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Abstract-This paper studies the stabilisation of T-S
(Takagi-Sugeno) model using an output feedback
controller. Both measurable and estimated decision
variables cases are considered. In the case of measurable
decision variables a T-S observer and T-S controller are
designed separately to stabilise globally exponentially
the closed loop T-S model. When the decision variables
depend on the state variables estimated by the T-S
observer, a procedure to design a stabilising output
feedback controller is proposed. An example is given to
illustrate the result.

Key words-T-S model, regulators, observers, Lyapunov
method, LMI technique, separation principle.

I. Introduction

The issue of stability, the design of state feedback T-S
controller as well as the design of state T-S observer for
nonlinear systems described by T-S models [6] have been
considered actively during the last decade [2][4][9]. Having
the property of universal approximation [7][12], this
approach includes the multiple model approach [6] and can
be seen also as Polytopic Linear Differential Inclusions
(PLDI) [13]. The T-S model  consists to construct nonlinear
dynamic system by means of interpolating the behaviour of
several LTI submodels. Each submodel contributes to the
global model in a particular subset of the operating space
throughout activation functions.

Many works have been carried out to investigate the
stability analysis of T-S systems using a quadratic
Lyapunov function and sufficient conditions for the stability
and stabilisability have been established [1][2][18]. The
stability depends on the existence of a common positive
definite matrix guarantying the stability of all local
subsystems. These stability conditions may be expressed in
linear matrix inequalities (LMIs) form [13]. The obtaining
of a solution is then facilitated by using numerical toolboxes
for solving such problems. For less of conservatism of the
quadratic method, activation functions have been took into
account [19][24]. To obtain relaxed stability conditions,
piecewise quadratic Lyapunov function [3][23] and
nonquadratic Lyapunov function [20]-[22] formulated as a
set of LMIs are used. A certain form of T-S observers has
been proposed and sufficient conditions for the asymptotic
convergence are obtained which are dual to those for the
stability of T-S controllers. LMIs constraints have been also

used for pole assignment in LMI regions to achieve desired
performances of T-S controllers and T-S observers [8][11].
Once a T-S observer is obtained, one might be tempted to
think that this T-S observer can be used together with a state
feedback T-S controller as in case of linear systems. It’s
well proved, in case of linear systems, that if only the
constructed state is available one can combine state
feedback controller and observer to obtain a stabilising
output feedback controller [14]. For the T-S model some
results on the separation property have been studied using
the PDC (Parallel Distributed Compensation) controller in
[16][15] and the CDF (Compensation and Division for
Fuzzy models) control law in [17][21]. However, In
[16][15][17][21][10] the decision variables are restricted to
be measurable. In this paper, both measurable and estimated
decision variables cases are considered to design an output
feedback stabilising controller.

This paper is organised as follows. Section 2 recalls the
structure of continuous T-s models. In section 3, under the
assumption that the T-S model is locally stabilisable and
locally detectable, sufficient conditions for the global
exponential stability are derived in LMIs form for T-S
observer (which are dual with those of the state feedback T-
S controller). In the case of measurable decision variables, it
is shown in the section 4.1 that a convergent T-S observer
and stabilising T-S controller can be designed separately. In
the section 4.2 a procedure to design a stabilising output
feedback controller when the decision variables depend on
the state variables estimated by the T-S observer is
proposed. A numerical example is given to illustrate the
result.

Notation: In this paper, we denote the minimum and
maximum eigenvalues of the matrix X  by min ( )X and

max( )X  respectively, the symmetric positive definite

matrix X  by X > 0 , the transpose of X  by XT ,
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II. Continuous T-S model

A continuous T-S [5] model is based on the interpolation
between several LTI local models as follows:

( ) ( ( ))( ( ) ( ))x t z t A x t B u ti i i
i

n
= +

=1
(1)



where n is the number of submodels, x t p( )  is the state

vector, u t m( )  is the input vector, A Bi
p p

i
p m. .,

and z t q( )  is the decision variable vector.
The choice of the decision variables z t  leads to different
class of models. It can depend on the measurable (or
estimated) state variables, be a function of the measurable
outputs of the system and possibly on the input. In this case,
the system (1) describes a nonlinear system. It can also be
an unknown constant value, system (1) then represents a
PLDI.

The normalized activation function i z t( ( )) in relation with
the ith submodel is such that:
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The global output of T-S model is interpolated as follows:

y t  z t C x ti i
i

n
( ) ( ( )) ( )=

=1
(3)

where y t l( )  is the output vector and Ci
l p. . More

detail about this type of representation can be found in
[1][2]. In the sequel, we denote by r  the number of
submodels simultaneously activated.

