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Abstract 

Red blood cell hemodynamics influence blood rheology and thus circulatory function. 

Different authors showed that red blood cells are heterogeneous in blood flow. This 

heterogeneity could be explained by physical characteristics such as morphology, 

aggregability and deformability, but also by cellular and molecular environment. All 

these notions are found in sickle cell disease where sickle red blood cells become more 

rigid, leading to vascular occlusions, increased with an inflammatory context. 

In a preceding study, our results showed that velocity heterogeneity allow RBC 

classification, leading to different RBC sub-groups, using a dynamical approach and 

flow studies. In order to have a better understanding of the physiological meaning of 

such an heterogeneity, dynamical velocity experiences have been conducted in the case 

of normal and sickle red blood cells with different endothelial activations by 

proinflammatory cytokines, under a constant venular flow. 

Thus, normal and sickle red blood cells are classified into different sub-groups, showing 

their heterogeneity. Moreover, sub-population velocities and distribution evolve 

differently according to vascular state or treatment. 

These results show that red blood cell velocities and rheology depend on vascular 

environment and red blood cell morphology. However, the physiological meaning of 

this behavior should be explained by cellular and molecular effects of such activation. 

 

Keywords: Adhesion; Blood flow; Hemodynamics; Sickle red blood cell; Velocity. 

Abbreviations: EC, endothelial cell; HAC; hierarchical agglomerative clustering; MV, 

mean velocity; RBC, red blood cell; TrHBMEC, transformed human bone marrow 

endothelial cells 
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1. Introduction 

 

Dynamics of the vascular system imply many notions such as fluid dynamic problems, 

interaction between blood flow, blood elements, vessels and vascular tissues or 

mathematical modeling (Li, 2006). Blood elements such as red blood cells (RBCs), may 

play an important role in vascular system dynamics and more generally, on circulatory 

function. Thus, RBC rheology may influence hemodynamics. 

RBC dynamics may be useful to understand this complex phenomenon. Some studies 

show that RBC population is heterogeneous according to their velocity in the 

circulatory system, particularly in venules (Rosenblum, 1971; Rosenblum, 1972a; 

Rosenblum, 1972b; Rosenblum, 1976). In addition, RBC characteristics such as age, 

density, cellular morphology and bio-chemical environment (Grima, 2007) may 

influence their behaviors in blood flow. 

RBC aggregation, known as ‘‘rouleaux’’, is fully reversible and disrupted by the shear 

forces that arise as the flow rate increases (Armstrong, Wenby, Meiselman, & Fisher, 

2004). It has also been hypothesized that the formation of aggregates of RBCs along the 

venular centerline (where low shear rates promote aggregation) may also enhance the 

radial migration of WBCs toward the EC as aggregates exclude WBCs from the axial 

core of RBCs (Pearson & Lipowsky, 2000). RBC aggregation is often significantly 

increased in disease states (Armstrong, Wenby, Meiselman, & Fisher, 2004; Bishop, 

Popel, Intaglietta, & Johnson, 2001; Hardwicke & Squire, 1952; Olshaker & Jerrard, 

1997). 

Moreover, previous studies have uncovered various findings related to the deformability 

of RBCs in a steady, uniform shear-flow field, such as RBC membrane changes, 
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hematocrit and intracellular viscosity (Fischer & Schmid-Schönbein, 1977; Fischer, 

Schmid-Schönbein, & Stöhr-Liesen, 1978a; Fischer, Stöhr, & Schmid-Schönbein, 

1978b; Kon, Maeda, & Shiga, 1987; Pfafferott, Nash, & Meiselman, 1985; Schmid-

Schönbein & Wells, 1969; Watanabe, Kataoka, Yasuda, & Takatani, 2006). 

It was clearly demonstrated that reductions in RBC deformability may adversely affect 

capillary perfusion (Driessen, Haest, Heidtmann, Kamp, & Schmid-Schönbein, 1980; 

Parthasarathi & Lipowsky, 1999). In addition, many diseases manifest reductions in 

RBC deformability. For example, elevated internal fluid viscosity or abnormal 

membrane stiffness was found in diabetes mellitus (Parthasarathi & Lipowsky, 1999; 

Schmid-Schönbein & Volger, 1976), a- and b-thalassemia (Parthasarathi & Lipowsky, 

1999; Schrier, Rachmilewitz, & Mohandas, 1989) and sickle cell disease (Parthasarathi 

& Lipowsky, 1999; Schmalzer, Manning, & Chien, 1989), particularly in 

microcirculation, where cell size is of the order of the blood vessel diameter (Bransky, 

Korin, Nemirovski, & Dinnar, 2007). Dynamic response and RBC behavior are also 

influenced by the nature of shear stress, uniform or reversing flow (Watanabe, Kataoka, 

Yasuda, & Takatani, 2006). 

RBC morphology, combined with cellular environment and vascular state, are two 

notions commonly found in Sickle Cell Disease, a specific disease. SS disease is a 

hemoglobinopathy caused by a mutation in the beta-globin gene (Glu6Val) (Ohene-

Frempong & Steinberg, 2001). Sickle hemoglobin molecules (HbS) have the property to 

polymerize when deoxygenated, forming sickle red blood cells (Ohene-Frempong & 

Steinberg, 2001). Rigid, deformed sickle red blood cells (SS RBCs) promote vascular 

occlusion, chronic ischemia-reperfusion injury, and episodic painful crises (Kato, 

Gladwin, & Steinberg, 2007; Ohene-Frempong & Steinberg, 2001; de Ceulaer, Higgs, 
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Weatherall, Hayes, Serjeant BE, & Serjeant GR, 1983). SS RBCs are proadhesive 

(Finnegan, Turhan, Golan, & Barabino, 2007; Hebbel, 1997; Wick & Eckman, 1996). 

Inflammatory mechanisms are thought to play a major role in the pathobiology of SS 

disease, probably via the endothelial inflammation (Finnegan, Turhan, Golan, & 

Barabino, 2007; Platt, 2000). 

Vaso-occlusive crisis are initiated by the adhesion reaction between the activated blood 

vessel endothelium and SS RBCs (Walmet, Eckman, & Wick, 2003). In addition, under 

flow conditions, reticulocytes were the most adherent of the heterogeneous population 

of sickle erythrocytes (Hebbel & Mohandas, 2001; Kato, Gladwin, & Steinberg, 2007). 

HbSS polymerization and adherence of SS RBCs to endothelium are thought to initiate 

sickle cell vasoocclusive pain episodes (Bunn, 1997; Hebbel, Boogaerts, Eaton, & 

Steinberg, 1980a; Hofrichter, Ross, & Eaton, 1974; Hoover, Rubin, Wise, & Warren, 

1979; Mozzarelli, Hofrichter, & Eaton, 1987; Wagner, Eckman, & Wick, 2004). 

