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Abstract 

This paper studies the design of a static output feedback 

controller for nonlinear systems described by multiple model 

approach. Motivated by quadratic stabilization result developed 
for parallel distributed compensation (PDC) controller, an Output 

PDC (OPDC) controller that corresponds to a nonlinear static 

output feedback control law is proposed. Both stabilization and 

pole placement are addressed, firstly by a cone complementarity 

formulation of the problem and secondly by transformation to 
linear matrix inequality (LMI) problem. An example is given to 

illustrate the results. 

Keywords: Multiple model approach, nonlinear systems, 

regulators, Lyapunov method, complementarity problem, LMI. 

1 Introduction 

There have been several recent studies concerning the stability 
and the synthesis of controllers for nonlinear systems described 

by Takagi-Sugeno models (141. There has been also an increasing 
interest in the multiple model approach [17,13] which also uses 

the T-S systems to modeling. Many of these studies use a 
quadratic Lyapunov function and PDC technique [I] to derive 
sufficient conditions for the stability and stabilirability 

[1l[51[61[131~161[I8]. The stability depends on the existence of a 
common positive definite matrix guarantying the stability of all 
local subsystems. The gain of the PDC control which is a 

nonlinear state feedback controller, can be expressed as the 

solution of a linear mamx inequality (LMls) set (181. Recently a 
number of control law have been derived from the PDC 

controller [41[71[ I I]. For example, a Dynamic PDC (DPDC), 
which is a dynamic nonlinear control law, is used to stabilize a T- 

S model 171 while in [4] a Proponional PDC (PPDC) controller 

which allows to reduce the number of parameters in PDC 

technique is presented. In I211 a dynamic output feedback 
controller is proposed for continuous-time T-S systems and in 181 
a static output feedback control for switching discrete-time 

systems is studied. LMIs constraints for pole assignment in LMI 

regions [I21 to achieve desired performances are considered in 

[21[91 for PDC controller and also in 1151 for static output 
feedback control law. 

In this paper, the LMI approach is used to develop a static output 

feedback controller for nonlinear systems described by T-S 
models. We propose an Output PDC (OPDC) controller which is 
useful when only the output of the system is available. Using the 

quadratic Lyapunov method. sufficient conditions for the global 

asymptotic stability are derived in LMls form for OPDC 
controller. 

This paper is organized as follows. Section 2 and 3 recall 

previous results. Section 4 deals with the OPE stabilization, 
firstly by a cone complementarity formulation and secondly by 
transformation to LMI problem. LMI formulation for pole 

placement is also considered for this last formulation. Numerical 
example is given in section 5 to illustrate the result. 

Nototion: In this paper, we denote the symmetric positive definite 

matrix X by X > 0, the transpose of X by Xr, the conjugate of 

z E C by F and the Kronecker product by @ . 

2 T-S continuous models 

A T-S model is based on the interpolation between several LTI 

local models as follows: 

.XI)= Zp;(dt))(A;x(?) + 4u(r)) (1) 
,=I 

where n is the number of sub-models, x(I)ELR~ is the state 

vector, #(I) E IR" is the input vector, A, E lRp.p, 8, E RP." and 

Z(I) E Rq is the decision variable vector. 

The choice of the variable z(f) leads to different class of systems. 

It can depend on the measurable state variables and possibly on 

the input. In this case, the system (I) describes a nonlinear 
system. It can also be an unknown constant value. system (I) then 

represents a linear differential inclusion (LDI)[lXI. This variable 

can also be a function of the measurable outputs of the system. 
this case will be considered in the section 4. 

The normalized activation function pi(i(t)) in relation with the 

th sub-model is such that: 
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The global output of T-S model is intelpolated as follows: 

Y(f) = 1 !J;(z(f))C;x(f) (3) 
?=I 

where y(f) E R' is the output vector and C; E R'.p. More detail 

about this type of representation can be found in [111141. It 

should be point out that at a specific time, only a number s of 
local models are activated, depending on the stmcture of the 

activation functions wj(.). 

3 Previous results 

The PDC controller [1]/6], which is nonlinear in general, is 
described by: 

4) = l!Jj(z(r))Wr) (4) 
?=I 

Substituting (4) in (I), we obtain the closed-loop continuous T-S 

model: 

where 

7. B =Ai + BjKi (6) 

For PDC controller design, it is supposed that the system (I) is 

locally controllable, i.e. the pairs (Aj, Bj),Vi~[I,..,n] are 

controllable. 

