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Abstract. This paper contribution is about guaranteed numerical methods
based on interval analysis and the application of these methods to vast classes
of statistical problems. ’Guaranteed’ means here the innerand outer ap-
proximations of the sets of interest are obtained, which canbe made as pre-
cise as desired, at the cost of increasing the computationaleffort. It thus be-
comes possible to archieve tasks still thought by many to be out of the reach
of numerical methods, such as findingall solutions of non-linear equations
and inequalities or a global optimizer of possible multi-modal criteria.

1 Introduction

Before using interval analysis as a basic tool in the following section, we shall now
introduce its main concepts.
Interval computation is a special case of computation on sets, and set theory provides the
formulations for interval analysis. The reader interestedin interval analysis may found
more developements in [1,2]. Set and interval mathematics come from the same general
theory developped during the 30’s by the french School of Topology: if a numbera and
a boundb of a approximate the value of some numberx such that|x − a| ≤ b, then
interval mathematicstells us thatx is in the interval[a − b, a + b]. Hence, the type
of an interval is dual: at the same timenumberandset, with evident implications in
set arithmetics. For instance, suppose a real axis providedwith an order relation≤,
the interval[x], bounded byx and x, is a closed connected subset of real numbers
{x|x ≤ x ≤ x}. Interval arithmetic follows from order properties and basic operations
on real numbers or vectors extend in a natural way to intervalse.g.

[x] + [y] = {x + y | x ∈ [x], y ∈ [y]} = [x + y; x + y]

−[y] = {−x | x ∈ [x]} = [−x;−x]

[x] − [y] = {x − y | x ∈ [x], y ∈ [y]} = [x] + (−[y])

[x] × [y] = {x × y | x ∈ [x], y ∈ [y]}

= [min(x · y, x · y, x · y, x · y, ),

max(x · y, x · y, x · y, x · y, )]

[x]

[y]
= [x] ×

1

[y]
.

However, the arithmetical rules for intervals differ from those for real numbers. For
instance,x2 + x + 100 = (x + 1

2 )2 + 399
4 whereas[x]2 + [x] + 100 differs from

([x] + 1
2 )2 + 399

4 , as illustrated in the following example.



Example 1.At [x] = [0, 1], [x]2 + [x] + 100 = [0, 1]2 + [0, 1] + 100 = [100, 102], and
([0, 1] + 1

2 ) + 399
4 = [159716 , 1621

16 ]. The first result is a pessimistic approximation of the
image set ofx2 + x + 100 at [0, 1] whereas the second (and beteter one) is equal to this
image set. �
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Fig. 1.A two-dimensional box.

Algebraic structures and topological structures have beendevelopped by Moore in the
60’s [3]. Note that there are areas of interval mathematics and fuzzy set theory that have
been developed in parallel, in particular the extension principle of Zadeh [4].
A box or vectorof intervals[x] (seee.g.Fig. 1) is the cartesian product ofn intervals
and is noted[x1] × . . . × [xn], with [xi] = [xi, xi], i = 1, . . . , n. Theith interval com-
ponent[xi] is the projection of[x] onto theith axis. Many of the notions introduced for
intervals extend without difficulty to boxes. The set of all boxes ofRn is denotedIRn.
Note that] −∞,∞[× . . .×] −∞,∞[ is an element ofIRn.
Consider the situation where we have a model which acts as a function f , mapping
(inputs)x to (outputs)y. This modelf might be quite complex, with multiple input
parameters and with different kinds of uncertainty represented on them: information
available on inputs may be rich or sparse, so-called “aleatory” and may be made known
through objective measurements. Mathematically inputs might be represented by prob-
ability or possibility distributions, by strong or sparse collections of data points, by
simple intervals, or even by non-quantified linguistic expressions.
Givenf , how can we propagate the uncertainty onx to y throughf? Moreover, how
can we do so in a way which respects all the original uncertainty quantifications as pro-
vided, making no unnecessary assumptions? How can we do suchin a way which uses
only, butall of what we are given?
In this paper, we propose an approach for solving such problems: we assume that ex-
perimental points (both inputs and outputs) are modeled as intervals and provide exact
solutions. The contribution of this article is three-fold:firstly, it is shown that interval
analysis can directly be applied to perform optimization, yielding to close form expres-
sions of results. Secondly, a C++ library which implements the techniques is introduced.
The program and the library are open-source may be obtained from the author on simple
request. Third, short illustrative examples including a nonlinear dynamic process and a
blind source separation problem are given which show the significative improvement of
the approach in comparison with standard linear identification.