Reticulocyte adherence provides an additional link between hemolytic anemia and 

sickle vaso-occlusion (Kato, Gladwin, & Steinberg, 2007). Sickle erythrocytes adhere to 

cultured endothelial cells and the tenacity of adherence reflects the severity of the 

disease (Hebbel, Boogaerts, Eaton, & Steinberg, 1980a; Hoover, Rubin, Wise, & 

Warren, 1979; Kato, Gladwin, & Steinberg, 2007). This abnormal adhesion is directly 

connected to the severity of the disease (Francis & Johnson, 1991; Hebbel, Boogaerts, 

Koresawa, Jacob, Eaton, & Steinberg, 1980b; Hebbel, 1991; Setty & Stuart, 1996). 

Vaso-oclusive process is very complex. This model has evolved from polymerization-

based concepts to a complex, wide-ranging schema that involves multistep, 

heterogeneous, and interdependent interactions among SS RBCs, adherent leukocytes, 

endothelial cells, plasma proteins, and other factors (Chiang & Frenette, 2005). 
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Endothelial activation, induced directly or indirectly by the proinflammatory behavior 

of SS RBCs, is the most likely initiating step toward vaso-occlusion (Chiang & 

Frenette, 2005). Previous studies demonstrated that sickle RBCs are more adherent to 

vascular endothelium and that the endothelium in sickle cell patients is inflamed (Duits 

et al., 1996; Solovey, Lin, Browne, Choong, & Wayner, 1997; Turhan, Jenab, Bruhns, 

Ravetch, Coller, & Frenette, 2004). Thus, sickle cell vaso-occlusion appears to involve 

multicellular interactions among RBCs, white blood cells, and the venular endothelium 

(Frenette, 2002; Turhan, Jenab, Bruhns, Ravetch, Coller, & Frenette, 2004). 

Moreover, transient sequestration of sickle RBCs in the low-flow state appears to be 

dominated by RBC / Endothelial cell (EC) adhesion, which becomes enhanced during 

crisis (Lipowsky & Williams, 1997). RBC adhesion would be predominant in post-

capillary venules (Chaudet, Renard, Seigneur, & Boisseau, 2000; Hebbel, Ney, & 

Foker, 1989; Hebbel, 1997; Kaul, Fabry, & Nagel, 1989; Montes, Eckman, Hsu, & 

Wick, 2002; Turitto, 1982). Although aggregation may enhance adhesive contact of 

RBCs with ECs, it does not increase to the same extent as the rate of sequestration, thus 

reflecting a greater role of RBC-EC adhesion (Lipowsky & Williams, 1997). In 

addition, RBC adhesion would be predominant in post-capillary venules with a 

physiological venular shear stress of 1 dyne/cm² (Kaul, Fabry, & Nagel, 1989; Montes, 

Eckman, Hsu, & Wick, 2002; Turitto, 1982). 

All these different experiments suggest that blood flow studies would be useful to 

understand vascular disease mechanisms, particularly in sickle cell disease, where 

RBCs could be implicated in tissular and cellular damages or vascular phenomenon as 

blood cell adhesion to endothelium. 
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In a previous study, using a dynamical approach with a flow chamber apparatus to 

simulate blood flow conditions, it was shown that velocity heterogeneity could be 

explained by RBC classification, leading to different RBC sub-groups (Allayous, Regis, 

Bruel, Schoevaert, Emilion, & Marianne-Pepin, 2007). Thus, the present study focuses 

on this particular RBC dynamic behavior according to vascular state and RBC 

morphology in order to simulate sickle cell disease inflammation and specific RBC 

structural dynamics and circulatory behaviors in a constant venular flow of 1 dyne/cm². 

 

 

2. Materiel and Methods 
 

2.1. TrHMEC culture 

 

Transformed Human Bone Marrow Endothelial Cells (TrHBMEC) were kindly 

provided by Pr. Elion and Dr. Weksler. They were maintained in humidified air/5% 

CO2 at 37°C. TrHBMEC monolayers were grown to confluence in gelatin-coated 

Thermanox slides (Nalgene Nunc International) as previously described by Schweitzer, 

et al. (1997). TrHBMEC subcultures at passage 17 were used for flow experiments, and 

cultures were examined prior to use to ensure confluence. 

 

2.2. Red blood cell (RBC) acquisition 

 

Peripheral venous blood samples were obtained from four healthy normal volunteers 

(AA) at the Centre National France Transplant (Hôpital Saint-Louis, Paris) and from 

four individuals with homozygous sickle cell disease (SS) that have not received any 
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medical treatment within the previous 15 days. RBCs were isolated from whole blood 

by repeated centrifugation and washed with saline. RBCs were suspended in TrHBMEC 

culture medium without fetal calf serum and adjusted to 10
6
 red cells/ml for the flow 

assay. 

 

2.3. Flow assay protocol 

 

TrBMEC cultures were activated with culture medium containing pro-inflammatory 

cytokines: TNFα / IFNγ at 100 U/ml (Schweitzer et al. 1997) for 12, 24 or 48 hours 

prior to the start of a flow assay. Naïve TrHBMEC were sham-treated in an identical 

manner with culture medium alone (table 1). 

The cultured slides were secured to the flow chamber that is composed of a rectangular 

plexiglas cavity (0.2 mm height, 29 mm length, 5 mm width). The bottom wall of the 

chamber is a Thermanox coverslip (0.17 x 60 x 24 mm
3
) where endothelial cells were 

coated and directly in contact with RBCs. The cultured slides were mounted on an 

inverted-phase contrast microscope (Nikon Eclipse TE300, X20) equipped with a video 

camera. RBC suspension was then perfused through the chamber at 1 dyne/cm
2
, for 10 

minutes. The real-time images coming from the flow chamber (Figure 1) are recorded 

with a video tape recorder (Sony time lapse 168) and analyzed with a specific video 

analyzer (Pentium with Matrox digitized card). The experimental data obtained such as 

velocity, acceleration, angular deviation and linearity index, are used to characterize red 

cells trajectories, cell adhesion and cell-cell interactions. All experiments were 

performed at room temperature and repeated three times. 
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2.4. Classification methods 

 

Three classification methods were used, Hierarchical Agglomerative Clustering (HAC), 

K-Means clustering (K-Means) and Mixture of Gaussian distributions. 

 

2.4.1. HAC 

HAC is a hierarchical method based on hierarchical level of aggregation. The method 

provides increasing levels of classification. The visualization of the classification is 

made with a binary tree. 

 

2.4.2. K-Means 

K-Means is a classical method based on the evaluation of distances between the sample 

and the provided centers of classes which are given by the user at the beginning of the 

classification. These centers are then modified during the classification. 