The stability conditions for system (5) are formulated by theorem 

1 and for less of conservatism by theorem 2. In order to simplify 
the notation of the forthcoming equations, lets us denote: 

(7) 

Theorem 1. The closed-loop continuous T-S model described by 

(5) is globally asymptotically stable if there exist a symmetric 
matrix P > 0 such that 

L(&,P)<o ViE{l ..., n> (84 

For less of conservatism, the following constraints take into 
account the number of local models s simultaneously activated 

Ill: 

L(&,,P)+(s- I)R< o v is{l,..,n] (94 

L(~,,P)-Rso Vi<je{l,..,n~ (9b) 

Where R is a symmetric sern-definite positive matrix. In the 

PDC technique, which is a state feedback law, the conditions (8) 
and (9) are easy to convert into an LMI problem [I]. 

4 Static output stabilization using OPDC 

In the sequel, we assume that z(1) is a function of the measurable 

outputs of the system, z(r)=h(y(f)) and the following 

assumption holds: 

Assumption 1 : The matrix Cj = C,V is{l,..,n] is full row rank 

The OPDC is a nonlin& static output feedback which shares the 
same activation functions as the T-S model (I): 

U(f)= iLI,(z(r))Cr(r) (10) 
,=I 

where 4 E Rm" is the local output feedback controller to 

determine. 

Taking into account the expression (IO), the closed loop model 

(1) becomes: 

where 

x, =Aj+BjF;C, Vi,j~{l,..,n] (12) 

The synthesis of OPDC controller for T-S model can be done 

using the results (8) and (9) by simply replacing & by We 

obtain respectively: 

However the obtained equations are no longer linear with regard 

to the unknown matrices P and 4, Vi~{l,..,n]. So, the solution 

is not guaranteed to belong to a convex domain and the classical 
tools for solving seu of matrix inequalities cannot be used. It 

constitutes the major difficulty of output feedback design. 

In the following, sufficient conditions are given to ensure 
asymptotic stability of (I I), firstly by transformation to cone 

complementarity problem in section 4.1 and secondly by 

variables changes in section 4.2. 

4.1 Cone complementarity formulation 
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Constraints (13) give sufficient conditions for global asymptotic 

stability of (1 I), But they are BMls in I: and 4.V i~{l ,... n) and 

hard to linearize. However, it is possible to solve the problem 
locally by using iterative methods. For example the path- 

following method to locally solve a BMI is proposed in [ IO] and 

used in (131. For the global resolution of BMls one will consult 
the reference [ 191. 

Another way to deal with the static output feedback control for T- 

S models is to transform the synthesis of the output feedback into 

a cone complementarity problem. Consider the following LMI 

constraints of the form 

F(v.w,z)ro, [; $0 

where V, W are symmetric matrix variables of same size, Z is 

matrix variables and F(.) is a symmetric matrix-valued, affine 

function. The corresponding cone complementarity problem is 

Minimize Tr(VW) subject to (IS) 

This section proposes an algorithm based on a cone 

complementarity problem [3]. The method uses the following 

lemme. 

Lernrno 1 (Elimination lemma, [IS]) 

Let CE~RP.P,UELRP-~ and VEIR~.'. Let 0" and v" be 

respectively the orthogonal complements of U and V i.e. for U, 

U'0"=0 and the matrix (U 6) is of maximum rank. Then the 

following three propositions are equivalent: 

0 G+UXY'+VX'U'~O,holdsfo~some XsIRm" 

ii) 

iii) G-aW'<O et G-oUU'<O, holds for some 

0""CO" < o et ~"'GV" < o 

OER. 

A- Controller elimination: 

In the following, the procedure elimination uses only the 
equivalence between the 1" and the 3" proposition. The 
constraints (13a) cm be rewritten as follow 

c(P)+u(P)~v'+v~'u(P~~<o (16) 

with 

G(P) = ATP + PAi, U(P) = PBj, V = C' 

Applying the elimination lemma to (16). we obtain after 

elimination of the variable 6 

A:P+Ph -aiPBiB:P<O (17a) 

A'P+PA, -ojc'c<o (17b) 

To guarantee equivalence between the 3 propositions of lemma I, 
we must respect the strict form of those inequalities. Indeed, by 
applying the same procedure of elimination as before to the strict 

form of (I3b). we obtain after elimination ofthe variable F; 

r 

r 

(Ai +Aj + BiCC) P+ P(Aj +Aj + BjF,C)-auPB,BTP< O(18a) 

(Ai +Aj + BjF,C) P+ P(Aj +Aj +BjF,C)-oBC'C<O (18b) 

In the Same way we obtain after elimination of the variable 3 of 

(18): 

r 
(A~ +A,) P+ P(A, +A,)-O~PB~B:P-~?~PB~B~P<O 

(4 +Aj)'P+ P(Ai +Aj)-ouPBjB~P-61,CrC< 0 

(A: +Aj) P+ P(A: + Aj)-ouCrC- EuPBiBTP < 0 

(Ai + Aj)'P+ P(Aj +A,)- oI,C'C-EuC'C < 0 

T 

(19) 

