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Abstract

Let H(q, p) be a Hamiltonian on T ∗T n. We show that the se-
quence Hk(q, p) = H(kq, p) converges for the γ topology defined by
the author, to H(p). This is extended to the case where only some
of the variables are homogenized, that is the sequence H(kx, y, q, p)
where the limit is of the type H(y, q, p) and thus yields an “effective
Hamiltonian”. We give here the proof of the convergence, and the first
properties of the homogenization operator, and give some immediate
consequences for solutions of Hamilton-Jacobi equations, construction
of quasi-states, etc....
We also prove that the function H coincides with Mather’s α function
defined in [Ma] which gives a new proof of its symplectic invariance
proved by P. Bernard [Bern 2].
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1 Introduction

The aim of this paper is to define the notion of homogenization for a Hamil-
tonian diffeomorphism of T ∗T n. In other words, given H(t, q, p) defined for
(q, p) in T ∗T n, t in R, 1-periodic in t we shall study whether the sequence Hk

defined by Hk(t, q, p) = H(kt, kq, p) converges for the symplectic metric γ de-
fined in [V1] to some Hamiltonian H, necessarily of the form H(q, p) = h(p).

This convergence of Hk to H should be understood as the convergence
of the time one flows of Hk, ϕ

t
k to the time one flow of H , ϕ t-again for the

symplectic metric γ. This metric is necessarily rather weak, since for example
there cannot be any C0 convergence for the flows.

However such convergence implies convergence of the variational solution
(see [O-V] for the definition) of Hamilton-Jacobi equations.

(HJ)

{
∂
∂t
u(t, q) +H(k · t, k · q, ∂

∂x
u(t, x)) = 0

u(0, q) = f(q) .

to the variational solutions of

(HJ)

{
∂
∂t
u(t, q) +H(t, q, ∂

∂x
u(t, x)) = 0

u(0, q) = f(q) .

It is important to notice that none of these convergences implies any kind
of pointwise or almost everywhere convergence (however C0 convergence of
the flows implies γ-convergence as we proved in [V1], we refer to Humilière’s
work in [Hu] for stronger statements), but rather to some variational notions
of convergence, like Γ-convergence (see [de G], [Dal M]). This or similar
notions are used in homogenization theory, the theory of viscosity solutions
for Hamilton-Jacobi equations (see [L-P-V]), or the rescaling of metrics on
T n (see [Gr]).

All the above-mentioned papers can be considered as anticipating the
theory of “symplectic homogenization” that is presented here. We believe
some of the advantages of this unified treatment are

(1) the disposal of any convexity or even coercivity (as in [L-P-V]) assump-
tion on H in the p direction, usually needed to define H because of the
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use of minimization techniques for the Lagrangian. In fact our homog-
enization is defined on compact supported objects, and then showed to
extend to a number of non compact supported situations.

(2) the natural extension of homogenization to cases where H has very
little regularity (less than continuity is needed).

(3) a well defined and common definition of the convergence of Hk to H or
ϕk to ϕ that applies to flows, Hamilton-Jacobi equations, etc.

(4) The symplectic invariance of the homogenized Hamiltonian extends
the invariance results defined for example in [Bern 1] for Mather’s α
function, making his constructions slightly less mysterious.

(5) geometric properties of the function H (see proposition 3.2, (5)). yield-
ing computational methods extending those obtained in the one-dimensional
case in [L-P-V] or in other cases (see for example [Conc]).

This paper will address these fundamental questions, some other appli-
cations will be dealt with in subsequent papers.
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2 A crash course on generating function met-

ric

This section is devoted to defining the metric γ for which we shall later
prove that the sequence Hk(q, p) = H(kq, p) is convergent. The reader may
well skip this section and jump directly to section 3, possibly returning here
for reference.

Let M be an n-dimensional closed manifold, L be a Lagrangian subman-
ifold in T ∗M Hamiltonianly isotopic to the zero section OM (i.e. there is a
Hamiltonian isotopy ϕt such that ϕ1(OM) = L).

Definition 2.1. The smooth function S : M × Rk → R is a generating
function quadratic at infinity for L if

i) there is a non degenerate quadratic form q on Rq such that

|∇ξS(q; ξ) −∇B(ξ)| ≤ C

ii) the map

(q; ξ) → ∂S

∂ξ
(q; ξ)

has zero as a regular value
iii) by i) and ii), Σs = {(q; ξ) | ∂S

∂ξ
(q; ξ) = 0} is a compact submanifold in

M × Rk. The map
iδ : Σs → T ∗M

(q; ξ) → (q,
∂S

∂q
(q; ξ))

has image is(Σs) = L.

Remarks 2.2. (1) In this paper, we shall always use a semicolon to separate
the “base variables” q from the “fibre variables”, ξ.

(2) We still speak of generating function when there are no fibre variables.
In this case, L is the graph of the differential dS(q).

(3) In the sequel we shall abbreviate “generating function quadratic at
infinity” by “G.F.Q.I.”.

Now when L is Hamiltonianly isotopic to the zero section, we know ac-
cording to [V1] (prop 1.5, page 688) that the generating function is unique up
to some elementary operations (see [V1], loc.cit.). Moreover, an elementary
computation shows that denoting by Sλ the set

{(q; ξ) ∈M × Rk | S(q; ξ) ≤ λ}
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we have for C large enough that

H∗(Sc, S−c) ≃ H∗(M) ⊗H∗(D−, ∂D−)

where D− is the unit disc of the negative eigenspace of B. Therefore, to each
cohomology class α in H∗(M)−{0} we may associate the image of α⊗T (T
is a chosen generator of H∗(D−, ∂D−) ≃ Z), and by minmax a critical level
c(α, S) (see [V1] section 2, p.690-693).

Definition 2.3. Let L be Hamiltonianly isotopic to the zero section. We set

c−(L) = c(1, S) 1 ∈ H0(M)

c+(L) = c(µ, S) µ ∈ Hn(M) \ {0}
γ(L) = c(µ, S) − c(1, S)

Remark 2.4. 1) Note that we may always add a constant to S. This shifts
c−(L) and c+(L) by the same constant, so that, unless we normalized in
some way S, c−(L), c+(L) are not well defined, but their difference γ(L) is
well-defined. However, if we specify the Hamiltonian H yielding the isotopy
between the zero section and L, we may normalize S by requiring that its
critical values coincide with the actions

∫

01

[p(t)q̇(t) −H(t, q(t), p(t))] dt

where (q(t), p(t)) = ϕt(q(0), 0) satisfies p(1) = 0.
Thus c±(H) is well defined. Since if ϕ1 is generated by some compact

supported Hamiltonian, such a Hamiltonian is unique, we may define c±(ϕ)
for ϕ ∈ HDc(T

∗T n)
2) We shall sometimes deal with the case M = Rn. Then we need

quadraticity of S both in the ξ and x variable, so that
i) in Definition 2.1 should be replaced by
i’) there exists a quadratic form q(x, ξ) on M ×Rk(= Rn ×Rk) such that

|∇S(q; ξ)−∇B(q; ξ)| ≤ C .

The map γ is well defined on the set L of Lagrangian submanifolds Hamilto-
nianly isotopic to the zero section, where the Hamiltonian is assumed to be
compact supported.

According to [V1], the metric γ defines a metric on L by setting

Definition 2.5. γ(L,L′) = c(µ, S⊖S ′)−c(1, S⊖S ′) where (S⊖S ′)(q; ξ, ξ′) =
S(q; ξ) − S(q; ξ′).
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That this is indeed a metric is a consequence of Lusternik-Shnirelman’s
theory, as we proved in [V1].

Our goal however is to define a metric on Hc(T
∗M) = C∞

c ([0, 1]×T ∗T n,R)
the set of compact supported, time dependent Hamiltonian isotopies of T ∗M ,
and on HDc(T

∗M) the group of time one maps of Hamiltonians in Hc(T
∗M).

In general, we may set

Definition 2.6. We set

γ̂(ϕ) = sup{γ(ϕ(L), L) | L ∈ L} .

γ̂(ϕ, ψ) = γ̂(ϕψ−1).

Remark 2.7. For M = T n, the graph of ϕ ,

Γ(ϕ) = {(z, ϕ(z)) | z ∈ T ∗T n}

is a Lagrangian submanifold of T ∗T n × T ∗T n (where T ∗M is T ∗M with the
symplectic form of opposite sign : −dp ∧ dq).

But T ∗T n × T ∗T n is covered by T ∗(∆T ∗T n) where ∆T ∗T n is the diagonal,

and we may lift Γ(ϕ) to Γ̃(ϕ), which is now a Lagrangian submanifold in
T ∗(∆T ∗T n).

When ϕ has compact support, we may compactify both Γ̃(ϕ) and ∆T ∗T n

and we get a Lagrangian submanifold Γ(ϕ) in T ∗(Sn ×T n). We then defined
in [V1] (page 679)

γ(ϕ) = c(µT n ⊗ µSn,Γ(ϕ)) − c(1 ⊗ 1,Γ(ϕ)) .

We proved in [V3] that γ̂(ϕ) ≤ γ(ϕ).

Proposition 2.8. (see [V3])
The map γ̂ defines a bi-invariant metric on HDc(T

∗M) since
i) it is nondegenerate γ̂(ϕ) = 0 ⇐⇒ ϕ = id
ii) it is invariant by conjugation γ̂(ψϕψ−1) = γ̂(ϕ) for any ψ in HDc(T

∗M).
iii) it satisfies the triangle inequality

γ̂(ϕψ) ≤ γ̂(ϕ) + γ̂(ψ)

for any ϕ, ψ in HDc(T
∗M).

The above properties also hold for γ instead of γ̂ when M = T n.
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Let λ = pdq be the Liouville form on T ∗M . A vector field Z is called
a Liouville vector field, if Z = Zλ + XH where XH is Hamiltonian, while
iZλ
ω = λ (hence iZω = λ + dH). In particular Z is conformal (i.e. the flow

ψt of Z satisfies ψ∗
tω = etω) and we have

(1) γ(ψtϕψ
−1
t ) = etγ(ϕ) .

In the set Hc(T
∗M) the metric γ̂ is defined as follows

Definition 2.9. Let H be a Hamiltonian, with flow ψt. We denote by

γ̂(H) = sup
{
γ̂(ψt) | t ∈ [0, 1]

}

and similarly
γ̂(H) = sup

{
γ̂(ψt) | t ∈ [0, 1]

}

Finally we state some convergence criterion for the γ̂ metric.

Proposition 2.10. Let M = Rn or T n.
1) Assume the sequence Hk of Hamiltonians on T ∗M with fixed support

converges C0 to H. Then Hk converges for the γ metric to H.
2) There is a constant C such that if ϕ is supported in WR = {(q, p) ∈

T ∗M | |p| ≤ R} and for any z in T ∗M d(z, ϕ(z)) ≤ ε, we have

γ(ϕ) ≤ CεR

Proof. Part 1) is proved as in [V1] Proposition 4.6 (page 699).
As for part 2), we may follow the some pattern as in the proof of propo-

sition 4.15 (loc.cit. page 703), provided we prove that there is a C2 small
Hamiltonian supported in W2R such that its time one map, ψ, satisfies

d(z, ψ(z)) ≥ ε ∀z ∈WR .

Given H without critical point in WR, and C2 small, it is well known that
ψt has no periodic orbit of period less than 1, hence d(z, ψ(z)) is bounded
from below by some ε0 > 0. This concludes our proof.

