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Abstract. This paper contribution is about guaranteed numerical methods
based on interval analysis and the application of these metius to vast classes
of statistical problems. 'Guaranteed’ means here the innerand outer ap-
proximations of the sets of interest are obtained, which cabe made as pre-
cise as desired, at the cost of increasing the computationeffort. It thus be-
comes possible to archieve tasks still thought by many to baubof the reach
of numerical methods, such as findingll solutions of non-linear equations
and inequalities or a global optimizer of possible multi-malal criteria.

1 Introduction

Before using interval analysis as a basic tool in the follayvgection, we shall now
introduce its main concepts.

Interval computation is a special case of computation ) aet set theory provides the
formulations for interval analysis. The reader interestemhterval analysis may found
more developementsin [1,2]. Set and interval mathematicsedrom the same general
theory developped during the 30’s by the french School oblogy: if a number and

a boundb of a approximate the value of some numhesuch thafjz — a| < b, then
interval mathematicsells us thatr is in the intervalla — b, a + b]. Hence, the type
of an interval is dual: at the same timeimberand set with evident implications in
set arithmetics. For instance, suppose a real axis providgdan order relation<,
the interval[x], bounded byz andz, is a closed connected subset of real numbers
{z|z < x < T}. Interval arithmetic follows from order properties and loasgperations
on real numbers or vectors extend in a natural way to intee/al.

ly] =
[yl ={-2|z € [2]} = [-T; —z]
@] -yl ={z—ylzelz]y ey} =[]+ (-[y])
[x] x [yl ={z x y |z € [z],y € [y]}
= [min(z - y,2- 7,7y, T-7,)
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However, the arithmetical rules for intervals differ frofmose for real numbers. For
instancex? + z + 100 = (z + 3)? + 22 whereas[z]* + [z] + 100 differs from

([z] + 2)* + 222, as illustrated in the following example.



Example LAt [z] = [0, 1], [r]” +[a] +100 = [0,1]% + [0, 1] + 100 = [100, 102], and
([0,1] + 3) + 392 = [1597 16211 The first result is a pessimistic approximation of the

image set ofr? + 2 + 100 at[0, 1] whereas the second (and beteter one) is equal to this
image set. O
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Fig. 1. A two-dimensional box.

Algebraic structures and topological structures have lokelopped by Moore in the
60’s [3]. Note that there are areas of interval mathematickfazzy set theory that have
been developed in parallel, in particular the extensiongipile of Zadeh [4].

A box orvectorof intervals[x] (seee.g.Fig. 1) is the cartesian product efintervals
and is notedz] x ... x [z,], with [z;] = [z;,%;],4 = 1,...,n. Theith interval com-
ponentz;] is the projection ofx] onto theith axis. Many of the notions introduced for
intervals extend without difficulty to boxes. The set of alikes ofR™ is denotedR™.
Note thaf — oo, co[x ... X] — 0o, o[ is an element ofR".

Consider the situation where we have a model which acts asdaidnm f, mapping
(inputs) z to (outputs)y. This modelf might be quite complex, with multiple input
parameters and with different kinds of uncertainty repnéseé on them: information
available on inputs may be rich or sparse, so-called “atgatmnd may be made known
through objective measurements. Mathematically inputghirtie represented by prob-
ability or possibility distributions, by strong or sparsellections of data points, by
simple intervals, or even by non-quantified linguistic eeggions.

Given f, how can we propagate the uncertainty.oto y through f? Moreover, how
can we do so in a way which respects all the original uncestajnantifications as pro-
vided, making no unnecessary assumptions? How can we darsaclay which uses
only, butall of what we are given?

In this paper, we propose an approach for solving such pnofileve assume that ex-
perimental points (both inputs and outputs) are modeledtasvials and provide exact
solutions. The contribution of this article is three-fofistly, it is shown that interval
analysis can directly be applied to perform optimizatiae|ding to close form expres-
sions of results. Secondly, a C++ library which implemehéstechniques is introduced.
The program and the library are open-source may be obtaingdthe author on simple
request. Third, short illustrative examples including aliveear dynamic process and a
blind source separation problem are given which show thafsegtive improvement of
the approach in comparison with standard linear identificat

2 Arefresher on parameter estimation

Consider some functiofi: X ¢ R®™ — Y C R*, whereY is a bounded set and suppose
we wish to construct a model: X ¢ X — Y c Y, whereX andY are some domains



of interest, by choosing a parameter vegioe R? so that, mathematically speaking,

y = f(x) = g(x,p) + e(p), 1)

forall x € X andy € Y, where the error in approximatiom(p), is as small as
possible.