 

The two methods gave different class centers. Number of classes and its centers are 

fixed beforehand in K-Means method while these parameters depend only on the level 

of classification chosen by the users in HAC method. 

 

2.4.3. Mixture of Gaussian distributions 

In order to classify the RBCs into N classes, with respect to their mean velocity value, 

we assume that these velocities are distributed as a mixture of Gaussian distributions 

p1f1(x) + …+ pNfN(x). Each number pi∈[0,1] represents the weight of class i, p1 +…+ pN  

= 1, and the distribution of the velocities within class i, say fi, is Gaussian with mean 
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and variance depending on i. The estimation of these parameters is done through a 

variant of the EM (Expectation Maximization) algorithm implemented in R language 

package (http://lib.stat.cmu.edu/R/CRAN). The R function Mclust ( ) yields the results, 

while the number of classes can be discussed by using a log-likelyhood criteria. 

 

The performance of each of these methods is evaluated by the number of RBCs in each 

class, the least mean variance and the greater distance between the different classes. The 

Gaussian mixture method often appears as the best one. 

 

2.5. Statistical analysis 

 

Data are presented as mean ± SE of the values obtained from independent experiments. 

Statistical analysis was performed using the single-factor analysis of variance 

(ANOVA) function in XLSTAT software to test for differences in RBC classes. 

Differences were considered to be statistically significant in cases in which the p value 

was less than or equal to 0.05 (representing a α = 0.05). 

 

3. Results 

 

The present study focuses on RBC mean velocity using a flow chamber associated to an 

apparatus of video-microscope image analyzer. This method simulates blood circulation 

in various conditions such as inflammation, medical treatment or vascular diseases 

where RBC dynamic and cell interactions are modified. The real-time images coming 

from the flow chamber are recorded and analyzed in order to determine each treatment 
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effect on RBC dynamic behavior. The purpose of the second part of this paper is to 

establish different RBC sub-groups using classification methods. 

 

This first part focuses on the general behavior of normal RBCs (AA) and sickle RBCs 

(SS) in various conditions (tables 1 and 2). 

 

3.1. General population mean velocity 

 

The different RBC mean velocities are summarized in table 2. 

 

3.1.1. Normal and sickle RBC general behavior 

 

AA and SS RBC general mean velocities (MVs) are respectively, 1005.94 ± 299.08 and 

1186.27 ± 264.89 µm/ms. In our conditions, SS RBCs seem to be significantly more 

rapid than AA RBCs. 

 

This preliminary result differs according to TrHBMEC treatment. Indeed, the nature and 

the time of this treatment both influence RBC evolution and profile in blood flow, as 

presented in next sections. 

 

3.1.2. Normal and sickle RBC general behavior under proinflammatory conditions 

 

TrHBMEC are activated by proinflammatory cytokines during 12, 24 or 48 hours (table 

1). 
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In case of a 12-hour treatment, AA RBC MV is significantly increased whereas SS RBC 

MV is similar when compared to basal conditions (table 2; fig. 2). 

AA RBC MV significantly decreases to normal MV when TrHBMEC are activated for 

24 hours (table 2; fig. 2). In parallel, SS RBC MV is significantly decreased to be 

similar than AA RBC MV in basal conditions (table 2; fig. 2). 

These MVs are not modified with a longer treatment (48-hour stimulation) (table 2; fig. 

2). 

Thus, proinflammatory treatment has different effects, according to RBC nature and 

stimulation time. 

 

RBC MV under a constant venular flow seems to depend on various parameters such as 

RBC nature, normal or sickle in our case and vascular environment, represented here by 

TrHBMEC treatment. Therefore, it would be interesting to consider each TrHBMEC 

treatment and its consequences for both RBC type. 

We can notice that proinflammatory cytokines treatment increases AA RBC MV after 

12 hours and decreases SS RBC MV after 24 hours (table 2; fig. 2). SS RBC behavior is 

different. Indeed, no effect is observed after a short treatment (12 hours). After a longer 

treatment (24 hours), proinflammatory cytokines modify this MV by increasing (table 2; 

fig. 2). 

Therefore, in addition to the relation between vascular environment and RBC behavior, 

this paper focuses on RBC heterogeneous responses and on the heterogeneity of this 

population. Indeed, those two opposed dynamic behaviors suggest that, in our 

experimental conditions under a constant venular flow, RBC MV should depend on 

various parameters such as RBC nature or vascular environment. On the other hand, we 
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may suppose that treatment effects are too weak to be significant when considering 

RBC general population. Therefore, it would be interesting to refine these preliminary 

results and determine whether or not there are different RBC sub-groups for each RBC 

type. If this hypothesis is true, we will focus on their responses in various vascular 

conditions and TrHBMEC treatments, in order to better understand the origin of these 

behaviors. This is the reason why we present, in the second part of this paper, an 

original idea of RBC classification to determine different RBC classes that would be 

responsible for population heterogeneity and behaviors already observed. In another 

way, we will try to see if the different TrHBMEC treatments have same effects on the 

different RBC sub-populations or classes, to generalize it for RBC dynamic behavior. 

 

3.2. RBC MV classification 

 

This study is based on the hypothesis that RBC velocity distribution should be a 

Gaussian one. Distribution represented in each condition is a mixture of two, three or 

even four Gaussian distributions, clearly showed in the different histograms built (data 

not shown). These observations confirm that RBC population is heterogeneous in each 

case. The different classification obtained will allow us to establish and characterize the 

different RBC dynamic behavior, with a constant flow and shear stress in the case of a 

normal and pathological vascular environment. 

 

3.2.1. Normal and sickle RBC classes 
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In an earlier article, HAC and K-Means methods lead us to classify AA RBCs into two 

classes (Allayous et al. 2007). Thanks to the Mixture of Gaussian distributions method, 

this result is refined in three classes. SS RBCs are divided in three classes also, as 

presented in table 3 and figure 3. 

We can notice that AA and SS are composed of three classes with different MVs. Thus, 

in class 1 and 2, SS RBC MV is significantly higher than AA RBC MV. In addition, 

RBC population is not equally distributed among the three classes. In class 1, there are 

as many AA RBCs as there are SS RBCs. On the contrary, in class 2, RBC number is 

higher and there are more AA RBCs than SS RBCs. However, there are twice as many 

SS RBCs as AA RBCs in class 3. 

 

3.2.2. Normal and sickle RBC behavior under proinflammatory conditions 

 

The different results presented in this section are summarized in table 4. AA RBCs are 

distributed into three classes under proinflammatory conditions, for each treatment time. 