We may therefore define, as Humilière did in [Hu], the completion Ĥ (T ∗M)
of Hc(T

∗M) for γ. By the above proposition we deduce that a C0-converging
sequence of Hamiltonians will be a Cauchy sequence for γ, hence defines an
element in Ĥ (T ∗M). We thus get

Proposition 2.11. There is an inclusion map

C0
c ([0, 1] × T ∗M,R) → Ĥ (T ∗M)

Similarly if HD0(T
∗M) is the C0 closure of HDc(T

∗M) we have an inclusion

HD0(T
∗M) → ĤD(T ∗M)
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2.1 Variational solutions of Hamilton-Jacobi equations

Let us consider the symplectic covering of T ∗T n×T ∗T n by T ∗(T n×Rn) given
by

(q, p, Q, P ) −→ (Q, p, p− P,Q− q)

Let ϕt be the Hamiltonian flow of H(q, p). Then, the graph of ϕt has

image Γ̃(ϕt). Let St(q, P, ξ) be a generating function for Γ̃(ϕt). We denote
by c(1(q) ⊗ µ, St) the number c(µ, St,q) where St,q(P, ξ) = S(q, P, ξ). Then
ut(q, P ) = c(1(q) ⊗ 1(P ), St) is a variational solution of

{
∂
∂t
ut(q, P ) +H(q, P + ∂

∂t
ut(q)) = 0

u0(q, P ) = 0

We refer to [O-V] and [C-V] for more informations on variational solu-
tions.

3 Statement of the main results

3.1 Standard homogenization.

Let H(t, q, p) be a C2 Hamiltonian on T ∗T n, 1-periodic in t, and compact
supported

Theorem 3.1 (Main theorem).
Let H(t, q, p) be a C2 Hamiltonian on the torus T n. Then the following

holds:

(1) The sequence Hk(t, q, p) = H(kt, kq, p) γ-converges to H(t, q, p) = h(p),
where h is continuous.

(2) The function H only depends on ϕ1, the time one map associated to H
(i.e. it does not depends on the isotopy (ϕt)t∈[0,1]).

(3) The map
A : C2([0, 1] × T ∗T n,R) → C0(Rn,R)

given by A(H) = H extends to a nonlinear projector (i.e. it satisfies
A2 = A) with Lipschitz constant 1

A : Ĥ (T ∗T n) → C0(Rn,R)
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where the metric on Ĥ is given by γ and the metric on C0(Rn,R) is
the C0 metric.

The next theorem states some properties of the map A

Theorem 3.2 (Main properties of symplectic homogenization).
Let A be the map defined in the above theorem. Then it satisfies the

following properties:

(1) The map A is monotone, i.e. if H1 ≤ H2 then A(H1) ≤ A(H2).

(2) The map A is invariant by Hamiltonian symplectomorphism:
A(H ◦ ψ) = A(H) for all ψ ∈ HD(T ∗Tn)

(3) We have A(−H) = −A(H).

(4) The map A extends to characteristic functions of subsets, hence in-
duces a map (still denoted by A) between the set of subsets of T ∗T n,
P(T ∗T n), to the set of subsets of Rn, P(Rn). This map is bounded by
the symplectic shape of Sikorav (see [Be, Sik, El]), i.e.

shape(U) ⊂ A(U)

(5) If L is a Lagrangian Hamiltonianly isotopic to Lp0
= {(q, p0) ∈ T∗Tn }

and H(L) ≥ h (resp. ≤ h) we have A(H)(p0) ≥ h (resp. ≤ h).

(6) We have

lim
k→∞

1

k
c+(ϕk) = sup

p∈Rn

H(p)

lim
k→∞

1

k
c−(ϕk) = inf

p∈Rn
H(p)

(7) Given any measure µ on Rn the map

ζ(H) =

∫

Rn

A(H)(p)dµ(p)

is a symplectic quasi-state (cf. [E-P] for the definition and proper-
ties of this notion, based on earlier work by [Aarnes]). In particular we
have A(H+K) = A(H)+A(K) whenever H and K Poisson-commute
(i.e. {H,K} = 0).

Remarks 3.3. • In (1) the assumption could be replaced by the property
that H1 � H2 in the sense of [V1].
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• As a result of (5) if u is a smooth subsolution of the stationary Hamilton-
Jacobi equation, that isH(x, p+du(x)) ≤ h thenH(p) ≤ h. Similarly if
u is a smooth supersolution, that is H(q, p+du(q)) ≥ h then H(p) ≥ h.

• From (5), we get the following statement: let

E+
c = {p0 ∈ Rn | ∃L Hamiltonianly isotopic to Lp0

, H(L) ≥ c}

E−
c = {p0 ∈ Rn | ∃L Hamiltonianly isotopic to Lp0

, H(L) ≤ c}

As a result, if p ∈ E
+

c ∩E−

c , we have H(p) = c.

3.2 Partial Homogenization

We here consider the case where the Hamiltonian is defined on T ∗T n ×M ,
where M is some symplectic manifold. We shall only consider here the case
where M = T ∗Tm, but the general case can be easily adapted.

Theorem 3.4 (Main theorem, partial homogenization case). Let H(x, y, q, p)
be a Hamiltonian on T ∗T n+m. Then

(1) The sequence
Hk(x, y, q, p) = H(kx, y, q, p)

γ-converges to H(y, q, p)

(2) The map

Ax : C2
c ([0, 1] × T ∗T n+m,R) → C0(Rn × T ∗Tm,R)

given by Ax(H) = H extends to a projector (i.e. it satisfies A2
x = Ax)

with Lipschitz constant 1

Ax : Ĥ (T ∗T n+m) → Ĥ (Rn × T ∗Tm)

where the metric on Ĥ is γ.

(3) If H(q,p)(x, y) = H(x, y, q, p), we have

Ax(H)(y, q, p) = A(H(q,p))(y)

11



Remark 3.5. (1) The Hamiltonian H(y, q, p) is called the effective Hamil-
tonian. In case it is smooth, its flow is given by Φ(x0, y0, q0, p0) =
(x(t), y(t), q(t), p(t))

y(t) = y0, x(t) =

∫ t

0

∂H

∂y
(y0, q(t), p(t))dt,

q̇(t) =
∂H

∂p
(y0, q(t), p(t)), ṗ(t) = −∂H

∂q
(y0, q(t), p(t))

(2) It is not true anymore that H depends only on the time one map of H .
It however only depends on the family of time one maps of H(q,p).

(3) More generally, using (3), we may translate in our situation the prop-
erties of A stated in the first proposition. The projector Ax is not in-
variant by symplectic maps. It is however invariant by fiber-preserving
hamiltonian symplectic maps: if ψ = ψ1 × ψ2. in other words

Ax(H ◦ ψ)(y, q, p) = Ax(H)(y, ψ2(q, p))

3.3 Homogenized Hamilton-Jacobi equations

Our theorem has some interesting applications to generalized solutions of
evolution Hamilton-Jacobi equations

(HJ)

{
∂
∂t
u(t, q) +H(t, q, ∂

∂x
u(t, x)) = 0

u(0, q) = f(q) .

where t ∈ R, q ∈ T n.

Smooth solutions to such equations are only defined for t less than some
T0 : solutions exhibit shocks, that is |u|C1([0,T ]×T n,R) blows up as T goes to
T0.

There are essentially two types of generalized solutions for such equations :
viscosity solutions (cf. [C-L]) and variational solutions (cf. [O-V]). These
two solutions do not coincide in general, with one notable exception: when
the Hamiltonian is convex in p.

From [L-P-V] it follows that if H is convex in p, and uk is the solution of

(HJk)

{
∂
∂t
uk(t, q) +H(kt, kq, ∂

∂x
uk(t, q)) = 0

uk(0, q) = f(q)
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the sequence (uk)k≥1 converges to u, the solution of

(HJ)

{
∂
∂t
u(t, q) +H( ∂

∂x
u(t, q)) = 0

u(0, q) = f(q)

Our theorem, together with results by Humilière (cf. [Hu]) implies that this
extends to the non convex case, provided uk is the variational solution and
H is given by our main theorem. We now state the more general proposition,
yielding the analog of [L-P-V] when n = 0:

Proposition 3.6. Let H ∈ C0(T ∗T n+m), f ∈ C0(T n+m) and uk be the vari-
ational solution of

{
∂
∂t
uk(t, x, q) +H(kx, q, ∂

∂x
uk(t, x, q)) = 0

uk(0, x, q) = f(x, q)
(HJPk)

Then lim
k→+∞

uk(t, q) = u(t, q) where convergence is uniform on compact time

intervals and u is the variational solution of (HJP ).

{
∂
∂t
u(t, x, q) +H(kx, q, ∂

∂x
u(t, x, q)) = 0

u(0, x, q) = f(x, q)
(HJP )

More precisely, there is a sequence εk going to zero, such that

|uk(t, x, q) − u(t, x, q)| ≤ εkt

The next three sections will be devoted to the proof of our main theorem,
first in the “standard case”, then in the “partial homogenization” setting.

4 Proof of the main theorem.

Let us give the reader the main steps of the proof. We denote by ϕt
k be the

flow of H(k · q, p). Starting from a G.F.Q.I. of the flow ϕt = ϕt
1, we shall in

the first part of subsection 4.1, construct a G.F.Q.I. of ϕt
k.

our proof will then be split in two steps

• Finding a candidate ϕ t for the limit of ϕ t
k

• Showing that the limit of ϕt
k is indeed ϕ t

13



The first step goes along the following lines: if H is independent form q,
then c(µq ⊗ 1(p), ϕt

k) = H(p), so we have to prove that

lim
k→∞

c(µq ⊗ 1(p), ϕt
k) = H(p)

exists. This is the second part of subsection 4.1 and is proved in proposition
4.7.

The second step is more delicate, and is dealt with in subsection 4.2. In
fact, the formula obtained for the G.F.Q.I. of ϕt

k yields an inequality valid
for any Hamiltonian map α

lim
k→∞

inf c(µ, ϕkα) ≤ c(µ, ϕα)

proved in proposition 4.11.
We must then prove the reverse inequality, This relies in a crucial way

on the main result of [V5], which implies that a 1/k-periodic Lagrangian in
T ∗T n contained in the unit disc bundle, has γ norm converging to zero.

We now give the details of the proof.

4.1 Reformulating the problem and finding the ho-
mogenized Hamiltonian.

First of all, we shall assume we are dealing with an autonomous Hamiltonian.
We shall see in the next section that the general case reduces to this one.

Let ϕt be the flow associated to H , and ϕ = ϕ1.
Similarly let ϕt

k be the flow associated to Hk(q, p) = H(kq, p) , and ϕk =
ϕ1

k We first compute ϕk as a function of ϕ.

Lemma 4.1. Let ρk(q, p) = (kq, p), then ϕk = ρ−1
k ϕρk.

Proof. The map ρk is conformally symplectic, hence

dHk(z)ξ = dH(ρk(z))dρk(z)ξ = ω (XH(ρk(z)), dρk(z)ξ)

= (ρ∗kω)(dρ−1
k (z)XH(ρk(z)), ξ)

Since ρ∗kω = kω, we get

XHk
(z) = k ((ρk)∗XH) (z)

= (ρk)∗(kXH)(z)

The flow of kXH is ϕkt, hence the flow of (ρk)∗(kXH) is ρ−1
k ϕktρk.

14



We are thus looking for the γ-limit of ρ−1
k ϕkρk.

Remark : The map ρ−1
k is not well defined on T ∗T n, so that a priori the

lemma only makes sense on T ∗Rn. However given a continuous path z(t)
from z0 to z1 in T ∗T n, and u0 such that ku0 = z0, we may find a unique
continuous path u(t) such that u(0) = u0 and k.u(t) = z(t). Therefore given

an isotopy ψt starting at the identity, there is an unique isotopy ψ̃t such that
ρkψ̃

t = ψt. Moreover the map ψ̃1 only depends on ψ1 and not on the choice
of the Hamiltonian isotopy.

