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FAULT DETECTION IN NONLINEAR SYSTEMS

This communication deals with the problem of fault detection and localization for a wide class of nonlinear systems subjected to bounded nonlinearities. A dedicated nonlinear observer scheme (DNOS) for fault detection and identification of observable systems is proposed.

redundancy. The general procedure first generates the socalled residuals (i.e., faults accentuated functions) before proceeding to fault detection and isolation (i.e., determination of its location, duration, type, magnitude, source). The use of observers is among the well established concepts for linear systems [14]. For the general case of nonlinear systems, little has so far been achieved in the development of associated FDI observers [START_REF] Hengy | Component failure detection via nonlinear state observers[END_REF], [START_REF] Seliger | Robust component fault detection and isolation in nonlinear dynamic systems using nonlinear unknown input observers[END_REF]. Solutions so far proposed are difficult to apply in real situations.

I. INTRODUCTION

State observation of nonlinear dynamical systems is becoming a growing topic of investigation in the specialized literature. The reconstruction of the time behaviour of state variables remains a major problem both in control theory and process diagnosis. Researchers attention is being particularly focused on the design of adaptive observers for on-line process states estimation. There is increasing awareness that ensuring robustness in performance requires simpler and stable adaptive observer schemes. Linear systems have received considerable attention [START_REF] Luenberger | Observers for multivariable systems[END_REF], [START_REF] O'reilly | Observers for linear systems[END_REF] leading to several stable adaptive observer systems [START_REF] Narendra | Stable adaptative observers and controlers[END_REF], [START_REF] Kreisselmeier | The generation of adaptive law structures for globally convergent adaptive systems[END_REF], [START_REF] Kreisselmeier | Adaptive observers with exponential rate of convergence[END_REF], [START_REF] Magni | A generalized approach to observers for fault diagnosis[END_REF]. Linear observer systems involving unknown inputs have also been developed and analyzed [START_REF] Viswanadham | Fault detection using unknown input observer[END_REF]. Nevertheless, the design of asymptotically stable observers remains a hard task in the nonlinear case, even when the nonlinearities are fully known. This note is organized into four sections. The first presents the observer design for nonlinear systems. The second considers dedicated observers while the third deals with the analysis of generated residuals. The last section is devoted to computational aspects and uses the numerical results to highlight the strategy employed to isolate faults.

II. OBSERVER DESIGN

We shall consider nonlinear systems of the form:

x . (t) = f(x(t), u(t)) x ∈ R n , u ∈ R m (1a) y(t) = C x(t) y ∈ R p (1b)
Several observer design approaches have been proposed in recent years for nonlinear systems. Walcott [START_REF] Walcott | Observation of dynamical systems in the presence of bounded nonlinearities/ uncertainties[END_REF], [START_REF] Walcott | State observation of nonlinear uncertain dynamical systems[END_REF] for instance, proposed a new type of observers for systems subjected to bounded nonlinearities or uncertainties. This type of observer does not necessitate exact knowledge of the system nonlinearities. Bastin [START_REF] Bastin | Stable adaptive observers for nonlinear time-varying systems[END_REF] also describes an adaptive observer/identifier, for SISO observable nonlinear systems, capable of state estimation and parameter adaptation simultaneously. Marino [11] developed the same idea and proposed a simpler observer restricted however to a class of systems with constant unknown parameters. As a main result, the construction of an observer may be performed by finding suitable state space and output changes of coordinates to transform the nonlinear system into an observable form from which can be derived an observer with linear dynamics. Xia [12] and Krener [13] have given Lie algebraic and rank conditions for nonlinear process observability and observer existence purpose.

where R n , and R p are the state and the output spaces of the system, C is a constant matrix of appropriate dimensions. It is assumed that for any input u(t) and initial state x 0 the corresponding state trajectory x(t) is defined for all t and that f is continuously differentiable. Proceeding by analogy to the classical observer in the linear case, we seek an observer of the following form:

z . (t) = f(z(t), u(t)) + R(u(t)) (y(t) -C z(t)) z ∈ R n (2a) y e (t) = C z(t) (2b)
The idea is to select a continuous mapping R(u(t)) so that z(t) becomes a state estimator of the process under consideration.

