
HAL Id: hal-00201573
https://hal.science/hal-00201573v1

Submitted on 1 Feb 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Designing embedded collective systems: The
DIAMOND multiagent method

Jean-Paul Jamont, Michel Occello

To cite this version:
Jean-Paul Jamont, Michel Occello. Designing embedded collective systems: The DIAMOND multia-
gent method. IEEE International Conference on Tools with Artificial Intelligence - ICTAI 07, 2007,
Patras, Greece. pp.91-94. �hal-00201573�

https://hal.science/hal-00201573v1
https://hal.archives-ouvertes.fr


Designing embedded collective systems: The DIAMOND multiagent method

Jean-Paul Jamont and Michel Occello
Pierre Mendes France University

LCIS Laboratory
51 Rue Barthelemy de Laffemas, 26000 Valence, France

{jean-paul.jamont,michel.occello}@iut-valence.fr

Abstract

Multiagent systems (MAS) are well suited to specify
requirements for open physical complex systems. How-
ever, up to now, no method allows to actually build soft-
ware/hardware hybrid MAS. This paper presents an origi-
nal method for designing embedded MAS.

1 Introduction

Complex artificial cooperative physical systems are in-
volved in application domains as pervasive computing, in-
telligent distributed control or wireless computing. Embed-
ded systems have a physical reality which does not apply
only to the entities but also to the environment in which
they evolve. The system and its environment are strongly
related. In this context, the elements of the system integrate
a software part and a hardware part (electronic cards, sen-
sors, effectors). The high dynamics, the great heterogeneity
of elements and the openess make a multiagent approach
highly profitable for these artificial complex systems. But
the existing multiagent design lifecycles have to be modi-
fied to take into account software/hardware hybridation par-
ticularities. Studying the design of embedded systems us-
ing multiagent paradigms is a recent research field. This
paper aims to present our approach called DIAMOND (De-
centralized Iterative Multiagent Open Networks Design) for
the design of embedded complex systems with MAS.

2 Overview of the DIAMOND method

The DIAMOND method can be qualified of codesign be-
cause it unifies the development of the hardware part and the
software part: the partitioning step is sent back at the end of
the life cycle. A multiagent phase allows the management
of collective features. A component phase is used to design
the elementary entities of the system (the agents) and to fa-
cilitate the hardware/software partitioning. In a traditional

system design, the partitioning step takes place at the be-
ginning of the cycle. In fact, a hardware requirement and a
software requirement are created from the system require-
ments. In the case of a MAS, the software part of the system
is built using a multiagent method and its associated lifecy-
cle. In the case of DIAMOND, the partioning step is pushed
back at the end of the lifecycle to authorize modifications of
the requirement, reffinement and iteration.

Four main stages, distributed on a spiral shaped lifecycle
(fig 1), may be distinguished within our embedded multia-
gent design approach. Thedefinition of needsdefines what
the user needs and characterizes global functionalities. The
second stage is amultiagent-oriented analysiswhich con-
sists in decomposing a problem in a multiagent solution.
The third stage of our method starts with ageneric design
which aims to build the MAS without distinguisting hard-
ware/software parts. Finaly, theimplementationstage con-
sists in partitioning the system in a hardware part and a soft-
ware part to produce the code and the hardware synthesis.

Figure 1. Lifecyle of the DIAMOND method



3 Definition of needs

This preliminary stage begins by analysing the physi-
cal context of the system (identifying workflow, main tasks,
etc...). We then study the different actors and their partici-
pative user cases (using UML use case diagrams) as well as
the services requirements (using UML sequence diagram)
of these actors.

The second step consists in the study of the different
modes of running and stops. This activity is very signifi-
cant because it enable to structure the global running of the
system. It is generally wishable that the system functions
in autonomy. But working with embedded systems imposes
to know all the other possible behaviors precisely when the
system starts, when it goes under maintenance, when we
want to stop it.

This activity puts forward restricted procedures for the
system. It allows to specify the first elements necessary for
a minimal fault-tolerance. Moreover, it enable to identify
cooperative or non-cooperative situations [2] and to define
recognition states in order to analyse, for example, the self-
organizational process of an application. This activity al-
lows to take into account the safety of the users plunged in
the physical system as a human agent.