Note also that we may replace ϕ = ϕ1 by ϕ1/r for some fixed integer r.
Indeed, if ρ−1

k ϕk/rρk c-converges to ψ, we have that

ρ−1
k ϕkρk = ρr

(
ρ−1

kr ϕ
kr/rρkr

)
ρ−1

r

c-converges to ρrψρ
−1
r . If our theorem is proved for ϕ1/r, ψ will be generated

by a Hamiltonian depending only on the p variable. We easily check that in
this case

ρrψρ
−1
r = ψr.

In other words, ρ−1
k ϕkρk converges to ψ

r
.

We assume in the sequel that ϕ is C1 close to the identity, so that it lifts
to a Hamiltonian diffeomorphism of T ∗Rn C1 close to the identity, ϕ̃. The
map ϕ̃ has a generating function

Ŝ(Q, p) = 〈p,Q〉 + S(Q, p)

where S is defined on T ∗T n, and S defines ϕ̃ by the relation

ϕ̃

(
Q+

∂S

∂p
(Q, p), p

)
=

(
Q, p+

∂S

∂Q
(Q, p)

)

or else

ϕ̃

(
∂Ŝ

∂p
(Q, p), p

)
=

(
Q,

∂Ŝ

∂Q
(Q, p),

)

This means that the graph of ϕ̃ , Γ(ϕ), in T ∗Rn × T ∗Rn ≃ T ∗∆R2n , has
the compact supported generating function S(q, p) defined on T ∗T n.

In other words, if ϕ̃(q, p) = (Q,P ) we have

{
P − p = ∂S

∂Q
(Q, p)

q −Q = ∂S
∂p

(Q, p)

We now give the composition law for generating functions, due to Chekanov
(cf. [Che])
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Lemma 4.2. Let ϕ1, ϕ2 be Hamiltonian maps having S1, S2 as generating
functions. Then ϕ1 ◦ ϕ2 has the generating function

S(q1, p2; q2, p1) = S1(q1, p1) + S2(q2, p2) + 〈p1, q1〉 + 〈p2, q2〉 − 〈p1, q2〉 − 〈p2, q1〉.
= S1(q1, p1) + S2(q2, p2〉 + 〈p1 − p2, q1 − q2〉.

Note that if we set p2 = p1 − v, q2 = q1 + u, we have

S(q1, p2; q1 + u, p2 + v) =

S1(q1, p2 + v) + S2(q1 + u, p2) − 〈v, u〉
so that S is a generating function quadratic at infinity.

Proof. It is a simple computation. The lemma claims that

Ŝ(q1, p2; q2, p1) = Ŝ1(q1, p1) + Ŝ2(q2, p2) − 〈p1, q2〉

so we must prove that ϕ1 ◦ ϕ2 maps

(
∂Ŝ

∂p2

(q1, p2; q2, p1), p2

)
=

(
∂Ŝ2

∂p2

(q2, p2), p2

)

to (
q1,

∂Ŝ

∂q1
(q1, p2; q2, p1)

)
=

(
q1,

∂Ŝ1

∂q1
(q1, p1)

)

where (q1, p1, q2, p2) are constrained by





∂Ŝ

∂p1

(q1, p2; q2, p1) = 0 i.e. q2 =
∂Ŝ1

∂p1

(q1, p1)

∂Ŝ

∂q2
(q1, p2, q2, p1) = 0 i.e. p1 =

∂Ŝ2

∂q2
(q2, p2)

These last two equations are equivalent to

ϕ2

(
∂Ŝ2

∂p2

(q2, p2), p2

)
=

(
q2,

∂Ŝ2

∂q2
(q2, p2)

)

= (q2, p1)
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and

ϕ1(q2, p1) = ϕ1

(
∂Ŝ1

∂p1
(q1, p1), p1

)
=

(
q1,

∂Ŝ1

∂q1
(q1, p1)

)

and thus

ϕ1 ◦ ϕ2

(
∂Ŝ

∂p2
(q1, p2; q2p1), p2

)
=

(
q1,

∂Ŝ

∂q1
(q1, p2; q2, p1)

)

where (q1, p2; q2, p1) are constrained by

∂Ŝ

∂q2
(q1, p2; q2, p1) =

∂Ŝ

∂p1
(q1, p2; q2, p1) = 0

More generally, we get

Lemma 4.3. The map ϕ̃k is generated by

Ŝk(q1, pk; p1, q2, p2, · · · , qk−1, pk−1, qk) =

Σk(q1, pk; p1, q2, p2, · · · , qk−1, pk−1, qk) +Qk(q1, pk; p1, q2, p2, · · · , qk−1, pk−1, qk)

where

Σk(q1, pk; p1, q2, p2, · · · , qk−1, pk−1, qk) =

k∑

j=1

S(qj, pj)

and

Qk(q1, pk, p1, q2, · · · , qk−1, pk−1, qk) =
k−1∑

j=1

〈pj − pj+1, qj − qj+1〉 + 〈pk, q1〉

Proof. The proof follows immediately by induction from the previous lemma.

Note that Qk could be rewritten as

Qk(q1, pk; p1, q2, · · · , qk−1, pk−1, qk) =

k−1∑

j=1

〈pj, qj − qj+1〉 + 〈pk, qk〉 .

Again, Σk is defined on (T ∗T n)k, while Qk is defined on (T ∗Rn)k. Finally we
have
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Lemma 4.4. Let ϕ be generated by S(q, p), then ϕk = ρ−1
k ϕkρk is generated

by F̂k given by
F̂k(q1, pk; p1, · · · , qk−1, pk−1, qk) =

1

k
Σk(kq1, pk; p1, · · · , kqk−1, pk−1, kqk) +Qk(q1, pk; p1, · · · , qk−1, pk−1, qk)

Proof. Indeed if S(q, p; ξ) is a generating function for ψ, we have that ρ−1
k ψρk

is generated by 1
k
S(kq, p; ξ).

Thus in our case, we expect the generating function

Ĝk(q1, pk; p1, q2, · · · , qk−1, pk−1, qk) =

1

k
Σ̂k(kq1, pk; p1, q2, · · · , qk−1, pk−1, qk)

+
1

k
Qk(kq1, pk; p1, q2, · · · , qk−1, pk−1, qk) .

But the fiber preserving change of variable qj → kqj(j ≥ 2) sends Ĝk to

Fk(q1, pk; p1, q2, · · · , qk−1, pk−1, qk) =

1

k
Σ̂k(kq1, pk; p1, kq2, · · · , kqk−1, pk−1, qk)

+
1

k
Qk(kq1, pk; p1, kq2, · · · , kqk−1, pk−1, qk) .

It is easy to check that the last term is equal to

Qk(q1, pk; p1, q2, · · · , qk−1, pk−1, pk) .

We now set
Fk(q1, pk; p1, q2, · · · , qk−1, pk−1, pk) =

F̂k(q1, pk; p1, q2, · · · , qk−1, pk−1, pk) − 〈pk, q1〉
and to simplify our notations

x = q1, y = pk , ξ = (p1, q2, · · · , qk−1, pk−1, pk) .

thus

Fk(x, y; ξ) =

k∑

j=1

S(qj, pj) +Qk(x, y, ξ)− 〈y, x〉
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Definition 4.5. We set hk(y) = c(µx, Fk,y) where Fk,y = Fk(x, y; ξ). We will
also denote this function as c(µx ⊗ 1(y), Fk).

Remark 4.6. As long as we write c(µx ⊗ 1(y), S) for a generating function
S, there is no ambiguity. However, if Λ is the Lagrangian associated to S,
and we write an expression like c(µ, (Λ)y), one should be careful since S is
only defined up to a constant, and this constant yields a coherent choice of
a G.F.Q.I. for (Λ)y for each y, so that the c(µ,Λy) are well-defined up to the
same constant for all values of the parameter y, and not up to a function of
y as one could expect.

Clearly we take a G.F.Q.I. S for L and then (L)y has G.F.Q.I. Sy =
S(y, •).
Proposition 4.7. The sequence (hk) is a precompact sequence for the C0

topology.

The proposition will follow from Ascoli-Arzela’s theorem once we prove
the following

Lemma 4.8. The sequence of (hk) is equicontinuous.

Proof. Indeed let ϕ̃ be the lift of ϕk = ρ−1
k ϕkρk to T ∗Rn. It has support in

some tube
T ∗

ARn = {(q, p) ∈ T ∗Rn | |p| ≤ A} .

Now for each p there exists q(p), ξ(p) such that

∂Fk

∂x
(q(p), p; ξ(p)) = 0,

∂Fk

∂ξ
(q(p), p, ξ(p)) = 0

Fk(q(p), p, ξ(p)) = hk(p) .

Moreover, for generic ϕ, the map p → (q(p), ξ(p)) is smooth on the comple-
ment of some codimension 1 set. Thus for p in this complement,

dhk(p) =
∂

∂y
Fk(x(p), p, ξ(p))

= q(p) −Qk(q(p), p)

where Qk is defined by

ϕ̃k(q, p) = (Qk(q, p), Pk(q, p)) .

The quantity q(p) −Qk(q(p), p) can be estimated as follows : the first coor-
dinate of the flow ϕ̃t

k satisfies

q̇k(t) =
∂H

∂p
(kqk(t), pk(t))
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hence |q̇k(t)| is bounded by C = sup
{∣∣∣∂H

∂p
(q, p)

∣∣∣ | (q, p) ∈ T ∗T n
}

hence

|q −Qk(q, p)| ≤ C. From this we get the inequality

|dhk(p)| =

∣∣∣∣
∂

∂p
Fk(q(p), p, ξ(p))

∣∣∣∣ ≤ C

and since hk is continuous, it is C-Lipschitz.

From Ascoli-Arzela and the above lemma, we see that the sequence hk is
relatively compact.

We will then need to prove that

Lemma 4.9. If a subsequence of ρ−1
k ϕkρk has a limit ϕ, then the sequence

itself converges to this limit.

Proof. We first claim that

(1) γ(ϕkψk) ≤ kγ(ϕψ)

(2) γ(ρ−1
k ϕρk) =

1

k
γ(ϕ) .

Indeed, we may write

ϕkψk = ϕψ(ψ−1(ϕψ)ψ)(ψ−2(ϕψ)ψ2)...ψ−(k−1)(ϕψ)ψk−1

Since each factor is conjugate to ϕψ, and we have k factors, property (1)
follows immediately. Property (2) follows from the scaling property of γ by
conformal conjugation (see 1).

Now let k large enough, so that γ(ρ−1
k ϕkρk, ϕ) is less than ε. Let n =

kq + r. Note first that if r = 0,

γ(ρ−1
kd ϕ

kdρkd, ϕ) = γ(ρ−1
d (ρ−1

k ϕkρk)
dρd(ρ

−1
d ϕ−dρd))

since
ϕ = ρ−1

d ϕdρd

But using (2), we get

γ(ρ−1
d (ρ−1

k ϕkρk)
dρd(ρ

−1
d ϕ−dρd)) = γ(ρ−1

d (ρ−1
k ϕkρk)

dϕ−d)ρd)) ≤
1

d
γ((ρ−1

k ϕkρk)
dϕ−d) ≤

1

d
dγ(ρ−1

k ϕkρkϕ
−1) ≤ ε
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Then we claim that

lim
q→∞

γ(ρ−1
kq+rϕ

kq+rρkq+r, ρ
−1
kq ϕ

kqρkq) = 0

Indeed, working in T ∗Rn, we may write ρkq+rρ
−1
kq = ρ1+(r/kq) and ϕkq+rϕ−kq =

ϕr

thus

γ(ρ−1
kq+rϕ

kq+rρkq+r, ρ
−1
kq ϕ

kqρkq) = γ(ρ−1
1+(r/kq)(ρ

−1
kq ϕ

kqρkq)(ρ
−1
kq ϕ

rρkq)ρ1+(r/kq), ρ
−1
kq ϕ

kqρkq) =

γ(ρ−1
1+(r/kq)(ρ

−1
kq ϕ

kqρkq)(ρ
−1
kq ϕ

rρkq)ρ1+(r/kq)ρ
−1
kq ϕ

−kqρkq)

Now we use the fact we proved earlier, that

γ(ρ−1
kq ϕ

kqρkq, ϕ) ≤ ε

and that

γ(ρ−1
kq ϕ

rρkq) ≤
1

kq
γ(ϕr) ≤ ε

for q large enough.
We use the fact thatϕ and ρs satisfy ρ−1

s ϕ = ϕsρs to infer the next
estimate of the above quantity

γ(ρ−1
1+(r/kq)ϕψ1ρ1+(r/kq)ψ2ϕ

−1) = γ(ϕr/kqρ−1
1+(r/kq)ψ1ρ1+(r/kq)ψ2)

where γ(ψj) ≤ ε. The above is then small as soon as kq is large enough.
We thus proved that for q large enough,

γ(ρ−1
kq+rϕ

kq+rρkq+r, ρ
−1
kq ϕ

kqρkq)

is close to zero, Since we proved earlier that γ(ρ−1
kq ϕ

kqρkq) ≤ ε this proves

that the limit of ρ−1
k ϕkρkis indeed ϕ.