III. Stability analysis

The open loop T-S model of (2) is defined as:

( ) ( ( )) ( )x t z t A x ti i
i

n
=

=1
(4)

Basic stability conditions based on the quadratic Lyapunov
functions are given by the following result

The continuous T-S model described by (4) is globally
asymptotically stable if there exists a common matrix
P PT= > 0 such that [2]:

A P PA i ni
T

i+ < 0 1,.., (5)

A. T-S controller design

In order to stabilise the T-S model (2) a T-S controller can
be designed using the PDC technique [1]. In this case, the
global control law is obtained by interpolation of local linear
feedback laws related with each submodel.
For the T-S controller design, it is supposed that the system
(1) is locally stabilisable, i.e. the pairs ( , ), ,..,A B i ni i 1
are stabilisable.

The resulting global controller when all decision variables
are measurable is:

u t z t K x ti i
i

n
( ) ( ( )) ( )=

=1
(6)

where i z t( ( )) has to respect constraint (3). Substituting (6)
in (1), we obtain the closed loop continuous T-S model:

( ) ( ( )) ( ( )) ( )x t z t z t R x ti j ij
j
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i
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== 11
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where

R A B Kij i i j= (8)

In order to simplify the notation of the forthcoming
equations, lets us denote:

L X P
X X
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ij ji

T
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+
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(9)

Results in [2] gives sufficient stability conditions for (7). In
theorem 1 we extend these conditions to exponential
stability

Theorem 1: Suppose that there exists symmetric positive
definite matrices P1  and Q1 such that

L R P r Qii , ( / )1 11 2 0+ < (10a)

L R P Qij , /1 1 2 0 (10b)

<i j n1,..,  and i jz t z t( ( )) ( ( )) 0 . Then the closed

loop continuous T-S model described by (7) is globally
exponentially stable.

Proof: The proof is obtained by considering the derivative
of the quadratic Lyapunov function candidate
V x t x t P x tT( ( )) ( ) ( )= 1 , P1 0> , along the trajectory of the T-S
model (7), and corollary 4 of [2]. We obtain after some
elementary operations:

( ( ))
( )

( )
( ( ))min

max
V x t

Q

P
V x t< 1

12
.

The control design problem is to find the feedback gains Ki

such that the closed loop system (7) is stable. The conditions
(10) are not convex in P1  and Ki . In order to convert them
into an LMI problem, these inequalities are multiplied in the
left and the right by P1

1. Then, taking into account the
definition (8), the constraints (10) become

A X X A B Y Y B r Si i
T

i i i
T

i
T

1 1 1
1

2
0+ + < (11a)

      A A X X A A B Y B Yi j i j
T

i j j i+ + +1 1

Y B Y B Si
T

j
T

j
T

i
T <1 0      (11b)

<i j n1,..,  and i jz t z t( ( )) ( ( )) 0 .



which are LMIs in X Yi1,  and S  with X P Y K Xi i1 1
1

1= =,
and S X QX= 1 1.

B. T-S observer design

The T-S controller proposed in previous section is based on
a state feedback. However, in practice, all the states of a
system are not fully measurable. Thus, the problem
addressed in this section is the construction of a T-S
observer to estimate the states of the T-S model (1).

It is supposed that the decision variables z t  are
measurable and the T-S model (1) is locally detectable, i.e.
the pairs ( , ), ,..,A C i ni i 1  are detectable. Using the
same structure as the one for T-S controller design, the T-S
observer for the T-S model (1) is written as follows

( ) ( ( ))( ( ) ( ) ( ( ) ( )))

( ) ( ( )) ( )

x t z t A x t B u t L y t y t

y t z t C x t

i i i i
i

n

i i
i
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= + +

=

=

=

1

1

 (12)

where ( )x t  and ( )y t  denote the estimated state vector and
output vector respectively. The activation functions i z t( ( ))
are the same than those used in the T-S model (1).

Denoting the state estimation error by

~( ) ( ) ( )x t x t x t= (13)

it follows from (1) and (12) that the observer error dynamic
is given by the differential equation

~( ) ( ( )) ( ( )) ~( )x t z t z t x ti j ij
j

n

i

n
=

== 11
(14)

where

ij i i jA L C= (15)

The design of the observer consists to determine the local
gains Li  to ensure the convergence to zero of the estimation
error. To prove the global exponential stability conditions of
the T-S observer (14), it suffices to find symmetric matrices
P2 0>  and Q2 0>  such that

L P r Qii , ( / )2 21 2 0+ < (16a)

L P Qij , /2 2 2 0 (16b)

<i j n1,..,  and i jz t z t( ( )) ( ( )) 0 .

IV. Output feedback control design

A. Case of measurable decision variables

In this section, we show that the separation property studied
in [15][16] holds also for the global exponential stability
stated above. We prove using the LMI formulation that the

combination of the global exponential stability of T-S
observer and the global exponential stability of T-S
controller guarantees the global exponential stability of the
closed loop system. A systematic method to compute a
quadratic Lyapunov function showing that the separation
principle holds for the suggested quadratic stability
conditions is given.