Consequently, proinflammatory cytokines do not modify AA RBC class number. On the 

contrary, class distribution is modified according to treatment time. In addition, figure 4 

shows that time is an important parameter in AA RBC responses and velocity. We can 

notice that AA RBC MV significantly increases in each RBC sub-groups, after 12 hours 

(table 4; fig. 4). MV is significantly reduced after 24 hours in each case, but the biggest 

decrease is observed only for class 1 and 3, MV in class 2 shows no major differences 

with MV in basal conditions (table 4; fig. 4). Moreover, a little increase is observed 

only for class 1 MV after 48 hours, this class MV becomes similar to mean velocity 
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observed in basal conditions, whereas this value does not change for class 2 and 3 after 

a longer treatment (table 4; fig. 4). 

Proinflammatory conditions modify SS RBC behavior. Indeed, they are distributed into 

three classes when TrHBMEC are shortly stimulated (12 and 24 hours) and into two 

classes for longer treatment (48 hours), as presented in table 4. As observed for ASS 

RBCs, class distribution is modified according to treatment time. Figure 5 shows that 

SS RBC MV significantly increases after 12 hours only in class 2 and 3 whereas RBCs 

are more concentrated in class 2. Proinflammatory cytokines have a significant effect 

after 24 hours. Indeed, MV significantly decreases in the three classes, the most 

spectacular decrease is observed in class 1. In the same manner, RBC number in class 1 

and 3 decreases so as to be concentrated in class 2. This effect is reversed with a longer 

treatment where SS RBC MV significantly increases in the two classes and RBC are 

more concentrated in class 2. 

To conclude, we can notice that, in our experimental conditions, the same effect is 

observed on AA and SS RBC MV, after 24 hours. Actually, in each class, MV 

decreased concurrently with the number of red blood cells. However, we have noticed 

that class 2 contains the most RBCs and a greater amount of SS RBCs. 

 

 

4. Discussion 
 

 

The relation between blood cells, vascular environment and (vascular) tissues are of 

great importance in the circulatory function, particularly when considering RBC 

rheology. RBC behavior may depend on many factors such as age, cellular morphology, 
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density, deformability, blood flow, shear stress or vascular environment (molecules or 

disease state) (Armstrong, Wenby, Meiselman, & Fisher, 2004; Bishop, Popel, 

Intaglietta, & Johnson, 2001; Bransky, Korin, Nemirovski, & Dinnar, 2007; Grima, 

2007; Hardwicke & Squire, 1952; Kon, Maeda, & Shiga, 1987; Olshaker & Jerrard, 

1997; Pfafferott, Nash, & Meiselman, 1985; Watanabe, Kataoka, Yasuda, & Takatani, 

2006). 

All these notions such as inhibition of RBC deformability, increased RBC adhesion, 

blood flow abnormalities, vascular inflammation or abnormal cellular interactions are 

found in sickle cell disease (Bransky, Korin, Nemirovski, & Dinnar, 2007; Embury, 

Mohandas, Paszty, Cooper, & Cheung, 1999; Fink, Funahashi, Robinson, & Watson, 

1961; LaCelle, 1970; Lipowsky, Sheikh, & Katz, 1987; Lipowsky, 2005; Mohandas, 

Philips, & Bessis, 1979; Parthasarathi & Lipowsky, 1999; Paszty et al. 1997; Rodgers et 

al. 1984; Schmalzer, Manning, & Chien, 1989). 

Pointing out RBC heterogeneity in blood flow in order to establish velocity profiles, and 

understanding how these profiles are affected when endothelial cells are activated, are 

the two aspects that we have developed in this original study. 

 

We have already confirmed that AA RBCs are heterogeneous according to their velocity 

(Allayous, Regis, Bruel, Schoevaert, Emilion, & Marianne-Pepin, 2007; Rosenblum, 

1971; Rosenblum, 1972a; Rosenblum, 1972b; Rosenblum, 1976). This observation is 

also confirmed with SS RBCs. 

In addition, we have noticed that AA and SS are also heterogeneous even when vascular 

environment is different. Thus, AA and SS RBC classes and dynamic behavior for 

instance, evolve differently, according to endothelial state represented by nature and 
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time of TrHBMEC treatment. This heterogeneity seems to reflect RBC position in the 

flow. Thus, the fastest cells are more into an axial migration in the flow and the slowest 

ones are closer to the vascular wall (Bishop, Popel, Intaglietta, & Johnson, 2001). 

However, the flow chamber apparatus used in this study does not allow us to confirm 

these positions, in a constant venular flow and a constant hematocrit. 

These different RBC velocity and class heterogeneities must be explained by RBC 

nature, endothelial cell activation or state, and also by the different cellular interactions 

occurring in the blood flow. It is important to notice that in all of the experiments, 

RBCs were perfused with a particular medium in order to minimize undesirable 

interactions due to system contamination (plasma proteins, etc…). 

RBC nature and dynamic behavior, also known as RBC rheology, includes cellular 

deformability, intracellular viscosity, flow and shear stress, aggregation, RBC density 

and age, for example (Armstrong, Wenby, Meiselman, & Fisher, 2004; Fischer & 

Schmid-Schönbein, 1977; Fischer, Schmid-Schönbein, & Stöhr-Liesen, 1978a; Fischer, 

Stöhr, & Schmid-Schönbein, 1978b; Grima, 2007; Kon, Maeda, & Shiga, 1987; 

Pfafferott, Nash, & Meiselman, 1985; Schmid-Schönbein & Wells. 1969; Watanabe, 

Kataoka, Yasuda, & Takatani, 2006). 

Here, RBC heterogeneity, expressed as an increase, a stabilization or a decrease in RBC 

velocity, could be explained by different notions that will be developed in the following 

sections. 

In normal conditions, RBCs have many cellular properties explaining their particular 

rheology, like their deformability, their aggregability and their adhesion to endothelial 

cells (Barshtein, Ben-Ami, & Yedgar, 2007). All experiments were performed with 
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controlled venular flow and shear stress (1 dyne/cm²) as well as a constant hematocrit, 

and do not interfere with RBC velocity. 

SS RBCs have particular cellular properties such as a decrease in deformability, leading 

to vascular blockage, a decrease in cellular aggregability and an increase in cellular 

adhesion (Barshtein, Ben-Ami, & Yedgar, 2007; Bransky, Korin, Nemirovski, & 

Dinnar, 2007; Dhermy, Simeon, Wautier MP, Boivin, & Wautier JL, 1987; Finnegan, 

Turhan, Golan, & Barabino, 2007; Hebbel, 1997; Hebbel, 1997; Kaul, Nagel, Chen, & 

Tsai, 1993; Mchedlishvili, 1998; Mohandas & Chasis, 1993; Parthasarathi & Lipowsky, 

1999; Wick & Eckman, 1996). These factors trigger abnormal blood flow (Embury, 

Mohandas, Paszty, Cooper, & Cheung, 1999; Fink, Funahashi, Robinson, & Watson, 

1961; Lipowsky, Sheikh, & Katz, 1987; Paszty et al., 1997; Rodgers, Schechter, 

Noguchi, Klein, Nienhuis, & Bonner, 1984) and abnormal red blood cell velocities, as 

observed in the present study. 