4.2 Concluding the proof of the main theorem.

The last section gave us a function h∞(p) limit of some subsequence hkν
(p).

Since h∞ is continuous, according to Humilière (cf. prop.2.11) it has a flow

in Ĥ(T ∗T n). We denote by ϕ t this flow.

Proposition 4.10. The map ϕ is the limit of ϕk = ρ−1
k ϕkρk : we have

lim
k→+∞

γ(ϕk, ϕ) = 0 .
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This will be based on the following two propositions

Proposition 4.11. For any α in Ĥ(T ∗T n), there exists a sequence ℓν such
that

lim
ν→∞

c(µ, ϕℓν
α) ≤ c(µ, ϕα)

Proposition 4.12. Consider a subsequence of (ϕkν
) such that

lim
ν
c(µ⊗ 1(p), ϕkν

) = lim
ν
hkν

(p) = h∞(y)

Then we have
lim

ν
c(µ⊗ 1(p), ϕ−1

kν
) = −h∞(p)

Remark 4.13. Note that this means that if we define H as in proposition 4.7,
the operator A satisfies A(−H) = −A(H). This is typically a statement
that does not hold in the case of viscosity solutions, since if u(t, x) is a vis-
cosity solution associated to H , u(−t, x) is not in general a viscosity solution
associated to −H .

Proof that Proposition 4.11 and 4.12 imply proposition 4.10. Indeed take α =
ϕ−1, where ϕ is the limit associated by the previous subsection to some sub-
sequence (kν)ν≥1. We get

lim
ν
c(µ, ϕℓν

ϕ−1) ≤ c(µ, Id) = 0.

and since for any ψ, c(µ, ψ) ≥ 0 we get,

lim
ν
c(µ, ϕℓν

ϕ−1) = 0

Now we must prove limν c(1, ϕν·kν
ϕ−1) = 0, and it is enough to show that

lim
ν
c(1, ϕℓν

α)) ≥ c(1, ϕα)

for any α in Ĥ(T ∗T n).

But
c(1, ϕν·kν

α) = −c(µ, α−1ϕ−1
ℓν

) = −c(µ, ϕ−1
ℓν
α−1) .

We may then apply proposition 4.11 to the sequence (ϕ−1
kν

) since according
to proposition 4.12

lim
k
c(µ⊗ 1(p), ϕ−1

ℓν
) = −h∞(p)

and −h∞(p) has flow ϕ−1 in the completion Ĥ(T ∗T n).
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As a result
lim

k
c(1, ϕℓν

α) = − lim
k
c(µ, ϕ−1

ℓν
α−1)

≥ −c(µ, ϕ−1α−1) = c(1, ϕα) .

We thus proved the following statement: if c(µx ⊗ 1(p), ϕkν
) converges

to h∞, then ϕℓν
converges to ϕ. Now assume there are two subsequences,

ϕkν
, ϕlν such that c(µx ⊗ 1(p), ϕkν

) converges to h∞, while c(µx ⊗ 1(p), ϕlν)
converges to k∞. Then we find subsequences of (ϕk) converging to ϕ and ψ
(where ϕ is the flow of h∞ while ψ is the flow of ψ).

But according to lemma 4.9, two converging subsequences of (ϕk) must
have the same limit, thus h∞ = k∞.

This concludes our proof of 4.10, modulo the proof of 4.11 and 4.12.

Proof of proposition 4.11. First of all, if S(x, y, η) is a G.F.Q.I. of α, ϕkα has
the G.F.Q.I.

Φk(u, v; x, y, η, ξ) =

S(x, v; η) + Fk(u, y; ξ) + 〈y − x, v − u〉
Note that for each y, there is a cycle C(y) homologous to T n × E−

k (x
lives in T n, ξ in Ek, E

−
k is the negative eigenspace for Fk) such that

Fk(y, C(y)) ≤ hk(y) + ε .

(we denote by (y, C(y)) the set of (x, y, ξ) such that (x, ξ) ∈ C(y)). Unfor-
tunately we may not get such an estimate if we simultaneously require that
C(y) is to depend continuously on y. However, we may assume the above
estimate holds outside of U2δ where Uδ is a δ-neighbourhood of some grid in
(Rn)∗ (see figure 1), while inside Uδ, Fk(y, C(y)) ≤ a for some constant a.

Indeed we have

Lemma 4.14. Let F (u, x) be a smooth function on V × X such that there
exists C(u) ∈ H∗(X) with F (u, C(u)) ≤ f(u). Then for any subset U in V ,
such that each connected component of V −U has diameter less than ε, there
exists a continuous map u −→ C̃(u) and a constant a, such that

F (u, C̃(u)) ≤ f(u) + aχU(u)

Thus Fk(y, C(y)) ≤ hk(y) + aχδ(y) + ε where χδ is a smooth function
equal to one on Uδ and to zero outside U2δ, a is some constant, and ε is
arbitrarily small.

Assume first Uδ is empty (i.e. χδ = 0).
Set

Φk(u, v; x, y, η) = S(x, v; η) + hk(y) + 〈y − v, u− x〉
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defined on T n
(u,v) × Rn

x × (Rn
y )∗ ×N (N is the vector spaces where η lives).

Let Γ be a cycle in T n
(u,v) × (Rx)

n × (Rn
y )∗ × N in the homology class

of T n
(u,v) × ∆x,y × N− (∆x,y is the diagonal in Rn

x × (Rn
y )∗ and the negative

eigenspace of 〈y,−x〉).
We choose Γ such that Φk(Γ) ≤ c(µ,Φk) + ε = c(µ, ϕkα) + ε, which is

possible by definition.

Let now Γ ×Y C be the cycle

Γ ×Y C = {(u, v, x, y, ξ, η) | (u, v, x, y, η) ∈ Γ, (u, ξ) ∈ C(y)} .

We claim that
Φk(Γ ×Y C) ≤ Φk(Γ)

and Γ ×Y C is a cycle in the homology class of

T n
(u,v) × ∆x,y × E−

k ×N−
1 ×N−

2

so that

c(µ, ϕkα) = c(µ,Φk) ≤ Φk(Γ) ≤ c(µ,Φk) + ε ≤ c(µ, ϕkα) + ε

Let us now try to establish the inequality in the general case,
Let kν be a sequence such that c(µx ⊗ 1(y), ϕkν

) converges to h∞(y). We
replace Φk by Φℓ,k where Fk is replaced by the explicit formula for Fℓk given
by lemma 4.4.

Φℓ,k(u, v; x, y, ξ, η) = S(x1, v, η)+
1

ℓ

ℓ∑

j=1

Fk(ℓxj , yj, ξj)+Qℓ(x, y)+〈yℓ−v, u−x1〉

We may now “spread our error” aχδ(y) by translating it. More precisely,
let us choose different χδ

j(y) so that

Fk(y, Cj(y)) ≤ hk(y) + akχ
δ
j(y) + ε

and such that the supports, U δ
j , of the χδ

j are so chosen that the intersection
of (n + 2) distinct U δ

j is empty.
Consider

Φℓ,k(u, v; x, y, η) =

S(x1, v; η) +
1

ℓ

ℓ∑

j=1

(
hk(yj) + akχ

δ
j(yj)

)
+Qℓ(x, y) + 〈yℓ − v, u− x1〉
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Figure 1: The sets U j
δ
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Then, let Γ be a cycle in the same homology class as above, such that

Φℓ,k(Γ) ≤ c(µ,Φℓ,k) + ε

and

Γ ×Y C =
{
(u, v; x, y, ξ, η) | (u, v, x, y, η) ∈ Γ, (ℓxj , ξj) ∈ Cj(yj)

}
.

Now Γ ×Y C belongs to the suitable homology class, and we may thus infer
that

c(µ, ϕkα) = c(µ,Φℓ,k) ≤ Φℓ,k(Γ ×Y C)

and Φℓ,k(Γ ×Y C) ≤ Φℓ,k(Γ). We may conclude that

c(µ,Φℓ,k) ≤ c(µ,Φℓ,k) + 2ε

Finally, we must show

Lemma 4.15. We have

c(µ,Φℓ,k) ≤ c(µ,Φk) +
Ak

ℓ

Proof. Indeed Φℓ,k is the generating function of ψk,δ,ℓ α where

ψk,δ,ℓ = ρ−1
ℓ

(
ψ1

k,δ ◦ · · · ◦ ψℓ
k,δ

)
ρℓ

where ψj
k,δ is the time one flow of hk(y) + akχ

δ
j(y).

But because these flows commute, we have that ψk,δ,ℓ is the time one flow
of

Kk,δ,ℓ(y) =
1

ℓ

(
ℓ∑

j=1

hk(y) + akχ
j
j(y)

)
.

Now since (n+2) sets U j
δ have empty intersection, we have that

∣∣∣
∑ℓ

j=1 χ
δ
j(y)

∣∣∣ ≤
(n + 2) hence

|Kk,δ,ℓ(y) − hk(y)| ≤
Ak

ℓ

As a result

γ(ψk,δ,ℓ, ψk) ≤
Ak

ℓ

where ψk is the time one flow of hk(y) hence

γ (ψk,δ,ℓα, ψkα)
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≤ Ak

ℓ

and

c(µ,Φℓ,k) ≤ c(µ, ψk,δ,ℓα)

≤ c(µ, ψkα) +
ak

ℓ

≤ c(µ, ϕkα) +
Ak

ℓ

Since by assumption, as ν goes to infinity along a subsequence ψkν
goes

to ϕ we get
c(µ, ϕkℓα) = c(µ,Φℓ,k) ≤

c(µ,Φℓ,k) + ε ≤ c(µ,Φk) + ε+
ak

ℓ

≤ c(µ, ϕα) +
Ak

ℓ

Taking ℓ large enough, we see that

lim
ν
c(µ, ϕℓν ·kν

α)

≤ c(µ, ϕα)

as announced. This concludes the proof of Proposition 4.11.

Remark 4.16. It is important to notice that here

Φℓ,k = S(x1, v; η) +
1

ℓ

ℓ∑

j=1

(
hk(yj) + aχδ

j(yj)
)

+Qℓ(x, y) + 〈yℓ − v, u− x1〉

cannot be bounded from above by

S(x1, v; η) +
1

ℓ

ℓ∑

j=1

hk(yj) +Qℓ(x, y) + 〈yℓ − v, u− x1〉 +
a

ℓ

as it is obvious by choosing (y1, ..., yℓ) such that each yj is in U δ
j . the above

proof would not hold if we replace χδ
j(y) by an analogous function χδ

j(q, p).
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Proof of proposition 5.3. Let Γϕ be the graph of ϕ in coordinates

Γϕ = {(X(x, y), x, y −X(x, y), X(x, y)− x) | ϕ(x, y) = (X(x, y), Y (x, y))}

Then the reduction of Γϕ at y = y0 is (Γϕ)y0
= {(X(x, y), y0 − Y (x, y0))}

that is Ly0
− ϕ(Ly0

) where

Ly0
= {(x, y0) | x ∈ T n}

Now c(µx ⊗ 1(y),Γϕ) = c(µ, (Γϕ)y) = c(µ, Ly − ϕ(Ly)).