We suppose that all that is available to choose the parasetir g is some part of
the unknownfunction f in the form of the input-output data pair associations. The
ith input-output pair for the systenfi is denoted by(x;,y;), wherex; € X)y; €

Y andy, = f(x;). This may correspond for instance #o+ s scalar measurements
corresponding to various experimental conditions on acspabcess or on a dynamical
one. Therow vectat; = (x?'y!) € R"** denotes one particular data sample. Stacking
N consecutive samples on top of each other gives the dataxmatri

z1

Z=|.|exxY. )

The purpose of parameter estimation is, for instance, topirsdich thaty(x, p) best
fits y in a sense to be specified. In [5], the parameters are copsideimissible if the
errore(p) belongs to some prior compact set of admissible dirar R°. For instance,
E may be the box defined as

E={ele” <e<e'}, (3)

wheree™ ande™ are some prior bounds. One is then interested in finding thg eé

all values ofp such that the error is admissibiee. S = {ple(p) € E}. This set has
been callednembership set, likelihood sahd posterior feasible seif the data were
generated by a statistical modgék, p*), wherep* is some true value of the parameters
and ife(p*) € E, thenS containsp*. Thus,S provides an accurate description of the
uncertainty with whichp* is estimated [5].

If the reciprocal ofg exists and is denotegi-!, S is defined a§ = g '(y — E) =

g~ 1(Y), whereY = y — E is themeasurement sein other words, for any € S there
existse € E such thaty = g(x,p) + e.

System identificatiofi.e. function approximation) amounts to adjustipgising infor-
mation fromZ so thatg(x,p) ~ f(x),Vx € X. Measured and model outputs never
match perfectly in practice, but differ a$p). An obvious modeling goal must be that
this discrepancy is “small” in some sense that is archiewethb value of theapproxi-
mation errorwe wish to bound. Such a bound is for example

sup || f(x) — g(x, p), (4)
xeX

which requires thaf is known everywhere. The problem is that we only know the part
of f given byZ, and it is the only evaluation we can make based on knownrimdition.
Whenyg is not affine inp, one may linearize it around some value of the parameters est
mated beforehand and then use any method for linear mod=lanig the parametric
space using random search offers no guarantee as to thd ghihee of the obtained
results [6].

A thorough examination of(p) reveals thamprecisionplay a key role in the parame-
ter value formulation: indeed, it is reasonnable to assurata large part of estimation
deviations ofp may come from imperfection in input assessment, togethtr thie
model imprecision.



3 ldentification method

3.1 Core of the modeling

The structure of the modei.,e. the form of g and the matrixZ, are determined by

the statistician on the basis of prior knowledge and/or bygaring several candidate
models in terms of the prediction error. Once a model is chodee parameters of
the model may be estimated. Modeling possible values ofkbes by means of real
intervals accounts for some imprecision.

Let us consider a system with imprecise input and outpaind y resp., which are

readings from unreliable sensor (“noisy data”). To simpéikposition, we shall only

consider output errors :

ei(p):yi—g(xi;p),i:1,~~~75 (5)

but other types of errors could be considered as well. Wenasshat these errors should
satisfye; < e;(p) <@, i = 1,...,sto be “admissible”, where; ande; are known
lower and upper prior bounds of the approximation error it@syifrom technical speci-
fications or pointing out how far we can go in accepting dipareies between our data
and model outputs. Note thaf(p) is an interval.

Let y be the vector of all datg;,7 = 1,...,s collected on a given system, and let
g(x; p) be the vector of all corresponding model outpytsg;; p), i = 1,...,s. Equa-
tion (5) can then be rewritten as

e(p) =y —9(x;p), (6)

Picked in intervals, equation (6) gives:

[e(p)] = [y] = 9(IJ; [P)), (7)

The model (7) is admissible ib is such thaie € E, i.e. the set of all error vectors
e satisfiese < e < & wheree ande€ are known. Estimating intervap] consists on
looking for the set of all admissible values Bf that areconsistentith (7), i.e. errors

should satisfy
[v] = [9](x]; [p]) € [e]([p)])- (8)

Equation (8) relies on the assumption that there exista@unsion functiorig| of g that
returns arenveloping boxyuaranteed to contain the image hwf any given boxx]
included in the domain of. [g]([x]) is a box such that

g((x) < [gl((x]); (9)

The including functiorig] is easy to compute for usual elementary functions that
can be obtained by composition of elementary operatiortsasie, —, X, /, exp, tan, sin, . . .
by replacing each of these elementary operations by theision function in the for-
mal expression of.