2 A refresher on parameter estimation

Consider some functionf : X ⊂ Rn → Y ⊂ Rs, whereY is a bounded set and suppose
we wish to construct a modelg : X ⊂ X → Y ⊂ Y, whereX andY are some domains



of interest, by choosing a parameter vectorp ∈ Rp so that, mathematically speaking,

y = f(x) = g(x,p) + e(p), (1)

for all x ∈ X and y ∈ Y, where the error in approximation,e(p), is as small as
possible.
We suppose that all that is available to choose the parameters p in g is some part of
the unknownfunction f in the form of the input-output data pair associations. The
ith input-output pair for the systemf is denoted by(xi,yi), wherexi ∈ X,yi ∈
Y andyi = f(xi). This may correspond for instance ton + s scalar measurements
corresponding to various experimental conditions on a static process or on a dynamical
one. The row vectorzi = (xT

i yT
i ) ∈ Rn+s denotes one particular data sample. Stacking

N consecutive samples on top of each other gives the data matrix

Z =





z1
z2
...

zN



 ∈ X × Y. (2)

The purpose of parameter estimation is, for instance, to findp such thatg(x,p) best
fits y in a sense to be specified. In [5], the parameters are considered admissible if the
errore(p) belongs to some prior compact set of admissible errorE ⊂ Rs. For instance,
E may be the box defined as

E = {e|e− ≤ e ≤ e+}, (3)

wheree+ ande− are some prior bounds. One is then interested in finding the set S of
all values ofp such that the error is admissible,i.e. S = {p|e(p) ∈ E}. This set has
been calledmembership set, likelihood setandposterior feasible set. If the data were
generated by a statistical modelg(x,p∗), wherep∗ is some true value of the parameters
and if e(p∗) ∈ E, thenS containsp∗. Thus,S provides an accurate description of the
uncertainty with whichp∗ is estimated [5].
If the reciprocal ofg exists and is denotedg−1, S is defined asS = g−1(y − E) =
g−1(Y), whereY = y − E is themeasurement set. In other words, for anyp ∈ S there
existse ∈ E such thaty = g(x,p) + e.
System identification(i.e. function approximation) amounts to adjustingp using infor-
mation fromZ so thatg(x,p) ≈ f(x), ∀x ∈ X. Measured and model outputs never
match perfectly in practice, but differ ase(p). An obvious modeling goal must be that
this discrepancy is “small” in some sense that is archieved by the value of theapproxi-
mation errorwe wish to bound. Such a bound is for example

sup
x∈X

‖f(x) − g(x,p)‖, (4)

which requires thatf is known everywhere. The problem is that we only know the part
of f given byZ, and it is the only evaluation we can make based on known information.
Wheng is not affine inp, one may linearize it around some value of the parameters esti-
mated beforehand and then use any method for linear models. Scanning the parametric
space using random search offers no guarantee as to the global nature of the obtained
results [6].
A thorough examination ofe(p) reveals thatimprecisionplay a key role in the parame-
ter value formulation: indeed, it is reasonnable to assume that a large part of estimation
deviations ofp may come from imperfection in input assessment, together with the
model imprecision.