Remark 4.17. We refer to remark 4.6 and remind once again the reader of
the extra care that has to be taken when using such expressions as c(µ,Λy).
Here c(µ, (Γϕ)y)) is well defined if we choose a G.F.Q.I. for Γϕ.

If ϕ = ϕk = ρ−1
k ϕkρk, then ϕk is 1/k-periodic, hence so is Ly − ϕk(Ly).

Lemma 4.18. The quantity γ(Ly − ϕk(Ly)) goes to 0 as k goes to infinity.

Proof. Note that Ly is not exact, but if τy is the translation by the vector y
in the p direction

Ly = τy(0T n)

ϕk(Ly) = ϕkτk(0T n)

and we identify
γ(Ly − ϕk(Ly))

to
γ
(
0T n − (τ−1

y ϕk ◦ τy)(0T n)
)

= γ(τ−1
y ϕkτy(0T n))

Moreover (τ−1
y ϕkτy)(0Tn

) is Hamiltonianly isotopic to the zero section and
invariant by any translation in the x direction by a vector in 1

k
Zn. More

precisely the Hamiltonian isotopy τ−1
y ϕkτy)(0Tn

) is invariant by such trans-
lation.

Thus γ(τ−1
y ϕkτy(0T n)) is the γ invariant of some Lagrangian contained in

the product T ∗
1 T

n
k (where T n

k = (R/ 1
k
Z)n), Hamiltonianly isotopic (in T ∗

1 T
n
k )

to the zero section. Since

T ∗
1 T

n
k ≃ T ∗

1/kT
n = {(q, p) | x ∈ T n , |p| ≤ 1

k
}

we get, according to the main result in [V5], that

γ(τ−1
y ϕkτy(0T n)) ≤ 0(1/k)
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As a result, c(µ, Ly−ϕk(Ly)) = −c(1, ϕk(Ly)−Ly) = −c(1, Ly−ϕ−1
k (Ly))

This last quantity differs from

−c(µ, Ly − ϕ−1
k (Ly))

by
γ(Ly − ϕ−1

k (Ly)) = γ(ϕk(Ly) − Ly)

which goes to zero as k goes to infinity.
Hence

c(µ, Ly−ϕ−1
k (Ly)) = c(µ, ϕk(Ly)−Ly) = −c(1, Ly−ϕk(Ly)) ≃ −c(µ, Ly−ϕk(Ly))

In other words, denoting hk the number c(µx ⊗ 1(y), ϕ−1
k ), we proved

hk(y) = c(µx ⊗ 1(y), ϕ−1
k ) = c(µ⊗ 1(y), Ly − ϕ−1

k (Ly)) =

−c(µ⊗ 1(y), Ly − ϕ−1
k (Ly)) + 0(

1

k
) = −hk(y) + 0(

1

k
)

We thus showed that some subsequence of ϕk converges to ϕ. On the
other hand, we proved in lemma 4.9 that this implies convergence of the
sequence itself to ϕ. Wa may finally conclude that ϕk converges to ϕ, and
thus that the sequence H(kq, p) converges to H for the γ metric, which proves
the first statement of the main theorem.

End of the proof of theorem 3.1. Assertion (2) follows from the fact that ϕ1

determines H , and that
ϕ1 = lim

k→∞
ρ−1

k ϕkρk

which only depends on ϕ1.
We finally prove assertion (3).

|hk,1(y) − hk,2(y)| ≤ |c(µx ⊗ 1(y), ρ−1
k ϕk

1ρk) − c(µx ⊗ 1(y), ρ−1
k ϕk

2ρk)| ≤

γ
(
(ρ−1

k ϕk
1ρk)

−1 ◦ ρ−1
k ϕk

2ρk

)
≤ γ(ρ−1

k ϕ−k
1 ϕk

2ρk) ≤
1

k
γ(ϕ−k

1 ϕk
2) ≤ γ(ϕ−1

1 ϕ2)

Therefore A is Lipschitz, with Lipschitz constant one, for the norms γ
and C0 and thus extends to a Lipschitz map from Ĥ(T ∗T n) to C0(Rn,R).

Since is H only depends on p, then H = H , we get that A is a projector.
This concludes our proof of theorem 3.1.
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5 Proof of theorem 3.2.

In order to prove (1) of theorem 3.2, we need to prove that if H1 ≤ H2 then
h∞,1 ≤ h∞,2. But this follows immediately from the fact that S1(q, p) ≤
S2(q, p) hence, Fk,1 ≤ Fk,2 and therefore

hk,1(y) = c(µ⊗ 1(y), Fk,1) ≤ c(µ⊗ 1(y), Fk,2) = hk,2(y)

As a result, h∞,1(y) ≤ h∞,2(y).
If we wanted to assume only H1 � H2 so that ϕ1

1 � ϕ1
2 and

ρ−1
k ϕ1

1ρk � ρ−1
k ϕ1

2ρk

and by going to the limit, ϕ1 � ϕ2. Now ϕ1 and ϕ2 are the flows of H1 and
H2 which depend only on p.

Therefore they commute, and our assertion follows from the

Lemma 5.1. If ϕ1, the time one flow of H(p), satisfies Id � ϕ1 then H is
positive.

Proof. In Appendix A we prove that c−(ϕ1) = infp∈Rn H(p). Therefore if
c−(ϕ1) is positive, H must be non-negative.

To prove (2), we have to compare A(H ◦ψ) to A(H). Note that the flow
associated to H ◦ ψ is ψ−1ϕt ◦ ψ. Thus A(H ◦ ψ) is associated to the γ-limit
of

ρ−1
k ψ−1ϕkψρk = (ρ−1

k ψ−1ρk)(ρ
−1
k ϕkρk)(ρ

−1
k ψρk)

But limk→∞ γ(ρ−1
k ψ−1ρk) = 0, hence

lim
k→∞

ρ−1
k ψ−1ϕkψρk = lim

k→∞
ρ−1

k ϕkρ−1
k

Similarly for property (3), we have to compare limk→∞ ρ−1
k ϕkρk and

limk→∞ ρ−1
k ϕ−kρk. Clearly, if the limit exists, they must be inverse from each

other, that is they are given by ϕ and (ϕ)−1. Now it follows from [Hu] that

two continuous compact supported Hamiltonians H,K in Ĥ, such that their
flows satisfy ϕψ = Id in Ĥ(T ∗T n) must satisfy H +K = 0.

We now prove property (4). Now, we may consider a decreasing sequence
of smooth functions Hν such that limν Hν = χU , the limit being here a
pointwise limit. Then Hν is also a decreasing sequence, and therefore has a
limit H∞, and we denote by A(U) the support of H∞. Since for any sequence
Kν decreasing to χU , there is for each ν a µ such that Kµ ≤ Hν , we have
K∞ ≤ H∞. By symmetry, we get K∞ = H∞ hence the support of K∞

coincides with the support of H∞. By symmetry, we see that the supports of
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K∞ and H∞ must coincide (in fact the functions will coincide). This support
defines A(U).

Assume now L is a Lagrangian submanifold Hamiltonianly isotopic to
Ly0

. Then, by the Hamiltonian invariance we just proved, A(L) = A(Ly0
).

Now it is easy to show that

A(Ly0
) = {y0}

Since shape(U) contains p if and only if U contains a Lagrangian L,
Hamiltonianly isotopic to Lp, we get that for p ∈ shape(U), we must have
p0 ∈ shape(U). This concludes the proof of (4).

As for property (5), it is an easy consequence of the above. Indeed,
assume first H(L) ≥ h where L is Hamiltonianly isotopic to Lp0

. Let κp0
, be a

function on (R∗)n equal to 1 near p0, very negative in a tube containing the p-
projection of the support of H , and compact supported. Then if ψ(Lp0

) = L,
we have

H ≥ h · κp0
◦ ψ

hence
H ≥ h · κp0

◦ ψ = h · κp0
= h · κp0

As a result,
H(p0) ≥ hκp0

(p0) = h

Changing H to −H , and using (3) we get the second statement.
Finally, to show that ζ is a quasi-state, it is enough to deal with the case

where µ is a Dirac mass at p. We must then prove

(1) (Monotonicity) H1 ≤ H2 implies H1 ≤ H2. This follows from (1).

(2) (Quasi-linearity) If H,K Poisson commute, then (H +K)(p) = H(p)+
K(p). this follows from the fact that if H,K commute, with respective
flows ϕt, ψt, then H+K has flow ψtϕt and then A(H+K) corresponds
to

lim
k→∞

ρ−1
k ϕktψktρ−1

k = ( lim
k→∞

ρ−1
k ϕktρk) lim

k→∞
ρ−1

k ψktρk)

and this corresponds to A(H)(p) + A(K)(p).

(3) (Normalization) ζ(1) = 1. We see that HR(q, p) = χ[−R,R](p) so

A(1) = A( lim
R→∞

HR) = 1 = lim
R→∞

A(HR) = lim
R→∞

HR = 1

Note that the inversion of limits will only be justified when we deal
with non compact supported Hamiltonians in section 8.

This concludes the proof of theorem 3.2.
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6 Proof of the partial homogenization case

We here consider the case of the sequence H(kx, y, q, p) and prove that it
converges to H(y, q, p) obtained by performing the above homogenization,
on the variables (x, y) and freezing the (q, p) variable.

The flow of H(kx, y, q, p) is given by





ẋ = ∂
∂y
H(k · x, y, q, p)

ẏ = −k ∂
∂x
H(k · x, y, q, p)

q̇ = ∂
∂p
H(k · x, y, q, p)

ṗ = − ∂
∂q
H(k · x, y, q, p)

Set

xk(t) = k · x( t
k
), yk(t) = y(

t

k
), qk(t) = q(

t

k
), pk(t) = p2(

t

k
)

We shall consider the flow ϕt
k associated to the Hamiltonian.





ẋk = ∂
∂y
H(xk, yk, qk, pk)

ẏk = − ∂
∂x
H(xk, yk, qk, pk)

q̇k = 1
k

∂
∂p
H(xk, yk, qk, pk)

ṗk = − 1
k

∂
∂q
H(xk, yk, qk, pk)

Then our map is generated by ρ−1
k ϕkt

k ρk where

ρk(xk, yk, qk, pk) = (k · xk, yk, qk, pk)

Let Sk(xk, yk, qk, pk, ξ) be a generating function for the flow above. The
candidate for the homogenization is again given by limk→∞Hk where

Hk(y, q, p) = c(µx ⊗ 1(y) ⊗ 1(q, p), Sk)
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is obtained by freezing the (q, p) variables and performing homogenization
as in the previous section. The precompactness of the sequence is proved as
in proposition 4.7.