When no efficient algorithm exists for its computatidggi, can be approximated by an
inclusion functionG : R™ — RP? satisfying the equation (9) and such that:

w(x]) = 0= w([G]([x])) — 0. (10)
wherew([x]) is the width of the boXx], defined as the length of its largest side(s). It

must be noted that the algorithm presented in this paperdasagieed to converge only
if (10) is valid.
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Fig. 2. Minimal inclusion function[g] and inclusion functior; of a functiong.

FiguAre 2 illustrates conditions (9) and (10).
LetS = {plg([x]; [p]) € Y}. Then

g(x;[p) €Y= peg™(Y) and p e [p(0) (11)
& pep0)ng (V) (12)

where[p](0) is the search domain. Thus
S=[pl0) Ny }(¥), (13)

and characterizin@ is aset inversion problem

We shall say thalp] is feasibleif [p] C S, unfeasibléf [p] NS = @, else[p] is am-
biguous

To perform computation db in an approximate but guaranteed way, an interval anal-
ysis algorithm is applied to compute the possible interaalge[p] of p. The interval
computation stage is detailed in the following.

3.2 Set characterization

Methods allowing to implement interval analysis are rekly few and date from the
nineties and among them, one may quote the Moore’s algofBhandsivia proposed
by Jaulin [7]. Most of the methods for estimating paramegeesbased on computations
performed at point values of the parameter vector. The mdarést in the notion of
paving is to replace point values by subsets of the paramspgare. For simplicity, we
will use pavings based upon boxes.
A pavingof a compact subséf} C R"™ is a set of non overlapping boxes with nonzero
width such that the union of these boxes correspond®fo A subpavingK of P is
a subset ofP. Upon completion, the algorithm enclosedetween two compact sets
corresponding to 2 subpavings (Fig. 4). [Eebe the feasible error set. Initialisation is
performed by setting’ = y — . The principle is as follows:
a). Define an initial box of |ntere$p]( 0) within which the search will be performed
b; Compute a pavmg]P’} of |
Compute the image([x ﬁo for each box of this paving. Three situations must
then be considered (see flgure 3).

[9]([x]; [p]) € [Y] = [p] € S so thalp]is feasible
[9)([x];[p)) N[Y] =@ = [p]NS =2 sothaip]
is unfeasible

otherwise[p] is indetermined



The exploration algorithm performs a recursive implemaeateof the principle that has
just been described:k#section algorithnsplits each box of the subpaving into smaller
boxes whenever needed until the width of the box becomedeantizin some tolerance
parametet to be specified by the user. Cutting is carried out again a3 &srthe boxes
contain solutions or stops if the boxes do not contain any.

[y] vl vl
. b. H C. E’

Fig. 3. Feasibility of boxes: a test function allows to distinguibh cases (a-c) represented in this
figure. Let[z] and[y] be two boxes. Suppose tHafl = [z] N [y]. a) [n] = @ means thafz] has
an empty intersection withy]. b) [n] = [z], so that[z] is included insiddy]. ¢) [n] C [z] and
[n] # [z]. [z] intersectdy], so that we cannot conclude. The Hakcan be split again.

We shall splitP iteratively into three subpavings S andS corresponding to the sets
of all feasible, unfeasible and indetermined boxes regpdyt as plotted in figure 4.
These subpavings satisfy the following relations :

1. {8} cSc{S}u{§}
2. vol({S})< vol(S)< vol({S}) + vol({S})
3. [{S}] C 18] C [{S} U {S}]

Provided thaS is full, this means that the pafS; S} defines a neighbourhodi =
S\S of S with a diameter that can be chosen arbitrarily small.