3 Identification method

3.1 Core of the modeling

The structure of the model,i.e. the form of g and the matrixZ, are determined by
the statistician on the basis of prior knowledge and/or by comparing several candidate
models in terms of the prediction error. Once a model is chosen, the parameters of
the model may be estimated. Modeling possible values of variables by means of real
intervals accounts for some imprecision.
Let us consider a system with imprecise input and outputx and y resp., which are
readings from unreliable sensor (“noisy data”). To simplify exposition, we shall only
consider output errors :

ei(p) = yi − g(xi;p), i = 1, . . . , s (5)

but other types of errors could be considered as well. We assume that these errors should
satisfyei ≤ ei(p) ≤ ei, i = 1, . . . , s to be “admissible”, whereei andei are known
lower and upper prior bounds of the approximation error resulting from technical speci-
fications or pointing out how far we can go in accepting discrepancies between our data
and model outputs. Note thatei(p) is an interval.
Let y be the vector of all datayi, i = 1, . . . , s collected on a given system, and let
g(x;p) be the vector of all corresponding model outputsg(xi;p), i = 1, . . . , s. Equa-
tion (5) can then be rewritten as

e(p) = y − g(x;p), (6)

Picked in intervals, equation (6) gives:

[e(p)] = [y] − g([x]; [p]), (7)

The model (7) is admissible ifp is such thate ∈ E, i.e. the set of all error vectors
e satisfiese ≤ e ≤ e wheree ande are known. Estimating interval[p] consists on
looking for the set of all admissible values ofPα that areconsistentwith (7), i.e.errors
should satisfy

[y] − [g]([x]; [p]) ∈ [e]([p]). (8)

Equation (8) relies on the assumption that there exists aninclusion function[g] of g that
returns anenveloping boxguaranteed to contain the image byg of any given box[x]
included in the domain ofg. [g]([x]) is a box such that

g([x]) ⊂ [g]([x]), (9)

The including function[g] is easy to compute for usual elementary functions that
can be obtained by composition of elementary operations such as+,−,×, /, exp, tan, sin, . . .
by replacing each of these elementary operations by their inclusion function in the for-
mal expression ofg.
When no efficient algorithm exists for its computation,[g] can be approximated by an
inclusion functionG : Rn → Rp satisfying the equation (9) and such that:

w([x]) → 0 ⇒ w([G]([x])) → 0. (10)

wherew([x]) is the width of the box[x], defined as the length of its largest side(s). It
must be noted that the algorithm presented in this paper is guaranteed to converge only
if (10) is valid.
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Fig. 2. Minimal inclusion function[g] and inclusion functionG of a functiong.

Figure 2 illustrates conditions (9) and (10).
Let Ŝ = {p|g([x]; [p]) ∈ Y}. Then

g([x]; [p]) ∈ Y ⇔ p ∈ g−1(Y) and p ∈ [p](0) (11)

⇔ p ∈ [p](0) ∩ g−1(Y) (12)

where[p](0) is the search domain. Thus

Ŝ = [p](0) ∩ g−1(Y), (13)

and characterizinĝS is aset inversion problem.
We shall say that[p] is feasibleif [p] ⊂ S, unfeasibleif [p] ∩ S = ∅, else[p] is am-
biguous.
To perform computation ofS in an approximate but guaranteed way, an interval anal-
ysis algorithm is applied to compute the possible interval range[p] of p. The interval
computation stage is detailed in the following.

3.2 Set characterization

Methods allowing to implement interval analysis are relatively few and date from the
nineties and among them, one may quote the Moore’s algorithm[3] andSIVIA proposed
by Jaulin [7]. Most of the methods for estimating parametersare based on computations
performed at point values of the parameter vector. The main interest in the notion of
paving is to replace point values by subsets of the parameterspace. For simplicity, we
will use pavings based upon boxes.
A pavingof a compact subset{P} ⊂ Rn is a set of non overlapping boxes with nonzero
width such that the union of these boxes corresponds to{P}. A subpavingK of P is
a subset ofP. Upon completion, the algorithm enclosesS between two compact sets
corresponding to 2 subpavings (Fig. 4). LetE be the feasible error set. Initialisation is
performed by settingY = y − E. The principle is as follows:

a). Define an initial box of interest[p](0) within which the search will be performed
b). Compute a paving{P} of [p](0)
c). Compute the imageg([x]; [p]) for each box of this paving. Three situations must

then be considered (see figure 3).