Let us reformulate the problem by considering the symplectic form σk on
T ∗Tm+n given by dy ∧ dx+ kdp∧ dq. For a Hamiltonian H(x, y, q, p) its flow
for σk is defined by the equations





ẋ = ∂H
∂y

(x, y, q, p), ẏ = −∂H
∂x

(x, y, q, p)

q̇ = 1
k

∂H
∂P

(x, y, q, p), ṗ = −1
k

∂H
∂q

(x, y, q, p)

Now to a function S(x, Y, q, P ) on T ∗(T n+m) we may associate the Hamil-
tonian map given by





X − x = ∂S
∂Y

(x, Y, q, P ), y − Y = ∂S
∂x

(x, Y, q, P )

Q− q = 1
k

∂S
∂P

(x, Y, q, P ), (p− P ) = 1
k

∂S
∂q

(x, Y, q, P )

Indeed this amounts to the identification of T ∗(Tm+n) × T ∗(Tm+n) en-
dowed with σk ⊖ σk, to T ∗(T n+m × Rn+m) endowed with the standard form
by

(x, y, q, p,X, Y,Q, P ) −→ (x, Y, q, P, y − Y,X − x, k(p− P ), k(Q− q))

Two such transformation are composed by the following formula: If
S1(x1, Y1, q1, P1), S2(x2, Y2, q2, P2) are the generating functions for ϕ1, ϕ2, we
will have

S(x, Y, q, P ; x2, Y1, q2, P1) = S1(x, Y1, q, P1) + S2(x2, Y, q2, P )−
〈x− x2, Y1 − Y 〉 − k〈P1 − P, q − q2〉

Indeed, the constraining equations are





∂S
∂x2

= 0 ⇐⇒ ∂S2

∂x
(x2, Y, q2, P ) − Y + Y1 = 0

∂S
∂Y1

= 0 ⇐⇒ ∂S1

∂y
(x, Y1, q, P1) + −x+ x2 = 0

∂S
∂q2

= 0 ⇐⇒ ∂S2

∂q
(x2, Y, q2, P ) + k(P − P1) = 0

∂S
∂P1

= 0 ⇐⇒ ∂S1

∂p
(x, Y1, q, P1) + k(q − q2) = 0
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and the map ϕ is given by
(
x, Y +

∂S

∂x
(x, Y, q, P ; x2, Y1, q2, P1), q, P +

1

k

∂S

∂q
(x, Y, q;P, x2, Y1, q2, P1)

)
−→

(
x+

∂S

∂Y
(x, Y, q, P ; x2, Y1, q2, P1), Y, q +

1

k

∂S

∂P
(x, Y, q, P ; x2, Y1, q2, P1), P

)

that is

(
x, Y +

∂S1

∂x
(x, Y1, q, P1), q, P +

1

k

∂S1

∂q
(x, Y1, q, P1)

)
−→

(
x+

∂S2

∂Y
(x2, Y, q2, P ), Y, q +

1

k

∂S2

∂P
(x2, Y, q2, P

)

Now the map ϕ1 sends

(
x, Y1 +

∂S1

∂x
(x, Y1, q, P1), q, P1 +

1

k

∂S1

∂q
(x, Y1, q, P1)

)
−→

(
x+

∂S1

∂Y1
(x, Y1, q, P1), Y1, q +

1

k

∂S1

∂P1
(x, Y1, q, P1), P1

)

and the map ϕ2 sends

(
x2, Y +

∂S2

∂x2
(x2, Y, q2, P ), q, P +

1

k

∂S1

∂q2
(x2, Y, q2, P )

)
−→

(
x2 +

∂S2

∂Y
(x2, Y, q2, P ), Y, q2 +

1

k

∂S2

∂P
(x2, Y, q2, P ), P

)

Since




Y = Y1 + ∂S2

∂x
(x2, Y, q2, P )

x = x2 + ∂S2

∂y
(x2, Y, q2, P )

P = P1 + 1
k

∂S2

∂q
(x2, Y, q2, P )

q = q2 + 1
k

∂S2

∂p
(x2, Y, q2, P )

we may infer
ϕ = ϕ1 ◦ ϕ2
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6.1 Resolution in the (q2, P1) variables

For j = 1, 2, let the functions

∂Sj

∂P1

(x2, Y, q2, P ),
∂Sj

∂q2
(x2, Y, q2, P )

be C1 bounded, and assume k is large. We may then solve





∂S2

∂q
(x2, Y, q2, P ) + k(P − P1) = 0

∂S1

∂p
(x, Y1, q, P1) + k(q − q2) = 0

in
(q2, P1) = (q2(x, Y, q, P ; x2, Y1), P1(x, Y, q, P ; x2, Y1))

This requires the following matrix to be invertible:



I − 1

k
∂2S2

∂q∂p
(x2, Y, q2, P ) 1

k
∂2S2

∂q2 (x2, Y, q2, P )

1
k

∂2S1

∂p∂q
(x2, Y, q2, P ) I − 1

k
∂2S1

∂p2 (x, Y1, q, P1)




We thus get a new generating function

Ŝ(x, Y, q, P ; x2, Y1) = S(x, Y, q, P ; x2, Y1, q2(x, Y, q, P ; x2, Y1), P1(x, Y, q, P ; x2, Y1))

Note that

‖q2(x, Y, q, P ; x2, Y1)−q‖C1 = O(1/k), ‖P1(x, Y, q, P ; x2, Y1)−P‖C1 = O(1/k)

hence

‖Ŝ(x, Y, q, P ; x2, Y1) − S(x, Y, q, P ; x2, Y1, q, P )‖C1 = O(1/k)

where

S(x, Y, q, P ; x2, Y1, q, P ) = S1(x, Y1, q, P ) + S2(x2, Y, q, P )− 〈x− x2, Y1 − Y 〉
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6.2 Generating functions for H(kx, y, q, p)

Suppose now that S1 is a function of (x1, Y1, q1, P1, ξ1) and S2 of (x2, Y2, q2, P2, ξ2)
Then

S(x, Y, q, P ; x2, Y1, q2, P1, ξ1, ξ2) = S1(x, Y1, q, P1, ξ1) + S2(x2, Y, q2, P, ξ2)−
〈x− x2, Y1 − Y 〉 − k〈P1 − P, q − q2〉

The conditions are then given by





∂S2

∂q2

(x2, Y, q2, P, ξ2) + k(P − P1) = 0

∂S1

∂P1

(x, Y1, q, P1, ξ1) + k(q − q2) = 0

and for k large enough we may write, as in the previous section

(q2, P1) = (q2(x, Y, q, P ; x2, Y1, ξ1, ξ2), P1(x, Y, q, P ; x2, Y1, ξ1, ξ2))

hence we set

Ŝ(x, Y, q, P ; x2, Y1, ξ1, ξ2) = S1(x, Y1, q, P1(x, Y, q, P ; x2, Y1, ξ1, ξ2), ξ1)+

S2(x2, Y, q2(x, Y, q, P ; x2, Y1, ξ1, ξ2), P, ξ2) − 〈x− x2, Y1 − Y 〉 − k〈P1 − P, q − q2〉

Again, we have, as above

‖Ŝ(x, Y, q, P ; x2, Y1, ξ1, ξ2) − S(x, Y, q, P ; x2, Y1, q, P, ξ1, ξ2)‖C1 = O(1/k)

6.3 The case of ℓ terms

Let ϕt
k be the flow associated to H(x, y, q, p) for the symplectic form σk, the

flow Ψt
k associated to H(kx, y, q, p) for σ1 is given by

Ψt
k = ϕkt

k

Indeed Ψt
k is defined by the equations

{
ẋ(t) = ∂H

∂y
(kx, y, q, p), ẏ(t) = −k ∂H

∂x
(kx, y, q, p)

q̇(t) = ∂H
∂p

(kx, y, q, p), ṗ(t) = −∂H
∂q

(kx, y, q, p)
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and setting kx = u, we get

{
u̇(t) = k ∂H

∂y
(u, y, q, p), ẏ(t) = −k ∂H

∂x
(u, y, q, p)

q̇(t) = ∂H
∂p

(u, y, q, p), ṗ(t) = −∂H
∂q

(u, y, q, p)

Defining ρk(x, y, q, p) = (kx, y, q, p), we get

Ψt
k(x(0), y(0), q(0), p(0)) = (x(t), y(t), q(t), p(t)) = (

1

k
u(t), y(t), q(t), p(t)) =

ρ−1
k (u(t), y(t), q(t), p(t)) = ρ−1

k ϕkt
k (u(0), y(0), q(0), p(0))

hence
Ψt

k = ρ−1
k ϕkt

k ρk

This is not surprising, since Ψt
k is Hamiltonian for σ1 (hence it is σ1-

symplectic) while ϕt
k is Hamiltonian for σk (hence is σk-symplectic) and

ρ∗kσk = kσ1.
Let Fk(x, Y, q, P, ξ) be a generating function associated to the time one

flow of H(x, y, q, p), for σk, we shall have

Fℓ(x, Y, q, P ; x, Y , q, P , ξ) =

ℓ∑

j=1

Fk(xj , Yj, qj , Pj, ξj) −
ℓ∑

j=1

〈xj − xj+1, Yj − Yj+1〉 − k〈qj − qj+1, Pj − Pj+1〉

Here

x1 = x, q1 = q, Pℓ = P, Yℓ = Y,

x = (x2, ..., xℓ), q = (q2, ..., qℓ), P = (P1, ..., Pℓ−1), Y = (Y1, ..., Yℓ−1), ξ = (ξ1, ..., ξℓ)

The condition for solving the constrains in (q, P ) is the invertibility of
the following matrix



I − 1

k
∂2Fℓ

∂q∂P
(x, Y, q, P ) 1

k
∂2Fℓ

∂q2 (x, Y, q, P )

1
k

∂2Fℓ

∂P∂q
(x, Y, q, P ) I − 1

k
∂2Fℓ

∂P
2 (x, Y , q, P )




This amounts to the inequality

1

k

∥∥∥∥∥∥∥




∂2F
∂q2∂P

(x, Y, q, P ) ∂2F
∂q2 (x, Y, q, P )

∂2F
∂P∂q

(x, Y, q, P ) ∂2F
∂P 2 (x, Y, q, P )




∥∥∥∥∥∥∥
≤ ε(⋆)
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since a matrix of the type .




I + A C 0 . . . . . . 0
B I + A C 0 . . . 0
0 0 I + A C . . . 0
...

. . .
. . .

. . .

0 . . . 0 B I + A C
0 . . . 0 0 B I + A




is invertible provided ‖A‖, ‖B‖, ‖C‖ are small enough (independently
from the number of blocks: this follows from Gershgorin’s theorem, stating
that if R bounds the sum on any line of the off diagonal terms , the eigen-
values of the matrix are at distance less than R from the diagonal terms).

Under the above assumption (⋆), we have that

‖Fℓ(x, Y, q, P ; x, Y , q, P , ξ) − F̂ℓ(x, Y, q, P ; x, Y , ξ)‖C1 ≤ Cℓε

where

F̂ℓ(x, Y, q, P ; x, Y , ξ) =
ℓ∑

j=1

F (xj, Yj, q, P, ξj) −
ℓ∑

j=1

〈xj − xj+1, Yj − Yj+1〉

Now let us for typographical convenience revert to (x, y, q, p) notation
instead of (x, Y, q, P ). Let the generating function associated to Ψ1

k be given
by

Fk(x, y, q, p; ξ)

We thus have according to proposition 4.11 a function hk(y, q, p) and a
cycle Γ(y, q, p) with the proper homology class such that

Fk(y, q, p; Γ(y, q, p)) ≤ hk(q, y, p)

where limk→∞ hk(y, q, p) = h∞(y, q, p).
Moreover Γ(y, q, p) may be allowed to depend continuously on (y, q, p)

provide we allow the weaker inequality

Fk(y, q, p; Γj(y, q, p)) ≤ hk(q, y, p) + aχj(q, p)

where now χj is supported on W δ
j , a δ neighbourhood of a grid in the

(q, p) variables. Note that we used proposition 4.11, in order to get rid of the
y dependence of χ.
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Then

F̂kℓ(x, y, q, p; x, y, ξ) =
1

ℓ

ℓ∑

j=1

Fk(xj , yj, q, p, ξj) − 〈yj − yj+1, xj − xj+1〉

will satisfy on

Γ̂kℓ = {(xj , yj, q, p, ξj) | (xj , ξj) ∈ Γj(yj, q, p)}

the inequality

F̂kℓ(x, y, q, p; x, y, ξ) ≤
1

ℓ

ℓ∑

j=1

hk(y, q, p) +
a

ℓ
χj(q, p) − 〈xj − xj+1, yj − yj+1〉

As before we choose the χj so that the intersection of 2m + 2 supports
supp(χj) is empty.