The previous algorithm makes an extensive use sthakL of boxes,.e. a dynamical
structure on which only 3 operations are possible: at ang tiome may put an element
on top of the list, remove the top element or test the stackfigptiness. We define the
required accuracy for the pavingP as the maximum widh that an indetermined box
can have. In the following, the principal plane of a box is iyfenmetry plane of this
box that is orthogonal to the axiss {j|w([p]) = w([p,])}, where the operator “width”
w([-]) of a box is the length of its largest side.

Let [p](0) be the box considered at iteratidn Initialisation is performed by setting
k=0,L=2,S =S = @. The recursive algorithm can be described as follows:
The union of all the boxes in the listreturned by the program contaifisthe parti-
tion P consisting of feasible, unfeasible and indetermined baaesbe plotted in the
parameter space in the case the space dimension is less themg. 4).

4 Discussion

The method ofset characterizationntroduced in section 3.2 appeals to some com-
ments.
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Fig. 4. a. Regular paving of a box: accepted, rejected and indetexdnsubpavings are respec-

tively coloured in red, blue and yellow. S andS} brackets the portion & contained irfp](0).

[Algorithm BISECT

INPUTS
data:y
inclusion function:[g]([-])
feasible error sef
prior feasible box{p](0)
accuracy for the paving:
INITIALIZATION
Y=y -—E;
stack:L = @
iteration:k = 0
[p] = [p](0);
ITERATION k&
Begin
step 1 if [g]([x]; [p](k)) C [Y] thenS := S U [p] andS := S U [p];
step 2 else if[g]([x]; [p]
step 3 else ifw([p](k)) < ¢ thenS := S U [p](k);

else cufp|(k) along the principal plane and stack the resulting boxés in
step 4 if the stack is not empty, then unstack and store the resutiox in[p](k + 1);
Ic:dk—kl;gotostepl;
En

Table 1. Recursive implementation of the bisection algorithm.

pl(k))N[Y] = @, thenS := SU [p]; then unstackp] (k) as unfeasible;



Upon completion, this approach encompasaeshe acceptable values of the param-
eter vector in a set that is fully characterized bysBCT: S andS will tend to S from
inside and outside when— 0. SincesS is a finite union of boxes guaranteed to contain
the portion ofS of interest, it is very convenient for implementing setdhatic mani-
pulations [8,5].

The advantages of this approach are threefold:

() no assumption is made on the image fonctjon
(ii) no statistical assumption on the modeling error is rieepl
(iif) any bounded error can be treated independently franoitgin (modeling and/or
measurement error).

An other advantage of the proposed approach is that the-myiput roles of the vari-
ablesz andy can be reversed since the linking functgn x — y can be rurforward
as well asbackwardwhen using interval analysis. Subpavings form a usefulsctds
objects for manipulating statistical estimations.

The algorithm requires a possibly very large search [pd¢0) to whichS is guaranteed
to belong. Solvers split the search box into an union of b@iespaving with guar-
anteed error boundsé. mathematically valid) [6] (see section 3.2). The pavingustb
by the solver itself. A computer program can represent a §éeventually disjoint)
intervals as dist L. The precision of the solver is controlled by coefficientsdfying,
for example, the widtlz of the smallest boxes of the paving, or the accuracy in the lo-
calization of a global optimum. The computing time of theveolcan increase quickly
with the dimension and size of the list

Special care must be taken in avoiding memorizing unnecgs¥armation, otherwise
the quantity of memory required to store the pavingafill increase linearily at each
iteration, which may result into a memory overflow even foollems of modest di-
mension.

One can observe that the parameter space is not isotropacibethe sensitivities gf
with respect to the various componentgpadre not of the same order of magnitude. The
basic bisection technique suggested in Tab. 1 may not béeeffienough. The prob-
lem is then how to choose the fastest bisection policy thatltg in a convergence as
fast as possible. Jaulet al.[5] suggests the bisections gf] into boxesp;] and|[p2]
that minimize volg([x]; [p1]))+Vvol(g([x]; [p2])). If [p] is not ambiguous, this policy
will tend to avoid classifying as indetermined. Experingesgem to show that this can
improve the efficiency of the solver when the anisotropy iese.

5 Application to statistical problems

5.1 Parameter estimation

In this example, a simplified version of the problem expldsgdiaulin and Waltér[5]
is given. The vector comprising all available datés:

y = (1.59,1.44,1.30,1.18, 1.07,0.96, 0.87,0.79,0.71, 0.64) .