[g]([x]; [p]) ⊂ [Y] ⇒ [p] ⊂ S so that[p]is feasible
[g]([x]; [p]) ∩ [Y] = ∅ ⇒ [p] ∩ S = ∅ so that[p]
is unfeasible
otherwise,[p] is indetermined.



The exploration algorithm performs a recursive implementation of the principle that has
just been described: abisection algorithmsplits each box of the subpaving into smaller
boxes whenever needed until the width of the box becomes smaller than some tolerance
parameterǫ to be specified by the user. Cutting is carried out again as long as the boxes
contain solutions or stops if the boxes do not contain any.

a.

[y]

[z]

b.

[z]

[y]

c.

[z]

[y]

Fig. 3.Feasibility of boxes: a test function allows to distinguishthe cases (a-c) represented in this
figure. Let[z] and[y] be two boxes. Suppose that[n] = [z] ∩ [y]. a) [n] = ∅ means that[z] has
an empty intersection with[y]. b) [n] = [z], so that[z] is included inside[y]. c) [n] ⊂ [z] and
[n] 6= [z]. [z] intersects[y], so that we cannot conclude. The box[z] can be split again.

We shall splitP iteratively into three subpavingsS, S andS corresponding to the sets
of all feasible, unfeasible and indetermined boxes respectively, as plotted in figure 4.
These subpavings satisfy the following relations :

1. {S} ⊂ S ⊂ {S} ∪ {S}

2. vol({S})≤ vol(S)≤ vol({S}) + vol({S})
3. [{S}] ⊂ [S] ⊂ [{S}] ∪ [{S}]

Provided thatS is full, this means that the pair{S; S} defines a neighbourhood∂S ,
S\S of S with a diameter that can be chosen arbitrarily small.
The previous algorithm makes an extensive use of astackL of boxes,i.e. a dynamical
structure on which only 3 operations are possible: at any time, one may put an element
on top of the list, remove the top element or test the stack foremptiness. We define the
required accuracyǫ for the pavingP as the maximum widh that an indetermined box
can have. In the following, the principal plane of a box is thesymmetry plane of this
box that is orthogonal to the axisi ∈ {j|w([p]) = w([pj ])}, where the operator “width”
w([·]) of a box is the length of its largest side.
Let [p](0) be the box considered at iterationk. Initialisation is performed by setting
k = 0, L = ∅, S = S = ∅. The recursive algorithm can be described as follows:
The union of all the boxes in the listL returned by the program containsS; the parti-
tion P consisting of feasible, unfeasible and indetermined boxescan be plotted in the
parameter space in the case the space dimension is less than 4(see fig. 4).

4 Discussion

The method ofset characterizationintroduced in section 3.2 appeals to some com-
ments.
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S
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Fig. 4. a. Regular paving of a box: accepted, rejected and indetermined subpavings are respec-
tively coloured in red, blue and yellow. b.{S andS} brackets the portion ofS contained in[p](0).

Algorithm BISECT

INPUTS
data:y
inclusion function:[g]([·])
feasible error set:E
prior feasible box:[p](0)
accuracy for the paving:ǫ
INITIALIZATION
Y = y − E;
stack:L = ∅

iteration:k = 0
[p] = [p](0);
ITERATION k
Begin
step 1: if [g]([x]; [p](k)) ⊂ [Y] thenS := S ∪ [p] andS := S ∪ [p];
step 2: else if[g]([x]; [p](k))∩ [Y] = ∅, thenS := S∪ [p]; then unstack[p](k) as unfeasible;
step 3: else ifw([p](k)) ≤ ǫ, thenS := S ∪ [p](k);

else cut[p](k) along the principal plane and stack the resulting boxes inL.
step 4: if the stack is not empty, then unstack and store the resulting box in[p](k + 1);
k = k + 1; go to step 1;
End

Table 1.Recursive implementation of the bisection algorithm.



Upon completion, this approach encompassesall the acceptable values of the param-
eter vector in a set that is fully characterized by BISECT: S andS will tend to S from
inside and outside whenǫ → 0. SinceS is a finite union of boxes guaranteed to contain
the portion ofS of interest, it is very convenient for implementing set-theoretic mani-
pulations [8,5].
The advantages of this approach are threefold:

(i) no assumption is made on the image fonctiong,
(ii) no statistical assumption on the modeling error is required,
(iii) any bounded error can be treated independently from its origin (modeling and/or

measurement error).