We have defined fifteen different modes that we regroup
in three families. Thestops modeswhich are related to the
different procedures for stopping (partially or completely)
and to define associate recognition states. Therunning
modeswhich focuses on the definition of criteria or test
procedures enabling to recognize states of normal function-
ning. Thefailures operations modeswhich concentrates the
procedure allowing to a human maintenance team to work
on the system or to specify rules for restricted mode.

4 Multiagent-oriented analysis

The multiagent stage is handled in a concurrent manner
at two different levels. At the society level, the MAS is
considered as a whole. At the individual level, the system’s
agents are built. This integrated MAS design procedure en-
compasses five main phases discussed in the following.

A Situation phasedefines the overall setting, i.e., the en-
vironment, the agents, their roles and their contexts. This
stems from the analysis stage. We first examine the en-
vironment boundaries, identify passive and active compo-
nents and we proceed to the problem agentification.

We insist here on some elements of reflexion about the
characteristics of the environment [10, 11]. We must iden-
tify here what is relevant to take into account from the envi-
ronment, in the resulting application.

It is then necessary to identify active and passive entities
which make the system. These entities can be in interaction

or be presented more simply as the constraints which mod-
ulate these interactions. It is necessary to specify the role
of each entities in the system. This phase allows to identify
the main entities that will be used and will become agents.

In an Individual phase, decomposing the development
process of an agent refers to the distinction made between
the agent’s external and internal aspects. The external as-
pect deals with the definition of the media linking the agent
to the external world, i.e., what and how the agent can per-
ceive, what it can communicate and according to which type
of interactions, and how it can make use of them. We spec-
ify the agent context with a context diagram (see 2).

The agent’s internal aspect consists in defining what is
proper to the agent, i.e. what it can do (a list of actions)
and what it knows (its representation of the agents, the en-
vironment, interaction and organization elements). In most
cases, the actions are carried out according to the available
data about the agent’s representation of the environment.
Such a representation based on expressed needs has to be
specified during specifications of actions. In order to guar-
antee that the data handled are real data, it is necessary to
define the required perception capabilities. We have defined
four types of actions.Primitive actionsare tasks which are
not physicaly decomposable.Composed actionsare tempo-
ral ordered lists of primitives.Situated actionsneed to have
a world representation to execute their tasks.

Figure 2. Context diagram

Interaction among agents are achieved via messages
passing. Such exchange modes are formalized by means
of interaction protocols in aSociety phase. Although these
interaction protocols are common to all the agents, they
are rather external to them. Conflict resolution is effi-
ciently handled by taking into account the relationships be-
tween the agents, that is, by building an explicit organiza-
tional structure. Such an organization is naturally modelled
through subordination relations that express the priorityof
one agent on an other.

In an Integration phase, we need to analyse the possible
influences upon the previous levels. Those influences are
integrated within the agents by means of their communica-
tion and perception assessment capabilities (given in each
agent’s model through guard/trigger rules). The decomposi-
tion masks the notion of agent’s control, i.e., how it handles



its focus of attention, its decisions, and it links its actions.
This dual aspect is based on the two previous one. Through
the integration of social influences within the agents, one
will endow the MAS with some dynamics. According to
the social analysis we must give to the agent the possibil-
ity to interact in order to choose its role. We evaluated in
[9] the impact of the aspects time real on the design of the
agents and shown that they must be taken into account for
each abilities of the agents and with each level of the design.

5 The Generic Design

This stage is based on a component decomposition. We
can define component as an elementary object, that per-
forms a specific function that allows developpers to define
reusable segments of code. It is designed in such a way to
easily operate with other components to create an applica-
tion. A component is a reusable program building blocks,
which is an identifiable part of a larger program. Compo-
nent can be combined with others to build more complex
functions. This phase offers an efficient process leading to
a component decomposition by starting from the informal
description of the MAS built during the previous stage.