If, instead of the actual state, the estimated state ( )x t  is
available, the control law with the PDC technique (7)
becomes

u t z t K x ti i
i

n
( ) ( ( )) ( )=

=1
(17)

Taking into account (12) and (17), we have

( ) ( ( )) ( ( )) ( ) ~( )x t z t z t R x t L C x ti j ij i j
i
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j
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== 11
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where Rij  and ~( )x t  are defined in (9) and (13) respectively.

Combining (18) and (14) we obtain the following
augmented system

( ( )) ( ( ))x z t z t A xi j ij
j

n

i

n
=

== 11
(19a)

where:

A
R L C

ij
ij i j

ij
=

0
, x t x t x tT T T

( ) ( ) , ~( )= (19b)

and ij  is defined in (15).

Thus it is possible to apply theorem 1 in order to check the
global exponential stability of the closed loop T-S system
(19). It suffices to find symmetric matrices P > 0  and Q > 0
such that

L A P r Qii , ( / )+ <1 2 0 (20a)

L A P Qij , / <2 0 (20b)

<i j n1,..,  and i jz t z t( ( )) ( ( )) 0 .

Thus to prove the global exponential stability, we need to
compute the controller gains Ki , the observer gains Li  and
the symmetric positive definite matrices P  and Q
respecting the constraints (20). These latter, which are non
convex in the variables Ki , Li  and P , are difficult to
convert into an LMI problem using the linearisation method
described at the end of paragraph 3.1. In order to overcome
this difficulty, the following theorem shows that it suffices
to prove the stability of both the T-S controller and the T-S
observer independently for proving the global exponential
stability of the augmented systems (19). By the same way,
we will show that this property guarantees the existence of a



Lyapunov function parameterised by a positive scalar  of
the form:

V x t x t P x tT= , P
P

P
= 1

2

0

0
(21)

allowing to prove the stability of the augmented system
(19).

Theorem 2: Suppose that there exists symmetric matrices
P1 0> , P2 0> , Q1 0>  and Q2 0>  such that

L R P r Qii , ( / )1 11 2 0+ < (22a)

L R P Qij , /1 1 2 0< (22b)

L P r Qii , ( / )2 21 2 0+ < (23a)

L P Qij , /2 2 2 0< (23b)

i n: ,..,1 , <i j n1,..,  and i jz t z t( ( )) ( ( )) 0 . Then

the function (21), with >Max 1 2 0,  respecting

the conditions (24)-(25), is a Lyapunov function of the
augmented system (19).
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Proof: With the following structure of P  and Q

P
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P
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0

0
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Q
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0
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the inequalities (20) with the definition (19b) allow writing
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(27b)
<i j n1,..,  and i jz t z t( ( )) ( ( )) 0 .

Applying the Schur complement [13] to the constraints (27),
we prove that it suffices to respect the following sufficient
conditions to guarantee the separation property:

>Max 1 2 0, (28)

where 1 and 2  are defined in (24) and (25). The condition
(28) shows that  always exists if the inequalities (22)-(23)
are satisfied.          

To summarise, it’s ensured, in the case where all the
decision variables of the T-S model (1) are measurable, that
if the exponential stability of T-S controller (inequalities
(22)) and those of the T-S observer (inequalities (23)) are
satisfied independently then the augmented T-S model (19)
is always exponentially stable and accept the function (21)
as Lyapunov function.

B. Case of estimated decision variables

All the decision variables of the T-S model (1) are assumed
to be measurable in the above parts as in
[15][16][17][21][10]. However, in general, this assumption
is not verified. In the following part, we assume that the
decision variables depend on states variables estimated by a
T-S observer. Therefore, the activation functions of the
controller are different from the activation functions of the
T-S model (1) as they depend on estimated state variables.
In the sequel the estimated decision variable vector is
denoted by ( )z t .

The T-S observer (12) becomes

( ) ( ( ))( ( ) ( ) ( ( ) ( )))

( ) ( ( )) ( )

x t z t A x t B u t L y t y t

y t z t C x t

i i i i
i

n

i i
i

n

= + +

=

=

=

1

1

 (29)

with

u t z t K x ti i
i

n
( ) ( ( )) ( )=

=1
(30)

where z t  is the vector of estimated decision variables

depending on the estimated state variables x t  and

possibly on the input u t . The augmented system (19)
becomes in this case

( ( )) ( ( )) ( ( ))x z t z t z t A x t
h

n

i j h ijh
j

n

i

n
=

=== 111
(31)

where:

A
R B K

S B Kijh
ih i h

ijh jh ij h
= + (32)

S A B K L Cijh ij ij h j hi= + (33a)

A A A B B B C C Cij i j ij i j hi h i= = =, ,       (33b)



and x t Rih,  and jh  are defined in (19b), (8) and (15)

respectively. The asymptotic stability of the augmented
system (31) can be derived easily as follows [2].