The numerical values of the corresponding interval datayaen in Tab. 5.

The sefP to be characterized consists of the set of variable ve¢tors [p.])” such
that the graph of the function :

f(p,t) = p2 exp(—pit), (14)

% The extension of the method to multiple-output problemsraightforward.
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Fig. 5. a) Measurement times and corresponding interval data. p)view of the paving gen-
erated by BSECT to bracket the solution set (in red) in the parameter spabe.duter frame
corresponds to the bdx-1, 5] x [—5, 5].

crosses all the data bars of Figure 5. In this simulated elartie|[y;] were computed
by adding a random error interval with radips= 0.5]y;| + 1 to they;,. The initial box
domains for the parameteps andp, may be arbitrarily large, for example

[p1] = [~10,000; 10,000] and [ps] = [—10,000; 10, 000], (15)

i.e. no priorinformation is available on the parameters. The feasitdeyiset for the
parameters is given by (13), where the search dorgd{0) is [—1, 5] x [—5, 5]. In less
than 1s, on a ENTIUM |V, BISECT generates the pavings of figure 5, thus bracketing
the posterior feasible set for, between the inner and the outer approximations. Figures
5 gives a top-view representationpfi.e. the bounded support of the variabjgsand

po that is consistent with the equation (14) and the domaing (15

5.2 Curve estimation

The curvatures(t) of an arbitrary twisted curv€ measures the rate of change of the
tangent when moving along the curve. It measures, so to splealdeviation of the
curve from a straight line in the neighbourhood of any of iténgs. It is quite easy to
derive an analytic expression of the curvature which isdvalhenC is represented by
an allowable parametric representatioft):

x' x x"

where x denotes the vector product. Derivatives with respect tetare denoted by

primes,e.g.x’ = ‘j’l—’t‘ andx” = ‘51273‘ (16) is equivalent to (see [9] and references

therein):
1.~ 1"~ !~ 11\2
k() = VE - X)E" - x )3 (x'-x") , (17)
(- x)3
Whene is aclelia curve (see figure 5.2.a), then it has the following cartesgnesen-
tatiorf*:

x(t) = (Rcosntcost, Rcosntsint, Rsinnt) (18)

4 Clelia curve was studied by Guido Grandi in 1728.



with ¢ as parameter, it is easy to obtain from (17) a simpler repitasien of the curva-
ture:

a(t) = v/ (4n2 — n?) cosQ(n?f) + nb + 4n* + (1 — n2)cos*(nt) . (19)
R3{¥/n? + cos?(nt)

Figure 5.2.b plots the domain ef).
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Fig. 6.a. 3-dimensional representation of the Clelia curve. bpBaf the functionx(¢) given by
equation (19).

A statistical approach assume that a se¥dhput-output data pairg;, x;)Y, is avail-
able. Recall thag; € R? are vectors and; is scalar. The data set is split into a training
and a validation data set. A neural network such as repredémtig.??is designed for
supervised learning and prediction task from a particalgBuch architecture is called
multi-layer perceptror{MLP). Hidden units are placed between the features unis an
the predictions units. A deterministic MLP trained by a neetlsuch as backpropaga-
tion [10], can implement any input-output function prouwidbat the number of hidden
neuronsny, is sufficiently large.

Fig. 5.2.a depicts theaining error performed on the training data set. With increased
number of hidden neurons, the accuracy of the resultingatiesystem with respect to
the training data set is improved, but the ability of the mddegeneralize for inputs
(test set) may be degraded as illustrated in our results @®&yb). In a similar way,
descreasing the output error improves the accuracy witteigo the training data set,
but accuracy in the presence of inputs different from thming data set is degraded.
These tests illustrate some effects in parameter choicheresulting neural model.

A second approach consists in using interval analysis tbolhis simulated example,
we assume that the values taken+bgre imprecise and sampled at the ratg : the
prior intervals|x;] are computed by adding a centered error interval to the &tsoc

measurement;. The solution sef to be characterized consists of all the values of
p = (R,n)T such that the graph of the functiat) crosses all the data bars of figure
5.2. The dataset is made of 22 data, so very few for a learnopin

Fore = 0.03, BISECT generates the subpaving represented in Figures 9 in 7s on a
PENTIUM 1V, consistent with the equation (19). The prior box for thergmeters is
taken agp] = [-10, 10] x [—10, 10].
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More interesting, one may want to generate the posteriailiéaset for the:; (poste-
rior estimates) from the formula 19 as can be seen in figure 5.2

Fig. 9. Top-view of the paving generated by&:CTto bracket the solution set (in red) in the
parameter space. The outer frame corresponds to thé-btix 10] x [—5, 5].