Thus F̂kℓ is bounded by the generating function of hk(y, q, p) plus a
ℓ
. We

therefore get for all α, that

c(µ,Ψ1
kα) ≤ c(µ,Ψ

1

kα) + ε

Finally, we may conclude the proof of theorem 3.4 as in the standard case.

7 Proof of proposition 3.6

We shall limit ourselves to the case where homogenization is done on all
variables.

Now according to [Hu], if u1, u2 are given by c(1(q), L1) and c(1(q), L2),
we have

|c(1(q), L1) − c(1(q), L2)| ≤ γ(L1, L2)

Thus if L1 = ϕ1(Λ) and L2 = ϕ2(Λ), we have

γ(L1, L2) ≤ γ(ϕ1ϕ
−1
2 )

In our case, L = ϕt
k, L = ϕt, we get

|uk(t, q) − u(t, q)| ≤ γ(ϕt
kϕ

−t)

Now we have according to the computation of lemma 4.9, that

γ(ϕkt
k ϕ

−kt) ≤ kγ(ϕt
kϕ

−t)
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Taking the supremum over t in [0, 1], we get

sup
t∈[0,k]

γ(ϕt
kϕ

−t) ≤ k sup
t∈[0,1]

γ(ϕt
kϕ

−t)

thus impliying our estimate.

8 Non compact-supported Hamiltonians and

the time dependent case

8.1 The coercive case

Assume first that H(q, p) is not compact supported, and that H is coercive,
that is

lim
|p|→∞

H(q, p) = +∞

Then let χ : R → R be a truncation function, that is

(1) χ is supported in [−2A, 2A]

(2) χ = 1 on [−A,A]

We then consider χ(|p|)H(q, p) = K(q, p), and denote by ϕt the flow of
H , ψt the flow of K. Since ϕt preserves H , we have that if a(c), b(c) are
defined by

W a(λ) = {(q, p) | |p| ≤ a(λ)} ⊂ {(q, p)H(q, p) ≤ λ} ⊂ {(q, p) | |p| ≤ b(λ)} = W b(λ)

Then ϕt sends W a(λ) into W b(λ) thus, for A ≥ b(λ), we have ψt = ϕt.
Since ρk preserves W λ, we get that ϕt

k = ρ−1
k ϕktρk sends also W a(λ) into

W b(λ) and moreover coincides with ϕt
k on W a(λ).

The conclusion is given by the following result due to [Hu]

Lemma 8.1. Let ϕt
k, ψ

t
k be two sequences of Hamiltonian flows Let U ⊂ V ⊂

Z such that for any t, ϕt
k(U) ⊂ V , ϕt

k(V ) ⊂ Z ψt
k(U) ⊂ V and ϕt

k = ψt
k on

V . Then if γ − limk→∞ ϕt
k = ϕ t and γ − limk→∞ ψt

k = ψ
t
we have

ψ
t
= ϕ t

on U .
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Proof. Indeed ϕt
k ◦ψ−t

k (U) ⊂W hence
(
ϕt

k ◦ ψ−t
k

)
|U

= IdU Now we claim that

if a sequence ρk such that (ρk)|U = IdU having γ-limit ρ, then ρ|U = IdU .
Indeed this follows from [Hu] section 4.2.

As a result, taking c(λ) = a(b(λ)), we get that U = W a(λ), V = W b(λ), Z =

W c(λ), the assumptions of the lemma are satisfied, hence the restriction of ψ
t

to U is independent from the choice of χ.

Note that the condition that ψ
t
= ϕ t on U only implies that the gener-

ating Hamiltonians H,K differ by a constant.
Applying this to χ1(|p|) and χ2(|p|) we get that

Definition 8.2. Let H be a Hamiltonian such that

lim
|p|→∞

H(q, p) = +∞

Then we denote by H the Hamiltonian equal to the common value of the Kχ

for A going to infinity.

Thus any autonomous proper Hamiltonian can be homogenized.

Proposition 8.3. The map A from Ĥam(T ∗T n) to C0(Rn) extends to a map
defined on the set of coercive Hamiltonians, i.e. such that lim|p|−→+∞H(q, p) =
+∞

Consider now a 1-periodic Hamiltonian H(t, q, p) on T ∗T n and consider
the Hamiltonian K(t, τ, q, p) = τ + H(t, q, p). This new Hamiltonian is
not compact supported, but, considering the function χ as defined above,
Kχ(t, τ, q, p) = χ(τ)(τ +H(t, q, p)) is compact supported.

The same argument as above show that Kχ can be homogenized, and the
limit Kχ is of the form τ +H(p) on |τ | ≤ A.

Remark 8.4. Note that we may also use the distance γ̂ defined by

γ̂(ϕ, id) = sup{γ(ϕ(L), L) | L ∈ L}

and we may also define the weak limit as ϕ = limk ϕk if and only if for any
L in L we have

lim
k
γ(ϕk(L), ϕ(L)) = 0

We may now consider applications of the non compact situation to homog-
enization for Hamilton-Jacobi equations. Indeed, let us consider a Hamilto-
nian H(t, q, p) and a function f of class C1, and ϕt its flow. Since the graph of
df is bounded, we may truncate H , in such a way that ϕt(Γdf ) is unchanged.
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Thus H is now compact supported, and we get a function uf(t, x), and we
get that the solution uf,k(t, x) of

{
∂
∂t
uk(t, q) +H(kt, kq, ∂

∂x
uk(t, q)) = 0

uk(0, q) = f(q)
(HJk)

converges to the solution uf of

{
∂
∂t
u(t, q) +H( ∂

∂x
u(t, q)) = 0

u(0, q) = f(q)
(HJ)

If f is only C0, we need to consider a sequence fν converging to f . Since

Lemma 8.5.
|uf − ug|C0 ≤ |f − g|C0

Proof. Indeed, let Ψ be a Hamiltonian diffeomorphism of T ∗N such that
Ψ(Λf) = Λg, where Λf = {(x, df(x)) | x ∈ N}, and such that γ(Ψ) ≤
|f − g|C0.

Then the function uf is obtained as c(1(x), ϕt(Λf)), and we have

|c(1(x), ϕt(Λf)) − c(1(x), ϕt(Λg))| = |c(1(x), ϕt(Λf)) − c(1(x), ϕtΨ(Λf))| ≤
|c(1(x), ϕt(Λf) − ϕtΨ(Λf))| ≤ |c(1(x),Λf − Ψ(Λf))| ≤ γ(Λf ,Ψ(Λf)) ≤

γ(Ψ) = |f − g|C0

8.2 The non coercive case

Assume for example that

H(x1, x2, p1, p2) = h(p1, p2)

outside a compact set. Notice that the Poisson brackets, {H, p1} = {H, p2} =
0 outside a compact set, therefore {H, |p1|2 + |p2|2} = 0 outside a compact
set. The flow ϕt of H will then remain inside a bounded domain W λ for λ
large enough. We may then use the same truncation method as above, and
infer that we may homogenize H :

Proposition 8.6. Let H(x1, x2, p1, p2) = h(p) outside a compact set. Then
we have a homogenization operator A with the same properties as in the
compact supported case.
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Corollary 8.7. Assume uk is a variational solution of Hamilton-Jacobi equa-
tion (HJk). Then the sequence uk converges uniformly to ū solution of (HJ).

Remark 8.8. By an approximation method, this will work for any hamiltonian
such that

lim
|p|→∞

|H(q, p)− h(p)| = 0

9 Homogenization in the p variable

9.1 Partial Legendre transform

Let Λ be some Lagrangian submanifold Hamiltonianly isotopic to the diago-
nal in T ∗(T n) × T ∗T n.

We may consider Λ as a graph over the diagonal: it has a G.F.Q.I. of the
form S(q, P, ξ), so that

Λ = {(q, P − ∂S

∂q
(q, P, ξ), q +

∂S

∂p
(q, P, ξ), P ) | (q, P ) ∈ T ∗T n}

But we may consider Λ as a Lagrangian in T ∗(T n × T n) and as such, it
may have a G.F.Q.I. in the (q, Q) variables, that is

L = {(q,−∂F
∂q

(q, Q, η), Q,
∂F

∂Q
(q, Q, η)) | (q, Q) ∈ ˜T n × T n}

where ˜T n × T n is the covering of T n × T n such that q − Q is defined in
Rn.

We may say that S and F are Legendre dual to each other. Note that
while in the case without fibre variables, Legendre duality is a map, here it
is only a correspondence, since the G.F.Q.I. are not unique. If F is a convex
function in Q, we have

S(q, P ) = sup{〈p,Q〉 − F (q, Q) | Q− q ∈ Rn}
Note that the use of F is more convenient when we must find a generating

function of ϕ(L). Indeed, if SL(q, ξ) is a G.F.Q.I. for L, then

Sϕ(L)(Q, q, ξ, η) = SL(q, ξ) + F (q, Q, η)

is a G.F.Q.I. for ϕ(L).
Let us consider the sequence H(x, k · p). Its flow is given by

ψt
k = σ−1

k ϕktσk
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where σk(q, p) = (q, k · p).
Note that here σk is a bona fide map on T ∗T n, so that we do not have to

invoke covering arguments. Since σk satisfies σ∗
kω = 1

k
ω, we get, that

γ(σ−1
k ϕktσk) =

1

k
γ(ϕkt)

There is a priori no limit for the sequence σ−1
k ϕktσk: indeed if ϕt is the

flow of H(p), σ−1
k ϕktσk will be the flow of H(kp). However let us write

τk(q, p) = (k · x, p
k
), then

ψt
k = σ−1

k ϕktσk = τ−1
k ρ−1

k ϕktρkτk = τ−1
k ϕt

kτk

Now
γ(ϕt

kϕ
−t) ≤ εkt

thus

γ
(
(τ−1

k ϕt
kτk)(τ

−1
k ϕ −tτk)

)
= γ(τ−1

k (ϕ t
kϕ

−t)τk) = γ(ϕt
kϕ

−t) ≤ εkt

Now since τ−1
k ϕ tτk is generated by H(k · p), we do not get a limit for

H(x, k · p) but we get:

Proposition 9.1.

lim
k→∞

γ(H(x, k · p), H(k · p)) = lim
k→∞

γ(ψt
kϕ

−t) = 0

In spite of the fact that H(k · p) has no limit as k goes to infinity, this
has a number of applications.

First, let us consider the standard parabolic Hamilton-Jacobi equations

{
∂
∂t
u(t, q) +H(q, ∂

∂x
u(t, q)) = 0

u(0, q) = f(q)

Set uk(t, q) = 1
k
u(k · t, k · x), then uk satisfies the equation

{
∂
∂t
uk(t, q) +H(kq, ∂

∂x
u(t, q)) = 0

uk(0, q) = 1
k
f(kq)

and since H(kq, p) converges to H, we get that

lim
k→∞

uk(t, q) = u(t, q)
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that is

u(t, q) ≃ ku(
t

k
,
q

k
)

where u(t, q) is solution of

{
∂
∂t
u+H( ∂

∂q
u(t, q))

u(0, q) = 0

Since the solution is given by

u(t, q) = −tH(0)

we get
u(kt, kq) = −ktH(0) + kvk(t, q)

where vk goes to zero with k, since so does γ(H(kq, p), H) and the initial
condition is of the order 1

k
.