Theorem 3: Suppose that there exists symmetric matrix
P > 0  such that

A P PAijj
T

ijj+ < 0 (34a)

A A
P P

A Aijh ihj
T

ijh ihj+
+

+
<

2 2
0 (34b)

<i j h n, ,..,1  and i j hz t z t z t( ( )) ( ( )) ( ( )) 0 . Then

the closed loop continuous T-S model described by (31) is
globally asymptotically stable. 

It should be noted that it is not possible to relax conditions
(34) of theorem 3 as those of theorem 1 due to

i iz t z t( ( )) ( ( )) .
Since conditions (34) are non convex, it is difficult to
transform them into LMIs in P Ki,  and Li . To solve those
constraints we propose the following technique. To design
the T-S controller and the T-S observer separately, we chose

P
P

P
= 1

2

0

0
(35)

Substituting (35) into (34), we obtain

R P P R P B K S P

P S K B P
ij
T

ij i j ijj
T

ijj j
T

i
T

ijj

1 1 1 2

2 1
0

+ +
+

< (36a)

R R P P R R

P S S K K B P

ih ij
T

ih ij
T

ijh ihj h j
T

i
T

ijh ihj

+ + + •

+ + + +
<1 1

2 1

0

(36b)

where • T represent P S S K K B Pijh ihj h j
T

i
T

T

2 1+ + +

with definition (33) and

ijh jh ij h
T

jh ij hB K P P B K= + + +2 2 (37)

The obtained matrices inequalities (36) are still BMIs
(Bilinear Matrix Inequalities) in P P Ki1 2, ,  and Li  which are
difficult to solve simultaneously. Indeed the BMIs (36)
imply that

R P P Rij
T

ij1 1 0+ < (38)

R R P P R Rih ij
T

ih ij+ + + <1 1 0 (39)

which are easy to transform into LMIs form with the same
procedure as stated at the end of section 3.A. Once P1  and

K i ni , ,..,1  are obtained, we substitute them into (36).

The obtained conditions are LMIs in P2  and L i ni , ,..,1

and can be solved easily by a convex optimisation technique
such as the interior point method.

V. Numerical example

The following example illustrates the case of measurable
decision variables. Let us consider the T-S model (1)-(3)
where r n= = 2  and

A B C1 1 1
2 10

1 0

1

0
1 0= = =, , (40a)

A B C2 2 2
49 10

1 0

10

0 5
1 0= = =,

.
, (40b)

1

1
11

3
3 3

0
x t

x t
x t( )

( )
( ) ,=

otherwise
(40c)

2

1
13

3 3

1
x t

x t
x t( )

( )
( ) ,=

otherwise
(40d)

From conditions (22) given in theorem 2 and with definition
(8) we obtain the following feedback gains and the positive
definite matrices (after linearisation as it is described at the
end of paragraph 3.A):

K1 = 4.9225   - 0.5300 , K2 = 5.1846   - 0.0877  (41)

P1 =
0.0277 0.0343

0.0343 0.1475
, Q1 =

0.0320 0.0645

0.0645 0.1710
   (42)

And from conditions (23) and with definition (15) we obtain
the following observer gains which ensure the exponential
convergence of state and the definite positive matrices:

L1 =
3.0398

-9.0539
, L2 =

50.0398

-9.0539
      (43)

P2 =
29.9427 1.5509

1.5509 29.9427
, Q2 =

8.4514 0.0000

0.0000 8.4275

(44)

The conditions (24) and (25) allow to compute respectively

1 = 9.6869  and 2 = 1.9098. Then, as it is shown in (28),
the choice of the following symmetric positive definite
matrices with for instance = 10:

P
P

P
= 1

2

0

0
, Q

Q

Q
= 1

2

0

0
, Max 1 2,

(45)

guarantees the global exponential stability of the augmented
system of (40) and prove that the design of T-S controllers
and T-S observers can be done separately. The simulation
result of the closed loop T-S model (40) with the control law
(17) is given in figure 1.



x 1
(t)

x 2
(t)

u(
t)

Figure 1. Closed loop system of (40) with x 0 1 5 0 5= . .

VI. Conclusion

In this paper, the stabilisation of T-S model using an output
feedback controller for both measurable and estimated
decision variables cases are considered. In the case of
measurable decision variables a T-S observer and T-S
controller are designed separately to stabilise globally
exponentially the closed loop T-S model. When the decision
variables depend on the state variables estimated by the T-S
observers, a procedure to design (separately but not
simultaneously) a stabilising output feedback controller is
proposed.
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