These RBC properties are combined with vascular environment, represented by 

endothelial cell activation. 

TrHBMEC were activated by proinflammatory cytokines (Schweitzer et al., 1997). 

It is well-known that endothelial cells are activated by pro-inflammatory cytokines. This 

activation is translated by cell-surface adhesion molecule expression and regulation. 

TrHBMEC is a well-characterized cell line that expresses all endothelial markers such 

as von Willebrand factor, Vascular Cell 1dhesion Molecule-1 (VCAM-1), InterCellular 

Adhesion Molecule-1 (ICAM-1), E-selectine or P-selectine (Schweitzer et al., 1997). 

It has been recently shown that ICAM-1 expression and release are increased in the 

presence of cytokines during 48 hours (Brun, Bourdoulous, Couraud, Elion, 

Krishnamoorty, & Lapouméroulie, 2003; Schweitzer et al., 1997). In addition, VCAM-1 
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expression is induced by cytokines, the most important expression is observed between 

12 and 24 hours, without affecting its release (Brun, Bourdoulous, Couraud, Elion, 

Krishnamoorty, & Lapouméroulie, 2003; Schweitzer et al., 1997). The level of soluble 

ICAM-1 reflects the degree of inflammation and endothelial cell activation (Gearing & 

Newman, 1993). SS RBCs have been shown to induce ICAM-1 expression by 

endothelial cells in culture and flow studies (Brun, Bourdoulous, Couraud, Elion, 

Krishnamoorty, & Lapouméroulie, 2003; Shiu, Udden, & McIntire, 2000). 

VCAM-1 expression is up-regulated by proinflammatory cytokines and is the receptor 

of the very late antigen-4 (VLA-4) expressed on SS RBCs (Elion & Labie, 1998; Gee & 

Platt, 1995; Joneckis, Ackley, Orringer, Wayner, & Parise, 1993; Stuart & Nagel, 2004; 

Swerlick, Eckman, Kumar, Jeitler, & Wick, 1993). 

These molecular modifications could contribute to clinical observations such as a 

decrease in vascular occlusion in sickle cell patients. 

 

These notions linked to RBC nature could be useful to understand the physiological 

meaning of the heterogeneity of RBC velocities and the different velocity profiles. 

Moreover, cellular adhesion, represented by cell-surface molecules and RBC 

deformability, also participate in this phenomenon. In addition, it has been shown that 

SS RBC perfusion increases the expression of cell adhesion molecules on endothelial 

cells, such as ICAM-1 and VCAM-1, and stimulates the release of soluble cell adhesion 

molecules, which may serve as indicators of injury and/or activation of endothelial cells 

(Shiu, Udden, & McIntire, 2000). The interactions between sickle red blood flow, 

inflammatory cytokines, and vascular adhesion events may render sickle cell disease 

patients vulnerable to vasoocclusive crises (Shiu, Udden, & McIntire, 2000). 
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Another aspect of this work would consist in linking RBC velocity to RBC trajectory in 

order to characterize particular RBCs and molecular profiles, according to vascular state 

(inflammation, drugs, …). 

 

Inflammation state is very important in sickle cell disease. In fact, sickle RBCs are more 

adherent to vascular endothelium and the endothelium in sickle cell patients is inflamed 

(Duits et al., 1996; Solovey, Lin, Browne, Choong, Wayner, & Hebbel, 1997; Turhan, 

Jenab, Bruhns, Ravetch, Coller, & Frenette, 2004). 

It would help to have a better understanding of RBC dynamics, particularly by knowing 

what are the differences between sub-populations at a molecular level, like young 

RBCs, their density, the expression of cell-surface molecules, etc…. All these questions 

could be answered thanks to different experiments such as blocking molecules at the 

surface of endothelial cells, perfusing with different categories of RBCs (young, dense, 

etc…), so as to understand the physiological meaning of such an heterogeneity better. 

Moreover, this study would give us a better knowledge of the complex vascular 

occlusion pathway and also of red blood cell rehology and effects in normal vascular 

function in order to apply it to pathological mechanisms. 

 

 

 

 

 



 21

5. References 

 

Allayous, C., Regis, S., Bruel, A., Schoevaert, D., Emilion, R., & Marianne-Pepin, T. 

(2007). Velocity allowed red blood cell classification. CAB Proceedings, 1, 371-375. 

Armstrong, J. K., Wenby, R. B., Meiselman, H. J., & Fisher, T. C. (2004). The 

Hydrodynamic Radii of Macromolecules and Their Effect on Red Blood Cell 

Aggregation. Biophysical Journal, 87, 4259-4270. 

Barshtein, G., Ben-Ami, R., & Yedgar, S. (2007). Role of red blood cell flow behavior 

in hemodynamics and hemostasis. Expert Revue of Cardiovascular Therapy, 5, 743-

752. 

Bishop, J. J., Popel, A. S., Intaglietta, M., & Johnson, P. C. (2001). Rheological effects 

of red blood cell aggregation in the venous network: A review of recent studies. 

Biorheology, 38, 263-274. 

Bransky, A., Korin, N., Nemirovski, N., & Dinnar, U. (2007). Correlation between 

erythrocytes deformability and size: A study using a microchannel based cell analyzer. 

Microvascular Research, 73, 7-13. 

Brun, M., Bourdoulous, S., Couraud, P. O., Elion, J., Krishnamoorty, R., & 

Lapoumeroulie, C. (2003). Hydroxyurea downregulates endothelin-1 gene expression 

and upregulates ICAM-1 gene expression in cultured human endothelial cells. The 

Pharmacogenomics Journal, 3, 215-226. 



 22

Bunn, H. F. (1997). Pathogenesis and treatment of sickle cell disease. The New England 

Journal of Medicine, 337, 762-769. 

Chaudet, B., Renard, M., Seigneur, M., & Boisseau, M.R. (2000). Erythrocyte adhesion 

to vascular endothelium: clinical applications. La Revue de Médecine Interne, 21, 599-

607. 

Chiang, E. Y., & Frenette, P. S. (2005). Sickle cell vaso-occlusion. 

Hematology/Oncology Clinics of North America, 19, 771-784. 

de Ceulaer, K., Higgs, D. R., Weatherall, D. J., Hayes, R. J., Serjeant, B. E., & Serjeant, 

G. R. (1983). Alpha-Thalassemia reduces the hemolytic rate in homozygous sickle-cell 

disease. The New England Journal of Medicine, 309, 189-190. 