An other advantage of the proposed approach is that the input-output roles of the vari-
ablesx andy can be reversed since the linking functiong : x → y can be runforward
as well asbackwardwhen using interval analysis. Subpavings form a useful class of
objects for manipulating statistical estimations.
The algorithm requires a possibly very large search box[p](0) to whichS is guaranteed
to belong. Solvers split the search box into an union of boxes(thepaving) with guar-
anteed error bounds (i.e.mathematically valid) [6] (see section 3.2). The paving is built
by the solver itself. A computer program can represent a set of (eventually disjoint)
intervals as alist L. The precision of the solver is controlled by coefficients specifying,
for example, the widthǫ of the smallest boxes of the paving, or the accuracy in the lo-
calization of a global optimum. The computing time of the solver can increase quickly
with the dimension and size of the listL.
Special care must be taken in avoiding memorizing unnecessary information, otherwise
the quantity of memory required to store the paving ofS will increase linearily at each
iteration, which may result into a memory overflow even for problems of modest di-
mension.
One can observe that the parameter space is not isotropic because the sensitivities ofg
with respect to the various components ofp are not of the same order of magnitude. The
basic bisection technique suggested in Tab. 1 may not be efficient enough. The prob-
lem is then how to choose the fastest bisection policy that results in a convergence as
fast as possible. Jaulinet al. [5] suggests the bisections of[p] into boxes[p1] and[p2]
that minimize vol(g([x]; [p1]))+vol(g([x]; [p2])). If [p] is not ambiguous, this policy
will tend to avoid classifying as indetermined. Experiments seem to show that this can
improve the efficiency of the solver when the anisotropy is severe.

5 Application to statistical problems

5.1 Parameter estimation

In this example, a simplified version of the problem exploredby Jaulin and Walter3 [5]
is given. The vector comprising all available datay is:

y = (1.59, 1.44, 1.30, 1.18, 1.07, 0.96, 0.87, 0.79, 0.71, 0.64)T.

The numerical values of the corresponding interval data aregiven in Tab. 5.
The set̂P to be characterized consists of the set of variable vectors([p1], [p2])

T such
that the graph of the function :

f(p, t) = p2 exp(−p1t), (14)

3 The extension of the method to multiple-output problems is straightforward.



a. b.

Fig. 5. a) Measurement times and corresponding interval data. b) Top-view of the paving gen-
erated by BISECT to bracket the solution set (in red) in the parameter space. The outer frame
corresponds to the box[−1, 5] × [−5, 5].

crosses all the data bars of Figure 5. In this simulated example, the[yi] were computed
by adding a random error interval with radiusρi = 0.5|yi|+ 1 to theyi. The initial box
domains for the parametersp1 andp2 may be arbitrarily large, for example

[p1] = [−10, 000; 10, 000] and [p2] = [−10, 000; 10, 000], (15)

i.e. no prior information is available on the parameters. The feasible fuzzy set for the
parameters is given by (13), where the search domain[p](0) is [−1, 5]× [−5, 5]. In less
than 1s, on a PENTIUM IV, B ISECT generates the pavings of figure 5, thus bracketing
the posterior feasible set forpα between the inner and the outer approximations. Figures
5 gives a top-view representation ofp, i.e. the bounded support of the variablesp1 and
p2 that is consistent with the equation (14) and the domains (15).