In other words,

u(t, q) = −tH(0) + w(t, q)

where w is bounded.
The sequences of Hamilton-Jacobi equations

∂
∂t
u(t, q) +H(kq, ∂

∂x
u(t, q)) = 0(HJk)

∂
∂t
u(t, q) +H(q, k ∂

∂x
u(t, q)) = 0(HJ ′

k)

We shall assume H is smooth for simplicity. Note that if we set uk(t, x) =
vk(t, kx), then if vk is a solution of (HJ ′

k), we have that uk is a solution of
(HJ ′

k). Indeed, let Lk be the geometric solution for (HJk), then the image
of Lk by the map

(t, τ, q, p) −→ (t, τ,
x

k
, kp)

is a geometric solution for (HJ ′
k). Note that if the initial condition for vk is

given by f(x), then the initial condition for uk is given by f(kx). However
if wk is a variational solution for (HJ ′

k) with initial condition g(x), then,
according to lemma 8.5,

|wk(t, x) − uk(t, x)| ≤ sup
x∈T n

|g(x) − f(kx)| ≤ ‖g − fk‖ ≤ ‖g‖ + ‖f‖
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Now
|uk(t, x) − u(t, x)| ≤ εkt

so that vk(t, kx) is approximated by u(t, x). In other words,

vk(t, x) = u(t,
x

k
) + o(1)

Thus

|vk(t, x) + tH(0)| ≤ |u(t, x
k
) + tH(0)| + |uk(t,

x

k
) − u(t,

x

k
)| ≤ o(t) + εkt

lim
t→∞

1

t
v1(t, x) = −H(0)

Proposition 9.2. Let u be a variational solution of

{
∂
∂t
u(t, q) +H(q, ∂

∂x
u(t, q)) = 0

u(0, q) = f(q)
(HJ)

then

lim
t→∞

1

t
u(t, q) = −H(0)

9.2 Connection with Mather α function

The α function has been defined by Mather for a Lagrangian L(x, ξ) as

α(p) = lim
T→∞

1

T
inf

{∫ T

0

L(t, q(t), q̇(t))dt− 〈p, x1 − x0〉 | q(0) = x0, q(T ) = x1

}

As a special case, we may show

Proposition 9.3. Let H be the Legendre dual of the Lagrangian L, i.e. H
is strictly convex in p and

L(t, x, ξ) = sup {〈p, ξ〉 −H(t, q, p)} .

Then

H(p) = lim
T→∞

inf

{
1

T

∫ T

0

L(t, q(t), q̇(t))dt− 〈p, x1 − x0〉 | q(0) = x0, q(T ) = x1

}
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Proof. It is enough to consider the case p = 0. Then let

Pt = {q : [0, 1] −→M | q(0) = x0}

and π : Pt −→M the map q 7→ q(1).. Let

Et(q) =

∫ t

0

L(q(ts), tq̇(ts))ds

defined on P, and consider Et as a G.F.Q.I. . We shall write (x1, q)to remind
the reader that π(q) = q(t) = x1.

Now

DEt(x1, q) =

∫ t

0

[
∂L

∂x
(q(ts), tq̇(ts)) − d

dt

∂L

∂ξ
(q(ts), tq̇(ts))

]
δq(ts)ds+

∂L

∂ξ
(q(t), tq̇(t))δq(t) − ∂L

∂ξ
(q(0), tq̇(0))δq(0)

Setting

p(t) =
∂L

∂ξ
(q(t), tq̇(t))

we get (x1,
∂Et

∂x1

) = (x1, p1) = ϕt(x0, 0). Therefore Et is a G.F.Q.I. of ϕt(0N).
and since

inf{Et(x, q) | q ∈ P, q(1) = x} = c(1(x), Et) = uL,t(x)

is a geometric solution of HJ , we have, as proved in

lim
t→∞

1

t
uL,t(x) = −H(0)

10 Some examples and applications

10.1 Homogenization of H(t, q, p) in the variable t

Applying the above in the case of partial homogenization, we see that we may
associate to a time-periodic Hamiltonian H(t, q, p) an autonomous Hamilto-
nian H(q, p). However, this is nothing else than

H(q, p) =
1

T

∫ T

0

H(t, q, p)dt
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Indeed, if H(kt, q, p) has flow ϕt
k, we have

lim
k→∞

ϕt
k = ϕt

in the C0 topology, where ϕt is the flow of

1

T

∫ T

0

XH(t, q, p)dt = XH(q, p)

by the fundamental theorem of classical averaging. Since C0 limit implies γ
convergence, we get our claim.

10.2 The one dimensional case: 1
2
|p|2 − V (x)

In [L-P-V], the case H(q, p) = 1
2
|p|2−V (x) is explicitly dealt with, in the case

V is bounded from below. We shall see here that this follows immediately
from property (2) of theorem 3.2. Indeed, we have, assuming V ≥ 0 is
one-periodic





H(p) = 0 if |p| ≤
∫ 1

0
(V (x))1/2dx

H(p) = λ where λ solves |p| =
∫ 1

0
(V (x) + λ)1/2 dx if |p| ≥

∫ 1

0

√
V (x)dx

Indeed, this follows immediately from theorem 3.2 property (3).
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10.3 Some computations

Figure 2: The red set is the complement of the support of the Hamiltonian
H(q, p).

Figure 3: The red set is the complement of the support of the Hamiltonian
H(kq, p).

We let H be a Hamiltonian vanishing on the complement of the red set in
figure 2, and equal to one in the complement. We claim that H(p) for p in
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[−2, 2].
Indeed, we see that a clever path in the labyrinth of figure 3 will have

any possible Liouville form. Thus, we have L ∈ Lp contained in Hk = 1 for
any p in [−1, 1]. As a result, H(p) ≥ 1 for any p in [−1, 1]. Since obviously,
H(p) = 1 for |p| ∈ [1, 2], we get H(p) = 1 on [−2, 2] while H(p) = 0 for
|p| ≥ 2.

Remark 10.1. This example can be easily adpated to get Homogenized Hamil-
tonians taking more than two values.

10.4 Homogenized metric and the Thurston-Gromov
norm

First consider the case where H generates the geodesic flow of g, even though,
since H(q, p) = |p|2g, H is not compact supported (but we shall prove that
it may be extended to this setting). Then Hk generates the geodesic flow of
the rescaled metric by the covering map

T n −→ T n

q −→ kq

of degree kn.
It is well known that if d is the distance defined by g (i.e. d(x, y) is the

length of the shortest geodesic for g connecting x to y) and dk the one defined
by gk (corresponding to Hk), we have

dk(x, y) =
1

k
d(kx, ky)

and
lim

k→+∞
dk(x, y) = d(x, y)

where d is the metric associated to some flat Finsler metric g. It is well
known that gk does not converge to g in any reasonable sense, except for the
convergence of minimizers of the associated energy functional

E(γ) =

∫ 1

0

|γ̇(t)|2gdt

This is connected to the notion of Γ-convergence (cf. [Dal M], [Br]). In
particular we easily see that the length for dk of the shortest closed geodesic
in the homotopy class α (in Zn), ℓk(α), converges to the length for d of the
shortest closed geodesic in the homotopy class α, ℓ(α).
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Indeed,
ℓk(α) = inf{dk(x, x+ α) | x ∈ Rn}

and since dk(x, x + α) converges uniformly to d(x, x + a), and x needs only
to vary in a fundamental domain of the covering of the torus by Rn, we get
that

lim
j→+∞

ℓk(α) = ℓ(α) .

Now it is well known that in the class α there is a second closed geodesic,
obtained by a min max procedure. If we denote by

ℓk(α, β) = inf {sup{dk(x(t), x(t) + α) | t ∈ [0, 1]} | [x(t)] = β in π1(T
n)} .

and similarly for ℓ(α, β), do we have

lim
k→+∞

ℓk(α, β) = ℓ(α, β)?

The methods of our theorem imply a positive answer, since

ℓk(α, β) = c(α ∧ β,E)

Note that the analogous statement cannot hold for the whole length spec-
trum of gk (i.e. the set of lengths of closed geodesics), as it is easy to construct
examples for which the length spectrum of gk becomes dense as k goes to
infinity i.e. for any λ ∈ R+ and δ > 0 there is k0 in N such that for all k ≥ k0,
Spec (gk) ∩ [λ− δ, λ + δ] 6= ∅.

11 Further questions

We could try to compare the homogenization point of view withe the KAM
point of view: consider the Hamiltonian H0(p) + εH1(q, p) = Hε(q, p). The
question is to compute the symplectic homogenization of Hε.

As was pointed out by Sergei Kuksin, the type of homogenization or av-
eraging described here is a kind of “dequantized averaging”, in the sense that
usual homogenization is concerned with the limit of the “quantized Hamil-
tonian”, H(x

ε
, Dx) as ε goes to zero. Here we deal directly with H(x

ε
, p) the

“classical Hamiltonian”. It is natural to ask whether in the framework of the
above section, the laplacian associated to the homogenized metrics converges
to some operator. This is true according to Γ-convergence classical results
([Br]), the limiting operator is ∆∞. But this is not the Laplacian of the
metric g∞. First of all g∞ is not riemannian, but only Finslerian. Moreover,
it seems that g∞ detects changes in the metric on small sets: typically a
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three torus with a metric made small along three lines in three orthogonal
directions will have a much smaller g∞ than one without such “short direc-
tions“. But the Laplacian does not detect this, since the Brownian motion
will not see such lines. So the only reasonable question is whether the metric
g∞ determines the Laplacian ∆∞.

One may ask a more general question, that is

Question 11.1. Assume Hν converges to H for the c-topology. Does the
spectrum of the operators Hν(x,Dx) converge to the spectrum of H(x,Dx)?

Finally in a publication in preparation, we shall explain the connection
between the above homogenization and the self-tuning of oscillators.

Appendix A: Capacity of completely integrable

systems

Let ϕ1 be the time on flow associated to the Hamiltonian h(p) defined on
T∗Tn. Our goal is to prove the following

Proposition A.1.

c+(ϕ1) = sup
p
h , c−(ϕ1) = inf

p
h

osc
p
h = γ(ϕ1)

Proof. Set ϕt(q, p) = (Qt(q, p), Pt(q, p)), then the graph of ϕt defines a La-
grangian submanifold Γt in T ∗(T n×Rn) as the image of (θ, r) →

(
q+Qt

2
, r+Rt

2
, r−

Rt , Qt − q
)
. Note that even though Qt is in T n, Qt − q has a unique deter-

mination in Rn which is continuous in t and equals 0 for t = 0. The same
argument allows us to define q+Qt

2
= q + Qt−q

2
.

Moreover, if we set x = q+Qt

2
, y = p+Pt

2
, ξ = p − Pt , η = Qt − q , the

symplectic form is given by dξ ∧ dx + dη ∧ dy. In our case, where ϕt is the
flow of a “standard” integrable system, we have

xt = q +
t

2
h′(p) yt = p ξt = 0 ηt = h′(p)

Thus if we set ft(x, y) = t h(y), we have

ξt =
∂

∂x
ft(x, y) , ηt =

∂

∂y
ft(x, y)
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that is ft is a generating function of Γt with no “fibre variables”. It is then
easy to see that

c+(ϕt) = sup ft , c−(ϕt) = inf ft

γ(ϕt) = sup ft − inf ft

Since f1(x, y) = h(y) this proves our proposition.
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[Bern 1] P. Bernard, The action spectrum near positive definite invariant
tori. Bull. Soc. Math. France, vol. 131 (2003), pp. 603-616.

[Bern 2] P. Bernard, Symplectic aspects of Aubry Mather Theory. Duke
Math. Journal 136 (2007) no. 3, 401-420

[B-C-B] A. Boudaoud, Y. Couder and M. Ben Amar, A self-adaptative
oscillator. The European Physical Journal B, vol. 9 (1999), pp.
159-165.

[Bou] A. Boudaoud, De la corde au film de savon: de
l’auto-adaptation dans les systèmes vibrants. Im-
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Riemannian Spaces. Birkhäuser, 1999 (3rd ed. 2007)

[Dal M] G. Dal Maso, An introduction to Γ-convergence. Birkhäuser,
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