Dhermy, D., Simeon, J., Wautier, M. P., Boivin, P., & Wautier, J. L. (1987). Role of 

membrane sialic acid content in the adhesiveness of aged erythrocytes to human 

cultured endothelial cells. Biochimimica et Biophysica Acta, 904, 201-206. 

Driessen, G. K., Haest, C. W., Heidtmann, H., Kamp, D., & Schmid-Schönbein, H. 

(1980). Effect of reduced red cell ‘‘deformability’’ on flow velocity in capillaries of rat 

mesentery. Pflügers Archive, 388, 75-78. 

Duits, A. J., Pieters, R. C., Saleh, A.W., Rosmalen, E. V., Katerberg, H., Berend, K, 

&Rojer, R. A. (1996). Enhanced levels of soluble VCAM-1 in sickle cell patients and 

their specific increment during vasoocclusive crisis. Clinical Immunology and 

Immunopathology, 81, 96-98. 



 23

Elion, J., & Labie, D. (1998). Drépanocytose et adhérence cellulaire. Hématologie, 4, 

201-211. 

Embury, S. H., Mohandas, N., Paszty, C., Cooper, P., & Cheung, A. T. W. (1992). In 

vivo blood flow abnormalities in the transgenic knockout sickle cell mouse. American 

Journal oh Hematology, 103, 915-920. 

Fink, A. I., Funahashi, T., Robinson, M., & Watson, R. J. (1961). Conjunctival blood 

flow in sickle-cell disease. Archives of ophthalmology, 66, 824-829. 

Finnegan, E. M., Turhan, A., Golan, D. E., & Barabino, G. A. (2007). Adherent 

leukocytes capture sickle erythrocytes in an in vitro flow model of vaso-occlusion. 

American Journal oh Hematology,82, 266-275. 

Fischer, T., & Schmid-Schönbein, H. (1977). Tank tread motion of red cell membranes 

in viscometric flow: behavior of intracellular and extracellular markers (with film). 

Blood Cells, 3, 351-365. 

Fischer, T., Schmid-Schönbein, H., & Stöhr-Liesen, M. (1978a). The red cell as a fluid 

droplet: tank tread-like motion of the human erythrocyte membrane in shear flow. 

Science, 202, 894-896. 

Fischer, T., Stöhr, M., & Schmid-Schönbein, H. (1978b). Red blood cell (RBC) 

microrheology: comparison of the behavior of single RBC and liquid droplets in shear 

flow. Biorheology, 74, 38-45. 

Francis, R. B. J., & Johnson, C. S. (1991). Vascular occlusion in sickle cell disease: 

current concepts and unanswered questions. Blood, 77, 1405-1414. 



 24

Frenette, P. S. (2002). Sickle cell vaso-occlusion: multistep and multicellular paradigm. 

Current Opinion in Hematology, 9, 101-106. 

Gearing, A. J., & Newman, W. (1993). Circulating adhesion molecules in disease. 

Immunology Today, 14, 506-512. 

Gee, B. E., & Platt, O. S. (1995). Sickle reticulocytes adhere to VCAM-1. Blood, 85, 

268-274. 

Grima, R. (2007). Directed cell migration in the presence of obstacles. Theoretical 

Biology and Medical Modelling, 4, 2. 

Hardwicke, J., & Squire, J. R. (1952). The basis of the erythrocyte sedimentation rate. 

Clinical Science, 11, 333-355. 

Hebbel, R. P., Boogaerts, M. A., Eaton, J. W., & Steinberg, M. H. (1980a). Erythrocyte 

adherence to endothelium in sickle-cell anemia. A possible determinant of disease 

severity. The New England Journal of Medicine, 302, 992-995. 

Hebbel, R. P., Boogaerts, M. A., Koresawa, S., Jacob, H. S., Eaton, J. W., & Steinberg, 

M. H. (1980b). Erythrocyte adherence to endothelium as a determinant of vasocclusive 

severity in sickle cell disease. Transaction of the Association of American Physicians, 

93, 94-99. 

Hebbel, R. P., Ney, P. A., & Foker, W. (1989). Autoxidation, dehydration, and 

adhesivity may be related abnormalities of sickle erythrocytes. The American  Journal 

of Physiology, 256, C579-C583. 



 25

Hebbel, R. P.(1991). Beyond hemoglobin polymerization: the red blood cell membrane 

and sickle disease pathophysiology. Blood, 77, 214-237. 

Hebbel, R. P. (1997). Perspectives series: cell adhesion in vascular biology. Adhesive 

interactions of sickle erythrocytes with endothelium. The Journal of Clinical 

Investigation, 99, 2561-2564. 

Hebbel, R. P., & Mohandas, N. (2001). Cell Adhesion and Microrheaology in Sickle 

Cell Disease. In M. H. Steinberg, B. G. Forget, R. L. Higgs, & R. L. Nagel (Eds.), 

Disorders of Hemoglobin: Genetics, Pathophysiology, and Clinical Management 

(pp527-549). Cambridge: Cambridge University Press. 

Hofrichter, J., Ross, P. D., & Eaton, W. A. (1974). Kinetics and mechanism of 

deoxyhemoglobin S gelation: a new approach to understanding sickle cell disease. 

Proceedings of the National Academy of Sciences of The United States of America, 71, 

4864-4868. 

Hoover, R., Rubin, R., Wise, G., & Warren, R. (1979). Adhesion of normal and sickle 

erythrocytes to endothelial monolayer cultures. Blood, 54, 872-876. 

Joneckis, C. C., Ackley, R. L., Orringer, E. P., Wayner, E. A., & Parise, L. V. (1993). 

Integrin alpha 4 beta 1 and glycoprotein IV (CD36) are expressed on circulating 

reticulocytes in sickle cell anemia. Blood, 82, 3548-3555. 

Kato, G. J., Gladwin, M. T., & Steinberg, M. H. (2007). Deconstructing sickle cell 

disease: reappraisal of the role of hemolysis in the development of clinical 

subphenotypes. Blood Reviews, 21, 37-47. 



 26

Kaul, D. K., Fabry, M. E., & Nagel, R. L. (1989). Microvascular sites and 

characteristics of sickle cell adhesion to vascular endothelium in shear flow conditions: 

pathophysiological implications. Proceedings of the National Academy of Sciences of 

The United States of America, 86, 3356-3360. 

Kaul, D. K., Nagel, R. L., Chen, D., & Tsai, H. (1993). Sickle erythrocyte-endothelial 

interactions in microcirculation: the role of von Willebrand factor and implications for 

vaso-occlusion. Blood, 81, 2429-2438. 

Kon, K., Maeda, N., & Shiga, T. (1987). Erythrocyte deformation in shear flow: 

influences of internal viscosity, membrane stiffness, and hematocrit. Blood, 69, 727-

734. 