The Problem Description Phaseconsists in identifying
and delimiting the domain of the general problem, as well as
identifying some specific aspects that should be taken into
account. This informal phase allows designers to clearly
separate the various aspects embedded within the applica-
tion. We must choose here the different agents architecture.
The agents are built following hybrid architectures, i.e. a
composition of some pure types of architecture. Indeed, the
agents will be of a cognitive type in case of a configuration
alteration, it will be necessary for them to communicate and
to manipulate their knowledge in order to have an efficient
collaboration. On the other hand, in a normal mode use
it will be necessary for them to be reactive using a stim-
uli/response paradigm to be most efficient.
Using a hybrid architecture for the agents enables to com-
bine the strong features of each of reactive and cognitive
capabilities seen before. We use our ASTRO hybrid archi-
tecture [9], especially adapted to a real time context.

In an Agent applicative tasks design phase, we must
build the external shell of the agent i.e. elaborating the in-
terface with the external world for each sensors and effec-
tors. It is time, here, to choose technological solution for
them and to complete the context diagram to specify all in-
formation about the signal. The next step is to design the
internal shell of the agent. We begin by the elaborated ac-
tions according to the task tree. It is necessary at this stage
to arrange the components to build the application: the ar-
chitecture of the agent will be used as a pattern, at a very
high level, for the components decomposition. The com-
ponents have an external and an internal description. The

internal description can be an assembly of components, or
a formatted description of a decisional algorithm.

6 Implementation Stage

The main use of codesign techniques appears in the soft-
ware/hardwarepartitioning of the components defined in
the third level. Also it is essential to study the different
partitioning criteria.

A first level relates to agent parts for which the partition-
ing question doesn’t exist.Indeed some elements must be
hardware as input/output periphericals such as for example
the sensors and the actuators.

The second level relates to features for which there are
several choices of implementation. We can say (accord-
ing to previous works we have made in this field [9, 7] and
codesigns work like [1]) that criteria ascost, performance,
ergonomic contrainsts, algorithmic complexityandflexibil-
ity can be considered to be relevant for the agents .Co-
simulation and co-validation Phasesallows then to simu-
late the collaboration between software part, hardware part
and their interface.

Finally, at theImplementation Phase, each components
are completely specified with a common graphic specifica-
tion formalism for the hardware part and the software part.
For each component, the designer has already selected if he
wishes a hardware or a software implementation. This level
must ensure the automatic generation of the code for the
components for which an implementation software has been
selected. The code is made in a portable language like Java
or C++. We use a Hardware Description Language which
provides a formal or symbolic description of a component
or of a hardware circuit and it interconnections. In our
method the hardware components are specified in VHDL.
The compilation of the code and the hardware synthesis of
different specifications in VHDL are carried out.

7 Discussion about DIAMOND

Lifecycle and phases.Most existing multiagent meth-
ods usually distinguish only analysis and design phases [5].
Very few methods deal with other phases. We can find for
example a deployment phase in MASSIVE [8]. This de-
ployment phase takes in our particular field a great impor-
tance since it includes the hardware/software partitioning.
A major difference between DIAMOND and other multia-
gent approaches is, as said previously, that DIAMOND uni-
fies the development of the hardware part and the software
part. In a traditional system design, the partitioning step
stands at the beginning. In fact, a hardware requirement
and a software requirement are created from the system re-
quirement. The software part of the system is built using a
multiagent method and its associated lifecycle.



To cover the whole lifecycle, different formalisms are re-
quired to express different things at different levels [6].For
this reason we adopt a lifecycle using four stages mixing
different expressions using more or less formal paradigms
and languages (agents, components, FSM, Hardware Defi-
nition Languages). The most current lifecycle used in mul-
tiagent methods is the classical cascade lifecycle. Even if
some works attempt to introduce iterative cycles as Gaia
[11], the proposal of a spiral lifecycle is very original.

In the definition of needs phase, we introduce a study
of the modes of running and stops to structure the global
running of the system. In the generic design phase, the
design allows an abstraction of the software design and
the hardware design. We use components to build the
agents as few multiagent methods introducing an actual
componential dimension [8, 3]. These components are
used to simplify the work of the designer through visual
programming, to manage the complexity through a func-
tionnal decomposition, to increase the genericity through
reusability, to simplify the partitioning because the analogy
beetween soft components and chips enables the hardware
tools and the software tools to share a unified vision.

