level, the system’s agents

are built. This integrated multiagent design procedure en-
compasses five main phases discussed in the following.
Situation phase.This phase defines the overall setting, i.e.,
the environment, the agents, their roles and their contexts.
This stems from the analysis stage. We first examine the
environment boundaries, identify passive and active com-
ponents and proceed to the problem agentification.
We insist here on some elements of reflexion about the char-
acteristics of the environment [7]. We must identify here
what is relevant to take into account from the environment,
in the resulting application.
It’s, first of all, necessary to determine the environmentac-
cessibilitydegree i.e. what can be perceived from it. We will
deduce from these characteristics which are the primitives
of perception needed by agents. Measurements make pos-
sible to measure parameters which enable to recognize the
state of the environment. They thus will condition the deci-
sional aspect of the agent. The environment can be qualified
of Deterministif it is predictible by an agent, starting from
the environment current state and from the agent actions. A
physical environment is seldom deterministic. Examining
allowed actions can influence the agent effectors definition.
The environment isEpisodicif its next state does not de-
pend on the actions carried out by the agents. Some parts of
a physical environment are generally episodical. This char-
acteristic has a direct influence on agent goals which aim
to monitor the environment. A real environment is almost
alwaysdynamicbut the designer is the single one able to
appreciate the level of dynamicity of the part of the envi-
ronment in which he is interested. This dynamicity param-
eter as an impact on the agent architecture. Physical envi-
ronments may require reactive or hydrid architectures. The
environment isdiscretif the number of possible actions and
states reached by the environment are finite. A real environ-
ment is almost always continuous.
It is then necessary to identify active and passive entities
which constitute the system. They can be in interaction or
be presented more simply as the constraints which modulate
these interactions. It is necessary to specify the role of each
entity in the system. This phase allows to identify the main
entities that will be used and will become agents.
Individual phase. Decomposing the development pro-
cess of an agent refers to the distinction made between the
agent’s external and internal aspects. The external aspect
deals with the definition of the media linking the agent to
the external world, i.e., what and how the agent can per-
ceive, what it can communicate and according to which type
of interactions, and how it can make use of them.
The agent’s internal aspect consists in defining what is
proper to the agent, i.e. what it can do (a list of actions)
and what it knows (its representation of the agents, the en-
vironment, interaction and organization elements).
In most cases, the actions are carried out according to the



available data about the agent’s representation of the envi-
ronment. Such a representation based on expressed needs
has to be specified during specifications of actions. In order
to guarantee that the data handled are real data, it is neces-
sary to define the required perception capabilities. We have
defined four types of actions.Primitive actionsare tasks
which are not physically decomposable.Composed actions
are temporal ordered lists of primitives.Situated actions
need to have a world representation to execute their tasks.
Society phase.Interaction among agents are achieved via
messages passing. Such exchange modes are formalized by
means of interaction protocols. Although these interaction
protocols are common to all the agents, they are rather ex-
ternal to them. Conflict resolution is efficiently handled by
taking into account the relationships between the agents by
building an explicit organizational structure. Such an orga-
nization is naturally modelled through subordination rela-
tions that express the priority of one agent on an other.
Integration phase. We need to analyze the possible influ-
ences upon the previous levels. Those influences are in-
tegrated within the agents by means of their communica-
tion and perception assessment capabilities (given in each
agent’s model through guard and trigger rules). The de-
composition masks the notion of agent’s control, i.e., how
it handles its focus of attention, its decisions, and it links
its actions. This dual aspect is based on the two previous
one. Through the integration of social influences within the
agents, one will endow the MAS with some dynamics. Ac-
cording to the social analysis we must give to the agent the
possibility to interact in order to choose its role.

5 The Generic Design

This stage is based on an abstract component decomposi-
tion. We can define an abstract component as an elementary
object, that performs a specific but reusable function. It is
designed in such a way to easily operate with other compo-
nents to create an application. Component can be combined
with others to build more complex functions. This phase of-
fers an efficient process leading to a component decompo-
sition by starting from the informal description of the MAS
built during the previous stage.
The Problem Description Phase.This phase consists in
identifying and delimiting the domain of the general prob-
lem, as well as identifying some specific aspects that should
be taken into account. Although this phase is informal, it
allows designers to clearly separate the various aspects em-
bedded within the application. We must choose here the
architecture of the different agents.
The agents are built following hybrid architectures, i.e. a
composition of some pure types of architecture. Indeed, the
agents will be of a cognitive type in case of a configuration
alteration, it will be necessary for them to communicate and

to manipulate their knowledge in order to have an efficient
collaboration. On the other hand, in a normal mode use,
it will be necessary for them to be reactive using a stim-
uli/response paradigm to be most efficient.
We evaluated in [5] the impact of the real time aspects on
the design of the agents and shown that they must be taken
into account for each ability of the agents and at each level
of the design as reminded on figure 2.