5.3 Blind source separation

The problem adressed here is the recovery.afnknown independent sourcegt)
from the observation of a linear mixturesz;. In matrix and vector notations, this
model readsc = As, wheres = (s, 52)7 is the vector of sources; = (z1,22)7
the vector of observations amtl = {a;; } the mixture matrix. It is a noise-free, time-
free model. To recover a vectgr close to the source vecterknowing the vectote
only, one should estimate some inverselpfienoted a$3. The corresponding estimate
of sisy = Bax. It should be noted, however that the matrix(or its inverse) is not
identifiable from the observations (see e.g.[11]): evendfaan extract independent
components, we do not know their ordering. This implies thate exists dreedom
of permutation®f the original signals. The magnitudes of the original sig; are
also not recoverable, because a scalar mutiplg,afs; of s; by a constant cannot be
distinguished from multiplication of th&h column ofA by the same constantThere-
fore, therefore,we can recover only a permuted and rese@sibn of the sourcesge.
we can obtain at be§ge D A1, whereP is a permutation matrix ané is nonsingular
scaling matrix.

The important question is: does the independence of the apems ofy imply nec-
essarily theseparabilityof the mixing model ? The answer to this question is positive
in the linear instantaneous domain: the transformatiorctvinaps a non-Gaussian ran-
dom vector with independent components to a random vectbrindependent compo-
nents is unique, up to some trivial transformation. Thigamby is a direct result of the
Darmois-Skitovich theorem [12]. For sake of simplicityethroblem here is limited to
the case of 2 sources ands» observable through 2 signals andx, (omitting time
indext). A solution to the problem was first adressed by Herault angkd [13]. They
proposed a fully interconnected network (see figure 10) Wwhmmputes

Y1 = a1+ bi2y2
20
{yz = T2 + ba1y1. (20)



whereb;, andbs; are adaptive weights adjusted by means of an adaptatiordsgdon
the product of 2 nonlinear functiorfsandg. The sources are assumed to be zero-mean
(i.e.E[s1] = E[s2] = 0), stationary and independent.

Q) g
bo1
- b12

H@ Y2

Fig. 10. The two-channels Herault-Jutten network.

The independence of the signals means that these sourcétaweszero covariance,
i.e.E[s1s2] = 0 and therefor&[y,y-] = 0. The following adaptation rule is considered
in [13] to learn the coefficients;;

db1o 3 dbay 3
- /= = 21
o = Wiy =y, (21)
wherey is a positive constant. It is well-known that the equililnipoints are solutions
of
]E[yfyz] =0
22
{E[yw%] =0 ()

1 b1

However this does n@uaranteehat <b21 1

> converges to the inverse of the mixing

equation, even locally.

Example 2.Let (g; g;z) be the (unknown) separating matrix. The solutions of the

following system:
(") (o) = () or (05)- (23)

readshiz = ¢12 andby; = $24, 0rbiz = ¢t andby, = $22. O
Comonet al.[14] and Sorouchyari [15] investigate the convergence ertigs of the al-
gorithm and perform a stability analysis for such a netwdhey demonstrate that there
areexactly4 paired equilibrium points (see figure 12): indeed, if thépbi,, b3,) is

a equilibrium point, then the poirﬁtbi, %) is also a solution (see e.g. [15]). One can
show that such a pair of equilibrium points is on a line pags$imough the origine of
the (b12, b21) plane. But only one of these stationary points will betable separat-
ing solution[16]. A stationary point(bi,, b3,) verifies (22) and is said to bdotally
asymptotically stableif the eigenvalues of matriX’, defined as the partial derivatives

of (22)
_ i (3E[y}3] Elyi] )
L= b ( Elyi] 3E[33) (24)



have negative real partStability conditionsre therefore

I(E[y7y3])* > Elys]E[yi] (25)
biaba1 < 1 (26)