LaCelle, P. L. (1970). Alteration of membrane deformability in hemolytic anemias. 

Seminars in Hematology, 7, 355-371. 

Li, J. K. J. (2006). Dynamics of the vascular system. Singapoure: World scientific 

publishing. 

Lipowsky, H. H., Sheikh, N. U., & Katz, D. M. (1987). Intravital microscopy of 

capillary hemodynamics in sickle cell disease. The Journal of Clinical Investigation, 80, 

117-127. 

Lipowsky, H. H., & Williams, M. E. (1997). Shear rate dependency of red cell 

sequestration in skin capillaries in sickle cell disease and its variation with 

vasoocclusive crisis. Microcirculation, 4, 289-301. 



 27

Lipowsky, H. H. (2005). Microvascular rheology and hemodynamics. Microcirculation, 

12, 5-15. 

Mchedlishvili, G. (1998). Disturbed blood flow structuring as critical factor of 

hemorheological disorders in microcirculation. Clinical Hemorheology and 

Microcirculation, 19, 315-325. 

Mohandas, N., Philips, W. M., & Bessis, M. (1979). Red blood cell deformability and 

hemolytic anemias. Seminars in Hematology, 16, 95-114. 

Mohandas, N., & Chasis, J. A. (1993). Red blood cell deformability, membrane material 

properties and shape: regulation by transmembrane, skeletal and cytosolic proteins and 

lipids. Seminars in Hematology, 30, 171-192. 

Montes, R. A. O., Eckman, J. R., Hsu, L. L., & Wick, T. M. (2002). Sickle erythrocyte 

adherence to endothelium at low shear: role of shear stress in propagation of vaso-

occlusion. American Journal of Hematology, 70, 216-227. 

Mozzarelli, A., Hofrichter, J., & Eaton, W. A. (1987). Delay times of hemoglobin S 

gelation prevent most cells from sickling in vivo. Science, 237, 104-113. 

Ohene-Frempong, K., & Steinberg, M. H. (2001). Clinical aspects of sickle cell anemia 

in adults and children. In M. H. Steinberg, B. G. Forget, D. R. Higgs, & R. L. Nagel 

(Eds.), Disorders of hemoglobin: Genetics, Pathophysiology and Clinical Management 

(pp611-670). Cambridge: Cambridge University Press. 

Olshaker, J. S., & Jerrard, D. A. (1997). The erythrocyte sedimentation rate. The 

Journal of Emergency Medecine, 15, 869-874. 



 28

Parthasarathi, K., & Lipowsky, H. H. (1999). Capillary recruitment in response to tissue 

hypoxia and its dependence on red blood cell deformability. The American Journal of 

Physiology, 277, H2145-H2157. 

Paszty, C., Brion, C. M., Manci, E., Witkowska, H. E., Stevens, M. E., Mohandas, N., 

& Rubin, E. M. (1997). Transgenic knockout mice with exclusively human sickle 

hemoglobin and sickle cell disease. Science, 278, 876-878. 

Pearson, M. J., & Lipowsky, H. H. (2000). Influence of erythrocyte aggregation on 

leukocyte margination in postcapillary venules of rat mesentery. American Jounal of 

Physiology. Heart and Circulatory Physiology, 279, H1460-H1471. 

Pfafferott, C., Nash, G. B., & Meiselman, H. J. (1985). Red blood cell deformation in 

shear flow. Effects of internal and external phase viscosity and of in vivo aging. 

Biophysical Journal, 47, 695-704. 

Platt, O. S. (2000). Sickle cell anemia as an inflammatory disease. The Journal of 

Clinical Investigation, 106, 337-338. 

Rodgers, G. P., Schechter, A. N., Noguchi, C. T., Klein, H. G., Nienhuis, A. W., & 

Bonner R. F. (1984). Periodic microcirculatory flow in patients with sickle-cell disease. 

The New England Journal of Medicine, 311, 1534-1538. 

Rosenblum, W. I. (1971). Erythrocyte velocity and fluorescein transit time in the 

cerebral microcirculation of macroglobulinemic mice; differential effect of a 

hypersvicosity syndrome on the passage of erythrocytes and plasma. Microvascular 

research, 3, 288-296. 



 29

Rosenblum, W. I. (1972a). Can plasma skimming or inconstancy of regional hematocrit 

introduce serious errors in regional cerebral blood flow measurement or their 

interpretation? Stroke, 3, 248-254. 

Rosenblum, W. I. (1972b). Erythrocyte velocity and fluorescein transit time trough the 

cerebral microcirculation in experimental polycythemia. Journal of Neuropathology and 

Experimental Neurology, 31, 126-131. 

Rosenblum, W. I. (1976). Red cell velocity and plasma transit time in the cerebral 

microcirculation of spherocytic deer mice. Circulation Research, 39, 452-454. 

Schmalzer, E. A., Manning, R. S., & Chien, S. (1989). Filtration of sickle cells: 

recruitment into a rigid fraction as a function of density and oxygen tension. The 

Journal of Laboratory and Clinical Medecine, 113, 727-734. 

Schmid-Schönbein, H., & Wells, R. (1969). Fluid drop-like transition of erythrocytes 

under shear. Science, 165, 288-291. 

Schmid-Schönbein, H., & Volger, E. (1976) Red-cell aggregation and red-cell 

deformability in diabetes. Diabetes, 25, 897-902. 

Schrier, S. L., Rachmilewitz, E., & Mohandas, N. (1989). Cellular and membrane 

properties of alpha and beta thalassemic erythrocytes are different: implications for 

differences in clinical manifestations. Blood, 74, 2194-2202. 

Schweitzer, K. M., Vicart, P., Delouis, C., Paulin, D., Drager, A. M., Langenhuijsen, M. 

M., & Weksler, B. B. (1997). Characterization of a newly established human bone 

marrow endothelial cell line: distinct adhesive properties for hematopoietic progenitors 



 30

compared with human umbilical vein endothelial cells. Laboratory Investigation, 76, 

25-36. 

Setty, B. N., & Stuart, M. J. (1996). Vascular cell adhesion molecule-1 is involved in 

mediating hypoxia-induced sickle red blood cell adherence to endothelium: potential 

role in sickle cell disease. Blood, 88, 2311-2320. 

Shiu, Y. T., Udden, M. M., & McIntire, L. V. (2000). Perfusion with sickle erythrocytes 

up-regulates ICAM-1 and VCAM-1 gene expression in cultured human endothelial 

cells. Blood 95, 3232-3241. 

Solovey, A., Lin, Y., Browne, P., Choong, S., Wayner, E., & Hebbel, R. P. (1997). 