Figure 2. Distribution of the real time con-
straints processing

Agent applicative tasks design phase.We must build the
external shell of the agent i.e. elaborating the interface
with the external world for each sensor and effector. It is
time, here, to choose a technological solution for them and
to complete the context diagram to specify all information
about the signal. The next step is to design the internal shell
of agents. We begin by the elaborated actions according to
the task tree.
It is necessary at this stage to arrange the components to
build the application: the architecture of the agent will be
used as a pattern, at a very high level, for the components
decomposition. The components have an external and an
internal description. The internal description can be an as-
sembly of components, or a formatted description of a deci-
sional algorithm. Each task is associated to a component as
showed on figure 3. At this level the designer has to build
agents applicative tasks :
• Building of the external shell of agents : modules in
charge of the acquisition of external information used to
build the world representation (Cix

) and modules ensuring
the actions on the environment to change their state (Cox

).
• Building of the internal shell of agents : action modules
of agents connected through ports to the external shell or to
other components (Comx

), and modules used to interprete
perceptions (Cimx

).
• Building communication modules and organisational
structure composants (CCOMi

andCCOMo
). In our con-

text, interaction protocols are translated into FSM (they can
easily generate either software or hardware descriptions).
• Building of agents’control : elaboration of the behav-
ior of the components/agents by evaluation and decision
components. Interpretation of a messages are transmitted



through ports to decision components. Values of ports can
then change and thus change component states. Whole
agents’states will so be changed.

Figure 3. Building a composite agent

It is important to notice that we exploit here the potential of
the spiral lifecycle. The enrichment of components is made
through the derivation of the results of the MAS iteration.

6 Implementation Stage

The main use of codesign techniques appears in the soft-
ware/hardwarePartitioning Phase of the abstract compo-
nents defined in the third level. Also it is essential to study
the different partitioning criteria. A first level relates to
agent’s parts for which the partitioning question doesn’t ex-
ist. Indeed some elements must be hardware as input/output
periphericals like the sensors and the actuators. The second
level relates to features for which there are several choices
of implementation. Following criteria can be considered to
be relevant for the agents according to our previous works
in this field [5, 4] and codesign works like [1]: the cost,
the performance, the flexibility, the fault tolerance, the er-
gonomic contraints and the algorithmic complexity.

Figure 4. Software component synthesis and
hardware component synthesis

Co-simulation and co-validation Phasesare then neces-
sary to simulate the collaboration between software part,

hardware part and their interface.
At the Implementation Phase, each component is com-
pletely specified with a common graphic specification for-
malism for the hardware part and the software part. For each
component, the designer has already selected if he wishes
a hardware or a software implementation. This level must
ensure the automatic generation of the code for the compo-
nents for which an implementation software has been se-
lected. The code is made in a portable language like Java or
C++. We use a hardware description language which pro-
vides a formal or a symbolic description of a hardware cir-
cuit and it interconnections. In our method hardware com-
ponents are specified in VHDL [6]. The compilation of the
code and the hardware synthesis of different specifications
in VHDL are carried out like illustrated on fig. 4.

7 Conclusion

The DIAMOND Method has been validated by the de-
sign of several applications as the EnvSys project (a sensor
network for the instrumentation of an underground hydro-
graphic system) [4] or the PALETTE Project (application of
collective robotics to paletization in manufacturing).

Our future work concerns the MASC tools (MultiAgent
System Codesign) associated with the DIAMOND method.
The agent design with components and the code generation
in Java and C langages are operational. The VDHL specifi-
cation generation is partially developped.

References

[1] J. Adams and D. Thomas. The design of mixed hard-
ware/software systems. Las Vegas, USA, june 1996. ACM.

[2] B. W. Boehm. A spiral model of software development and
enhancement.IEEE Computer, 21(5):61–72, 1988.

[3] M. Cossentino et al. A possible approach to the development
of robotic multi-agent systems. InConference on Intelligent
Agent Technology, pages 539–544, Halifax, 2003.

[4] J.-P. Jamont and M. Occello. A self-organized energeticcon-
straints based approach for modelling communication in wire-
less systems. InAdvances in Applied Artificial Intelligence,
volume LNAI 4031, pages 101–110. Springer, 2006.

[5] M. Occello et al. Designing organized agents for cooperation
in a real time context. InCollective Robotics, volume LNAI
1456, pages 25–73. Springer, March 1998.

[6] V. A. Pedroni.Circuit Design With VHDL. MIT Press, 2004.
[7] S. Russel and P. Norvig.Artificial Intelligence : a Modern

Approach. Prantice-Hall, 1995.
[8] H. Van Dyke Parunak. A practitioners? review of industrial

agent applications.Autonomous Agents and Multi-Agent Sys-
tems, 3(4):389–407, 2000.