Condition (25) follows from the requirements that the log@ia of the network must
be less that zero and depends only of he statistics of the Bgurces, whereas the
condition (26) is of greater significance: it indicates ttieg source signals require to
have negative kurtosis for the separating point to be stabkethe cubic and identity
functions are used.
The sefS to be characterized consists of all the value$ sfich that the graphs d¥x
coincides with the graphs &f S can be defined in vector form as

S £ {b c R?|f(b) € x}, (27)
wheref(-) is the vector function
9I(E [y%ylg])Qb— b 2 Elyi]
— V12021
28
Elyiy)] ’ (28)
Ely1ys)

andx =]0; +00[2x] — €, €[2x[b1] x [be] for any smally > 0. Sivia can be used to
characteris® provided that the following test

(b € [b](0)) A (£(b) € x) (29)
is true, wheréb](0) is the prior search box. The considered problem is then mwarie m
general than the HJ-learning rule.
As an illustration, consider the discrete time model in vihtice data have been gener-
ated by simulating fok = 1,...,500: @;EZ%) = (0713 0’16) <§;E£§) wheres; (k) =
sin(7, 3kTe), s2(k) = sin(4kT.), T. = 0,2. Prior interval([z1 ()], [z2(k)]) are obtained
by adding a random white noisg(k) ~ U;_. ., with e = 0.01. Fig. 11.a plots the
sources and Fig. 11.b the observed data.

AWVANY ety Y

Fig. 11.a) The unknown sources b) the observations c) The separatecks.

Fore,. = 0.01, the algorithm generates in tiig -, b2;) plane (Fig. 12.a) the subpaving
of the parameters satisfying the independence const2irg less than 1s on aeR-
TiuM I11: the similarity with Fig. 12 is relevant.



Fig. 12.a) Theoretical equilibrium points of the system b) stableildgrium state using (25) c)
separating state concatenating (25) and (26) in(thg b21) plane.

The yellow boxes have been proven to be included and the blue grey boxes have
been proved to have an empty intersection WitiNo conclusion has been reached for
the red boxes. After completion, the contracted intervalthie figures 12.b and c in-
clude the true values of the parameters when constrainjsa(®5(26) respectively are
satisfied. Large portion of the prior parameter space carulikly eliminated, before
concentrating on the indeterminate region. The requirecharg for the stack remains
surprisingly limited. As could be expected, the number ofdwin the subpavings in-
creases quickly when the number of parameters increaselsen the tolerance param-
etere, is decreased.

6 Conclusion

The problem of parameter estimation of a (non)linear moaehfprior knowledge, ex-
perimental data and collateral constraints is viewed imdiicle as one afet inversion
which is solved in an approximate but guaranteed way withdbés of interval analy-
sis. It is possible to charaterize the set of all parametetors that areconsistentvith
the data in the sense that the errors between the data am$pgonding model outputs
fall within known prior bounds. This has been illustratedsimple simulated examples
for time-invariant models whose outputs are linear in tlgduts, even if nonlinear in
their parameters. it is worth stressing that the schemeatiose3.2 is robust in the sense
that the fit of the tuned model is at least as good as what isradutavith the classical
optimization approach.

Upon completion of the algorithm, a paving bracketing thatoars of the solution
membership functions is found (or not) with a precision colted by the solver.

This computation process has drawbacksits complexity is exponential in the num-
ber of parameters which restricts its use to low-dimendiprablems (i) the algorithm
presented here is far from optimal from the viewpoint of cartapional time and sig-
nificant improvements can be expected in the near fuiié) efficient functions are
needed which are available only when an explicit solutiaritie equations defining the
model can be found.

Realistic advantages can be found compared to the statiapproach:

1. The error structure is quite simple and similar inforroatis usually available in
most practical cases, not assumiggy a priori statistical information about the
error.



. The computation of the parameter domain is conceptuiatigle and is practically
feasible even if the number of data is not large.

. The algorithm igleterministic

. guaranteedesults are available for (non)linear models even when Hrarpeters
are not identifiable. Nonlinear constraints are easily eohd

. the solver characteristics are different from optimmagapproaches that requires a
(large) set of data points.

aa 0w N

Least-Square estimation suffers from the fact that the fewsition to be minimized is
a sum of terms involving the same parameters, so multiooceref these parameters
is unavoidable and tends to make inclusion functions forcb&t function very pes-
simistic, which complicates the elimination of interegtparts of the search domain.
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