Applying the Schur complement [18] to (19) and multiplying 

(17a) in the left and the right by Q=P-'. we obtain from (19) 

and (17) the following system which is equivalent to the strictly 

formof(13): 

+ AiQ - aiBiB: < 0 I"' ATP+ PA, -aic'c < o 

(Ai+Aj) T P+P(Aj+Aj)-O~C'C PBi 

(Ai+Aj) 7 P+P(q+Aj)-OgC'C C' <o 

Bj'P 

C -1 Vgl 

Where I E Rp.p is the identity matrix. It should be noted that 

conditions (20a) are LMls in PE LRp.p,Qs lRp.p and scalars 
-1 - -I 

a- I. a.. 'I C-. E, =(E..) 'I , vB =(Eu) but the equation (2Ob) is non 

convex. This equality can be enforced by imposing Tr(PQ)= p 

with the additional constraint 

.P I 

[I Q120 

To solve such a problem a convergent algorithm is proposed in 

\3]. This heuristic is based on a lineat approximation of Tr(PQ) 

by Tr(PoQ+&P) where Po and Q is a particular solution of the 

LMI constraints (20a)-(21) (see Annex). We then obtain the 
following cone complementarity problem: 
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Minimize Tr(PoQ t pOP) subject to (ZOa)-fZl) (22) 

B- Controller reconstruction: 

Assuming that P and @ satisfying (22) are founded, we can now 

compute an appropriate controller by solving the LMI problem 

(13) in E,Vi€(I ,..,n}. Which allows us to propose the following 

result. 

Theorem 2. Suppose that there exist symmetric positive definite 

matrices PE Rp-p and @E LRp.p such that the objective (22) is 

achieved such that Tr(PoQ+&P)=2p. Then there exist a 

nonlinear output feedback u(t) = iwi(z(r))F;y(t) that stabilises 

plobally asymptotically the T-S model (11) where is the 

solution of LMls (13). m 

i=l 

The numerical example given in section 5 illustrates the method. 

It is significant to note that the transformation of the constraints 

(14) into a cone complementarity problem is not direct and 
requires additional nonconvex constraints due to the presence of 

the matrix R. 

4.2 LMI formulation for synthesis 

In the following we present another method to transform the 

BMls conditions (13) and (14) in P and F;,Vi€(I,..,n} into 

LMls conditions which are used to design directly a stabilizing 

OPDC. 

nteorem 3. Suppose that there exist matrices N;, M and Q such 

that 

Q.0 

@A:+Ai@+CrNTBf tBiNiC<O (234 

Q(Ai + A,) r +(Ai +Aj)Q+ C'(N,?B: + N:BT)i 

(B~N, +B,N~)c<o (23b) 

with 

C@= MC (234 

Vi< je(l. .... n} and wi(z(r))pj(z(f))tO. Then there exist a 

nonlinear output feedback u(r) = iwi(z(r))F;y(t) that stabilises 

globally asymptotically the T-S model (I I) with 

F; = N,CC'(CQC~~' v is(l,..,n} 

ill 

(24) 

Proof: The inequality (13a) is equi\~alent to 

@(A, + BifiC)r t (Ai t BifiC)Q < 0 (25) 

where P-l = Q > 0. With the changes of variables 

CQ= MC and 5M = Ni (26) 

The inequality (17) becomes 

@AT tAi@t(BiNiC)r tBiNiC<O (27) 

The LMIs (23b) are obtained from (13b) using the same changes 

of variables (26). Since the matrix C is assumed full row rank, 
we deduce from (26) that there exist a non-singular matrix 

M = CQCr(CCrF1 and then F; = NiM-'. 8 

For less of conservatism the following result tack into account the 

number of local model simultaneously activated (s) . 

Theorem 4. Suppose that there exist matrices Ni, M, S and Q 

such that 

@>O,StO 

QAT + A,Q + C'N:B: + B~N~C+ (5- 1)s < o (28a) 

@(Ai+Aj) 7 +(Ai+Aj)QtCr(N:B:+NTB:)i 

(BiNj tB,N,)C-2SIO 

with 

C@=MC 

Vi< js{l ,..., n} and pi(z(r))pj(z(r))tO. Then then exist a 

nonlinear output feedback U(I) = ipi(z(f))ej(f) that stabilises 

globally asymptotically the T-S model (I I) where F; is defined in 

i=1 

(24). 

Proof: It can be easily eslahlished using the same step as theorem 
3. 

Remark 

1. Since C is assumed full row rank, to respect constraint (28c) 

it suftices to impose particular structure to matrix Q 

dependent on matrix C. 

In case where F; =F,Vis(l,..,n} the synthesis of linear 

static output feedback u(f) = Fj(r) can be reduced to find 

matrices N and Q such that V i€(l,..,n}: 

2. 

with CQ= MC (30) 

Another control law derived from OPDC controller which is 

useful when the input matrices are linearly independent, i.e. 