5.2 Curve estimation

The curvatureκ(t) of an arbitrary twisted curveC measures the rate of change of the
tangent when moving along the curve. It measures, so to speak, the deviation of the
curve from a straight line in the neighbourhood of any of its points. It is quite easy to
derive an analytic expression of the curvature which is valid whenC is represented by
an allowable parametric representationx(t):

κ(t) =
x′ × x′′

|x′|3
, (16)

where× denotes the vector product. Derivatives with respect to time are denoted by
primes,e.g.x′ = dx

dt
andx′′ = d2

x

dt2
. (16) is equivalent to (see [9] and references

therein):

κ(t) =

√
(x′ · x′)(x′′ · x′′) − (x′ · x′′)2

(x′ · x′)
3

2

, (17)

WhenC is aclelia curve (see figure 5.2.a), then it has the following cartesianrepresen-
tation4:

x(t) = (R cosnt cos t, R cosnt sin t, R sin nt) (18)

4 Clelia curve was studied by Guido Grandi in 1728.



with t as parameter, it is easy to obtain from (17) a simpler representation of the curva-
ture:

κ(t) =

√
(4n2 − n4) cos2(nt) + n6 + 4n4 + (1 − n2)cos4(nt)

R 3

√
n2 + cos2(nt)

. (19)

Figure 5.2.b plots the domain ofκ(t).
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Fig. 6.a. 3-dimensional representation of the Clelia curve. b. Graph of the functionκ(t) given by
equation (19).

A statistical approach assume that a set ofN input-output data pairs(xi, κi)
N
i=1 is avail-

able. Recall thatxi ∈ R3 are vectors andκi is scalar. The data set is split into a training
and a validation data set. A neural network such as represented in Fig.?? is designed for
supervised learning and prediction task from a particularx. Such architecture is called
multi-layer perceptron(MLP). Hidden units are placed between the features units and
the predictions units. A deterministic MLP trained by a method such as backpropaga-
tion [10], can implement any input-output function provided that the number of hidden
neuronsnh is sufficiently large.
Fig. 5.2.a depicts thetraining error performed on the training data set. With increased
number of hidden neurons, the accuracy of the resulting neural system with respect to
the training data set is improved, but the ability of the model to generalize for inputs
(test set) may be degraded as illustrated in our results (Fig. 5.2.b). In a similar way,
descreasing the output error improves the accuracy with respect to the training data set,
but accuracy in the presence of inputs different from the training data set is degraded.
These tests illustrate some effects in parameter choice on the resulting neural model.
A second approach consists in using interval analysis tools. In this simulated example,
we assume that the values taken byκ are imprecise and sampled at the raten π

11 : the
prior intervals[κi] are computed by adding a centered error interval to the associated
measurementκi. The solution set̂S to be characterized consists of all the values of
p = (R, n)T such that the graph of the functionκ(t) crosses all the data bars of figure
5.2. The dataset is made of 22 data, so very few for a learning model.
For ǫ = 0.03, BISECT generates the subpaving represented in Figures 9 in 7s on a
PENTIUM IV, consistent with the equation (19). The prior box for the parameters is
taken as[p] = [−10, 10]× [−10, 10].
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Fig. 7.a. Measured outputs (–) and simulated outputs (. . . ) computed by the neural network.
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Fig. 8.a) Experimental data (�) together with their uncertainty intervals and graph of thefunction
κ(t) (see Eq. (19)). b) Posterior feasible intervals for theκi superposed on the graph of the
functionκ(t).



More interesting, one may want to generate the posterior feasible set for theκi (poste-
rior estimates) from the formula 19 as can be seen in figure 5.2.

Fig. 9. Top-view of the paving generated by BISECT to bracket the solution set (in red) in the
parameter space. The outer frame corresponds to the box[−10, 10] × [−5, 5].

5.3 Blind source separation

The problem adressed here is the recovery ofn unknown independent sourcessi(t)
from the observation of an linear mixturesxi. In matrix and vector notations, this
model readsx = As, wheres = (s1, s2)