Circulating activated endothelial cells in sickle cell anemia. The New England Journal 

of Medicine, 337, 1584-1590. 

Stuart, M. J., & Nagel, R. L. (2004). Sickle-cell disease. Lancet, 364, 1343-1360. 

Swerlick, R. A., Eckman, J. R., Kumar, A., Jeitler, M., & Wick, T. M. (1993). Alpha 4 

beta 1-integrin expression on sickle reticulocytes: vascular cell adhesion molecule-1-

dependent binding to endothelium. Blood, 82, 1891-1899. 

Turhan, A., Jenab, P., Bruhns, P., Ravetch, J. V., Coller, B. S.,& Frenette, P. S. (2004). 

Intravenous immune globulin prevents venular vaso-occlusion in sickle cell mice by 

inhibiting leukocyte adhesion and the interactions between sickle erythrocytes and 

adherent leukocytes. Blood, 103, 2397-2400. 

Turitto, V. T. (1982). Blood viscosity, mass transport, and thrombogenesis. Progress in 

Hemostasis and Trhombosis, 6, 139-177. 



 31

Wagner, W. C., Eckman, J. R., & Wick, T. M. (2004). Sickle cell adhesion depends on 

hemodynamics and endothelial activation. The Journal of Laboratory and Clinical 

Medecine, 144, 260-267. 

Walmet, P. S., Eckman, J. R., & Wick, T.M. (2003). Inflammatory mediators promote 

strong sickle cell adherence to endothelium under venular flow conditions. American 

Journal of Hematology, 73, 215-224. 

Watanabe, N., Kataoka, H., Yasuda, T., & Takatani, S. (2006). Dynamic Deformation 

and Recovery Response of Red Blood Cells to a Cyclically Reversing Shear Flow: 

Effects of Frequency of Cyclically Reversing Shear Flow and Shear Stress Level. 

Biophysical Journal, 91, 1984-1998. 

Wick, T. M., & Eckman, J. R. (1996). Molecular basis of sickle cell-endothelial cell 

interactions. Current Opinion in Hematology, 3, 118-124. 

 

 



 32

6. Tables 

 

TrHBMEC treatment    AA RBCs   SS RBCs 

None 

TNFα: 100 U/ml / IFNγ: 100 U/ml  12h    12h 

  24h    24h 

      48h    48h 

 

 

Table 1: TrHBMEC treatments before flow assay. 

RBCs, Red blood cells. 
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RBCs  Treatment  Time  MV (µm/ms)   RBC N 

AA  None     1005.94 ± 299.08  58 

Cytokines  12h  1219.34 ± 421.83  63 

24h  1025.49 ± 357.83  60 

48h  1004.67 ± 308.06  62 

SS  None     1186.27 ± 264.89  58 

Cytokines  12h  1167.59 ± 306.55  60 

24h  913.88 ± 307.44  61 

48h  876.97 ± 282.37  60 

 

 

Table 2: AA and SS RBC general mean velocities after TrHBMEC treatment. 

MV, Mean velocity; RBC, Red blood cell; RBC N, Red blood cell number 
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RBCs   Class   MV (µm/ms)   RBC % 

AA   1   709.84 ± 83.98  29 

2   1031.85 ± 153.32  59 

3   1599.22 ± 196.99  12 

SS   1   901.95 ± 91.16  31 

2   1175.54 ± 86.61  45 

3   1571.77 ± 100.83  24 

 

 

Table 3: AA and SS RBC classes when TrHBMEC are not treated. 

MV, Mean velocity; RBC, Red blood cell 
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RBCs  Time  Class  MV (µm/ms)   RBC % 

AA  12h  1  868.68 ± 161.12  45 

2  1262.14 ± 92.16  25 

    3  1746.05 ± 220.54  30 

24h  1  542.78 ± 117.61  27 

    2  947.12 ± 81.58  30 

    3  1350.64 ± 198.03  43 

  48h  1  774.51 ± 123.85  52 

    2  1020.22 ± 12.47  16 

    3  1365.14 ± 231.22  32 

SS  12h  1  829.33 ± 116.37  35 

    2  1272.66 ± 112.67  53 

    3  1702.09 ± 143.87  12 

  24h  1  336.81 ± 115.58  13 

    2  918.49 ± 137.62  71 

3  1355.74 ± 135.35  16 

48h  1  533.79 ± 121.59  32 

    2  1036.01 ± 170.56  68 

 

Table 4: AA and SS RBC sub-groups when TrHBMEC are stimulated with 

proinflammatory cytokines during 12; 24 and 48 hours before flow assay. 

MV, Mean velocity; RBC, Red blood cell 
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7. Figures 

 

 

 

 

 

Figure 1: RBC and TrHBMEC interactions under venular blood flow. 
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Figure 2: Mean velocity of total AA and SS RBC population when TrHBMEC are 

stimulated by proinflammatory cytokines during 12, 24 and 48 hours before flow assay. 

* p ≤ 0.05 vs. AA (0; 12; 24; 48h); 
#
 p ≤ 0.05 vs. SS (0; 12; 24; 48h). 
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Figure 3 : Evolution of mean velocities of AA and SS RBC classes in basal conditions 

(TrHBMEC are not activated). 

* p ≤ 0.05 vs. AA. Histogram width reflects the percentage of RBCs in each class. 
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Figure 4 : Evolution of mean velocities of AA RBC classes when TrHBMEC are 

activated by proinflammatory cytokines during 12, 24 and 48 hours before flow assay. 

* p ≤ 0.05 vs. AA (0; 12; 24; 48h). Histogram width reflects the percentage of RBCs in 

each class. 
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Figure 5 : Evolution of mean velocities of SS RBC classes when TrHBMEC are 

activated by proinflammatory cytokines during 12, 24 and 48 hours before flow assay. 

#
 p ≤ 0.05 vs. Basal SS (0; 12; 24; 48h). Histogram width reflects the percentage of 

RBCs in each class. 

 

0

500

1000

1500

2000

2500

3000

M
e
a
n

 V
e

lo
c
it

y
(µ

m
/m

s
)

Basal SS

Cytokines 12h

Cytokines 24h

Cytokines 48h

1-10%

11-20%

21-30%

31-40%

41-50%

51-60%

61-70%

71-80%

81-90%

91-100%

% RBCs

Class 1 Class 2 Class 3

#
#

#
#

#

#
#

0

500

1000

1500

2000

2500

3000

M
e
a
n

 V
e

lo
c
it

y
(µ

m
/m

s
)

Basal SS

Cytokines 12h

Cytokines 24h

Cytokines 48h

1-10%

11-20%

21-30%

31-40%

41-50%

51-60%

61-70%

71-80%

81-90%

91-100%

% RBCs

Class 1 Class 2 Class 3

#
#

#
#

#

#
#