B, =a,B,a, >O. ie{l .... n}. is considered in (151. The 

modified OPDC control law has the form 

3. 

conservative stability conditions than the above results (see 

[151). 
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4.3 LMI formulation for pole-placement 

In order to achieve some desired transient pelformance, a pole 
placement should be considered. For many problems, exact pole 

assignment may not be necessary. it suffices to locate the pole of 
the closed loop system in a sub-region of the complex left half 

plane [2][12][20]. This section discusses a pole assignment in 
LMI regions. 

Definition 1 1121. A subset D of the complex plane is called an 

LMI region if there exist a symmetric matrix a = (av) E PP.Pand 

a matrix 

where f&) = (aij + p,p+Dj;?]. Vi, jE{l,..,p} 

Theorem 5 [12]. A matrix A is D-stable if and only if there 

exists a symmetric positive definite matrix X such that 

MD(A, X) < 0 

where MD(A, X) = a B X+pB(AX) + Pr @(AX)' 

= (Po) E RP.p such that D = {z E CfD(r) < 0) 

For example, a disk region 0, centered at (-4.0) with radius 

r > 0 can be obtained by Y&ing the matrices a and p as follows: 

a=(-' --r ']andp=(O on ') 
which give the expression of this sub-region: 

As it is shown in figure I, this region which include conic region, 
allows to fix a lower bound on both the exponential decay rate: 

-q + r and the damping ratio: tmin = \/1-r2/q2 (r < q) of the 

closed-loop response 

9m 

4 

%e 

I 
Figure 1. Disk region D,j 

Since the prescribed LMI region (31) will be added as 

supplementary constraint to these in (23) and (28) it should be 
noted that it only suffices to locate the poles nf the dominant term 
in the prescribed LMI regions, i.e. the case of i = j. It follows 

that the system (I 1) is Dd-stable if there exists a matrix @> 0 

such that 

With the same changes of variables (26). the equation (32) leads 

to the fallowing LMI formulation: 

5 Numerical example 

Consider the T-S model (1) where 5 = n = 2 

1 -10 
A.=[' n]. &=[:I. C=[l 01 

The resolution of the cone complementarity problem (22) 

with the convergent algorithm given in annex allows to 
compute : 

0.1361 0.0352 7.3896 -0.1666) 
(35) 

whxh verify the constraint (?Ob) i.e. P@ = I. 

With P defined in (39, the synthesis of the static output 

controller is obtained from the feasible LMls (13) in 

q,V is[l,..,n}: 

4 = -7.1 128, F2 = -2.2239 

Example of simulation of the closed loop T-S model (34) is 

presented in figure 2 with the stabilizing OPDC control law 

(36) 

4)=(11~(~(0)4 +P~(Y(I))FZ)Y(~) and Fi and F2 are 

defined in (36). 

To compute the stabilizing OPDC controller by using the 
results of section 4.2, the matrix @ must be diagonal 

accordingly of the remark 1 and the structure of C given in 
(34). This constraint is shown to be conservative for cenain 

examples. 

6 Conclusion 

This paper presents static output feedback controller for nonlinear 
system described by T-S models. We have shown that the OPDC 

controller can be designed by two methods. The first one applies 
a cone complementarity formulation while the second uses a 

direct convex formulation of the initial BMls problem. Also pole 
placement in LMI form is considered for the second method. It 
should be noted that the cone complementarity formulation is less 
conservative than the second formulation. The cause of the 

conservatism of the second method is due to the assumption 1 (C 
is full row rank). This assumption requires a particular SINCtUre 
for the matrix @ and consequently to the Lyapunov function 

V(x(1)) = x(f)'Q-Ix(f). 
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Annex : Linearization algorithm [3] 

1. Find a feasible point Po and that satisfy the LMI 

constraints (20a)-(21). If there are one, exit. Otherwise set 

k=O. 

Set Vk = Pk, Wk = Q and find Pk+,,Qk+, that solve the LMI 

problem: 

Minimize Tr(YQ+ WkP) subject to (20a) and (21). 

2. 

3. If the objective has reached a stationary point, stop. 

Otherwise, set k = k + 1 and go to step 2. 

This heuristic is guaranteed to converge to a stationary point. For 
more detail about this algorithm see 131. 

.5’ I 
0 0.5 1 1.5 2 2.5 3 3.5 4 

1.51 

sll ‘0.5 0 

0 0.5 1 1.5 2 2.5 3 3.5 4 

50 
I 

-1001 I 
0 0.5 1 1.5 2 2.5 3 3.5 . 4 

I 

Figure 2. Closed loop model (34) with x(0) = (10, 0.5) 
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