T is the vector of sources,x = (x1, x2)
T

the vector of observations andA = {aij} the mixture matrix. It is a noise-free, time-
free model. To recover a vectory close to the source vectors knowing the vectorx
only, one should estimate some inverse ofA, denoted asB. The corresponding estimate
of s is y = Bx. It should be noted, however that the matrixA (or its inverse) is not
identifiable from the observations (see e.g.[11]): even if we can extractn independent
components, we do not know their ordering. This implies thatthere exists afreedom
of permutationsof the original signals. The magnitudes of the original signals si are
also not recoverable, because a scalar mutiple ofsi, csi of si by a constantc cannot be
distinguished from multiplication of theith column ofA by the same constantc. There-
fore, therefore,we can recover only a permuted and rescaledversion of the sources,i.e.
we can obtain at bestPDA−1, whereP is a permutation matrix andD is nonsingular
scaling matrix.
The important question is: does the independence of the components ofy imply nec-
essarily theseparabilityof the mixing model ? The answer to this question is positive
in the linear instantaneous domain: the transformation which maps a non-Gaussian ran-
dom vector with independent components to a random vector with independent compo-
nents is unique, up to some trivial transformation. This property is a direct result of the
Darmois-Skitovich theorem [12]. For sake of simplicity, the problem here is limited to
the case of 2 sourcess1 ands2 observable through 2 signalsx1 andx2 (omitting time
indext). A solution to the problem was first adressed by Herault and Jutten [13]. They
proposed a fully interconnected network (see figure 10) which computes

{
y1 = x1 + b12y2

y2 = x2 + b21y1.
(20)



whereb12 andb21 are adaptive weights adjusted by means of an adaptation law based on
the product of 2 nonlinear functionsf andg. The sources are assumed to be zero-mean
(i.e.E[s1] = E[s2] = 0), stationary and independent.

x1

x2

y1

y2

b12

b21

1

1

Fig. 10.The two-channels Herault-Jutten network.

The independence of the signals means that these sources must have zero covariance,
i.e.E[s1s2] = 0 and thereforeE[y1y2] = 0. The following adaptation rule is considered
in [13] to learn the coefficientsbij

db12

dt
= µy3

1y2,
db21

dt
= µy3

2y1, (21)

whereµ is a positive constant. It is well-known that the equilibrium points are solutions
of {

E[y3
1y2] = 0

E[y1y
3
2 ] = 0

(22)

However this does notguaranteethat

(
1 b12

b21 1

)
converges to the inverse of the mixing

equation, even locally.

Example 2.Let
(
a11 a12
a21 a22

)
be the (unknown) separating matrix. The solutions of the

following system:

(
1 b12

b21 1

)−1 (
a11 a12
a21 a22

)
=

(
1 0
0 1

)
or

(
0 1
1 0

)
. (23)

readsb12 = a12

a22

andb22 = a21

a11

, or b12 = a11

a21

andb22 = a22

a12

. �

Comonet al.[14] and Sorouchyari [15] investigate the convergence properties of the al-
gorithm and perform a stability analysis for such a network.They demonstrate that there
areexactly4 paired equilibrium points (see figure 12): indeed, if the point (b∗12, b

∗

21) is
a equilibrium point, then the point( 1

b∗
12

, 1
b∗
21

) is also a solution (see e.g. [15]). One can
show that such a pair of equilibrium points is on a line passing through the origine of
the (b12, b21) plane. But only one of these stationary points will be astable separat-
ing solution[16]. A stationary point(b∗12, b

∗

21) verifies (22) and is said to be (locally
asymptotically stable) if the eigenvalues of matrixΓ , defined as the partial derivatives
of (22)

Γ =
−µ

1 − b12b21

(
3E[y2

1y
2
2 ] E[y4

1 ]
E[y4

2 ] 3E[y2
1y

2
2 ]

)
(24)



have negative real parts.Stability conditionsare therefore

9(E[y2
1y

2
2 ])

2 > E[y4
2 ]E[y4

1 ] (25)
b12b21 < 1 (26)

Condition (25) follows from the requirements that the loop again of the network must
be less that zero and depends only of he statistics of the input sources, whereas the
condition (26) is of greater significance: it indicates thatthe source signals require to
have negative kurtosis for the separating point to be stablewhe the cubic and identity
functions are used.
The setS to be characterized consists of all the values ofb such that the graphs ofBx
coincides with the graphs ofs. S can be defined in vector form as

S , {b ∈ R
2|f(b) ∈ x}, (27)

wheref(·) is the vector function




9(E[y2
1y

2
2 ])

2 − E[y4
2 ]E[y4

1 ]
1 − b12b21

E[y3
1y

2
2]