Models and notations. Multiagent methods generaly
use notations and models from only one origin [2] like
UML (Mase, AAII, MESSAGE, PASSI). Other methods
use many notation like TROPOS [4] (notation i* coming
from the knowledge enginering, A-UML for interaction
protocols and plan) or DESIRE (graph-based notation for
knowledge modelling and specific hierarchical notation for
tasks description). To cover all the phases of a lifecycle, we
think like in [6] that several formalisms are necessary for
the different levels of abstraction.

DIAMOND begins by using UML use cases because
they proved reliable for the definition of needs. The inter-
pretation of our use case diagrams are slightly different than
their common use (as in [2]) because actors are necessarily
outdoor to the system or its entities. Moreover, an actor can
not be in the interaction diagram (this would be amazing in
a traditional use of UML use cases) in the case of physical
interactions. These differences come from the usual soft-
ware nature of applications.

In the analysis phase, we use context diagrams. These
diagrams enable to see easily all the possible perception and
the possible action of the agents. Another advantage is that
they allow to see control flow between the physical part of
an agent and its decisonnal part. In a word, context diagram
allow to specify the external shell of the agents.

In the generic design phase, DIAMOND uses compo-
nent as operational units as seen previously. In these com-
ponents, we use FSM or a components set to describe the
internal running. These formalisms enable to generate soft-
ware code or hardware specifications in VHDL.

8 Conclusion

Our method has been validated on several real world
projects as for an underground river instrumentation [7], an
application of collective robotics to paletization in a manu-
facturing process or to build the software infrastructure for
UWB sensor localization.

Very few works are addressing the problem of the anal-
ysis of self-organized embedded systems. This work pro-
poses some innovative contributions in term of hybrid soft-
ware/hardware multiagent lifecycle. It integrates in partic-
ular all the phases of the development from the analysis to
the implementation. It introduces a multi-paradigm spiral
lifecycle. It proposes components used as tools for integra-
tion, allowing software or hardware derivation. They enable
a unified approach for all kinds of hardware/software MAS.

References

[1] J. Adams and D. Thomas. The design of mixed hard-
ware/software systems. Las Vegas, USA, june 1996. ACM.

[2] C. Bernon, M.-P. Gleizes, S. Peyruqueou, and G. Picard.
Adelfe: A methodology for adaptive multi-agent systems
engineering. InThird International Workshop on Engineer-
ing Societies in the Agents World, volume LNCS N2577,
pages 156–169, Spain, September 2002. Springer.

[3] F. M. T. Brazier, C. M. Jonker, and J. Treur. Principles of
component-based design of intelligent agents.Data Knowl-
edge Engineering, 41(1):1–27, 2002.

[4] A. Castor, R. Pinto, C. T. L. L. Silva, and J. Castro. To-
wards requirement traceability in tropos. InWorkshop em
Engenharia de Requisitos, pages 189–200, 2004.

[5] S. A. DeLoach, M. F. Wood, and C. H. Sparkman. Mul-
tiagent systems engineering.International Journal of Soft-
ware engineering and Knowledge Engineering, 11(3):231–
258, 2001.

[6] D. Herlea, C. Jonker, J. Niek, and J. E. Wijngaards. Spec-
ification of bahavioural requirements within compositional
mas design. InProceedings of the 9th European Workshop
on Modelling Autonomous Agents in a Multi-Agent World,
volume LNCS n1647, pages 8–27. Springer, 1999.

[7] J. Jamont and M. Occello. Using organizational structures
emergence for maintaining functional integrity in embedded
systems networks. InIFIP Conf. on Artificial Intelligence
Applications and Innovations, pages 197–210. KAP, 2004.

[8] J. Lind. Interative Software Engineering for multiagent sys-
tems: The MASSIVE Method, volume 1994 ofLNCS/LNAI.
Springer Verlag, 2001.

[9] M. Occello, Y. Demazeau, and C. Baeijs. Designing orga-
nized agents for cooperation with real time constaints. In
Collective Robotics, First International Workshop, volume
1456, pages 25–37. LNCS, Springer, 1998.

[10] S. Russel and P. Norvig.Artificial Intelligence : a Modern
Approach. Prantice-Hall, 1995.

[11] M. Wooldridge et al. The gaia methodology for agent-
oriented analysis and design. InJournal of Autonomous
Agents and Multi-Agent Systems, volume 3. KAP, 2000.