E[y1y
3
2 ]



 , (28)

andx =]0; +∞[2×] − ǫ, ǫ[2×[b̌1] × [b̌2] for any smallγ > 0. SIVIA can be used to
characteriseS provided that the following test

(b ∈ [b](0)) ∧ (f(b) ∈ x) (29)

is true, where[b](0) is the prior search box. The considered problem is then much more
general than the HJ-learning rule.
As an illustration, consider the discrete time model in which the data have been gener-

ated by simulating fork = 1, . . . , 500:
„

x1(k)
x2(k)

«

=
“

1 0, 6
0, 3 1

”

„

s1(k)
s2(k)

«

, wheres1(k) =

sin(7, 3kTe), s2(k) = sin(4kTe), Te = 0, 2. Prior interval([x1(k)], [x2(k)]) are obtained
by adding a random white noisen(k) ∼ U[−ǫ,ǫ], with ǫ = 0.01. Fig. 11.a plots the
sources and Fig. 11.b the observed data.

a.

Observed signals

b.

Mixed signals

c.

Demixed signal

Fig. 11.a) The unknown sources b) the observations c) The separated sources.

For ǫr = 0.01, the algorithm generates in the(b12, b21) plane (Fig. 12.a) the subpaving
of the parameters satisfying the independence constraint (22) in less than 1s on a PEN-
TIUM III: the similarity with Fig. 12 is relevant.



a b. c.

Fig. 12.a) Theoretical equilibrium points of the system b) stable equilibrium state using (25) c)
separating state concatenating (25) and (26) in the(b12, b21) plane.

The yellow boxes have been proven to be included inS and the blue grey boxes have
been proved to have an empty intersection withS. No conclusion has been reached for
the red boxes. After completion, the contracted intervals in the figures 12.b and c in-
clude the true values of the parameters when constraints (25) and (26) respectively are
satisfied. Large portion of the prior parameter space can be quickly eliminated, before
concentrating on the indeterminate region. The required memory for the stack remains
surprisingly limited. As could be expected, the number of boxes in the subpavings in-
creases quickly when the number of parameters increases or when the tolerance param-
eterǫr is decreased.

6 Conclusion

The problem of parameter estimation of a (non)linear model from prior knowledge, ex-
perimental data and collateral constraints is viewed in this article as one ofset inversion,
which is solved in an approximate but guaranteed way with thetools of interval analy-
sis. It is possible to charaterize the set of all parameter vectors that areconsistentwith
the data in the sense that the errors between the data and corresponding model outputs
fall within known prior bounds. This has been illustrated onsimple simulated examples
for time-invariant models whose outputs are linear in theirinputs, even if nonlinear in
their parameters. it is worth stressing that the scheme of section 3.2 is robust in the sense
that the fit of the tuned model is at least as good as what is obtained with the classical
optimization approach.
Upon completion of the algorithm, a paving bracketing the contours of the solution
membership functions is found (or not) with a precision controlled by the solver.
This computation process has drawbacks:(i) its complexity is exponential in the num-
ber of parameters which restricts its use to low-dimensional problems,(ii) the algorithm
presented here is far from optimal from the viewpoint of computational time and sig-
nificant improvements can be expected in the near future,(iii) efficient functions are
needed which are available only when an explicit solution for the equations defining the
model can be found.
Realistic advantages can be found compared to the statistical approach:

1. The error structure is quite simple and similar information is usually available in
most practical cases, not assumingany a priori statistical information about the
error.



2. The computation of the parameter domain is conceptually simple and is practically
feasible even if the number of data is not large.

3. The algorithm isdeterministic.
4. guaranteedresults are available for (non)linear models even when the parameters

are not identifiable. Nonlinear constraints are easily handled.
5. the solver characteristics are different from optimization approaches that requires a

(large) set of data points.

Least-Square estimation suffers from the fact that the costfunction to be minimized is
a sum of terms involving the same parameters, so multioccurence of these parameters
is unavoidable and tends to make inclusion functions for thecost function very pes-
simistic, which complicates the elimination of interesting parts of the search domain.
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