The state and output errors are respectively defined by: (e) negative gives the matrix P. The matrix function R(u(t)) is chosen so that the state error e(t) asymptotically decreases and approaches zero as t tends to infinity. The error e(t) is then considered to be in the neighbourhood of zero. By using (3a), a first order Taylor expansion of the function f(x(t), u(t)) in the neighbourhood of the estimated state trajectory z(t) can then be obtained as follows:

e(t) = x(t) -z(t) (3a) r(t) = y(t)
If Ker(C) is reduced to {0}, step 1 is bypassed and P is taking equal to the identity matrix.

Step 2 With this P matrix previously determined, we now allow e ∈ R n and try to determine R(u) which verifies equation [START_REF] Walcott | Observation of dynamical systems in the presence of bounded nonlinearities/ uncertainties[END_REF]. For that, we observe that:

f(x,u) = f(z+e, u) f(x,u) = f(z, u) + ∂f(z, u) ∂z e (5) V . (e) ≤ | e T P ∂f(z, u) ∂z e | -e T P R(u) C e < 0 ( 13 
)
which, when substituted in (4), gives: Using the structure proposed by Tsinias for R(u), that is:

e . = ( ∂f(z, u) ∂z -R(u) C) e (6) R(u) = c h(u) P -1 C T ( 14 
)
where h(u) is a real positive valued function and c a real positive constant, we obtain: The aim is to define the mapping R(u) so that when t approaches infinity the error tends to zero. For that, let us consider the Liapunov quadratic function:

V . (e) ≤ | e T P ∂f(z, u) ∂z e | -c h(u) || C e || 2 < 0 (15) V(e) = 1 2 e T P e (7) 
The basic problem comes to determining an h _ (u) which satisfies the following inequality: where P is a positive definite matrix. We require time derivative of V(e) to be negative: This condition insures that e decreases exponentially to zero [START_REF] Ogata | Modern control engineering[END_REF], [START_REF] Corless | Garanteeing ultimate boundedness and exponential rate of convergence for a class of uncertain systems[END_REF]. Tsinias [START_REF] Tsinias | Observer design for nonlinear systems[END_REF] proposed an algorithm for determining the gain R(u) based on the assumption that Ker(C) ≠ {0}. The algorithm comprises two steps.

h(u) = h _ (u) ( 17 
)
which leads to:

V . (e) ≤ h _ (u) || e || 2 -c h _ (u) || C e || 2 (18a)
Step 1 taking e ∈ Ker(C), equation ( 8) can be reduced to:

V . (e) = e T P ∂f(z, u) ∂z e (9)
Instead of proceeding like Tsinias, we remark that (18a) can also be written as [START_REF] Adjallah | Contribution au diagnostic des systèmes par observateurs d'état. Diagnostic d'un train de laminage à chaud et supervision d'une installation de séchage[END_REF]:

V . (e) ≤ h _ (u) (1 -c || C T C||) || e || 2 (18b)
The problem is to find P which ensures the condition:

It is easy to see that with c > 1 || C T C|| , the initial condition is verified. V . (e) = e T P ∂f(z, u) ∂z e < 0 ( 10 
)
Solving inequation (10) yields the value for P. For that purpose, the assumption Ker(C) ≠ {0} yields:

To summarize, the existence of P, a symmetrical positive definite matrix verifying equation [START_REF] Bastin | Stable adaptive observers for nonlinear time-varying systems[END_REF], and of h(u) verifying [START_REF] Corless | Garanteeing ultimate boundedness and exponential rate of convergence for a class of uncertain systems[END_REF] are the two conditions needed to design the state observer [START_REF] O'reilly | Observers for linear systems[END_REF]. The block diagram of the resulting nonlinear observer-based residual generation is shown in figure 1 where the time invariant matrix R(u) has to be determined using the preceding algorithm. This will be illustrated by an example in the last section of the paper.

e = K e _ ( 11 
)
where K is right orthogonal to C. Substituting (11) into [START_REF] Bastin | Stable adaptive observers for nonlinear time-varying systems[END_REF] gives:

f f C C R u(t) y(t) x(t) z(t) r (t) OBSERVER ∫ ∫
nonlinear case. Each observer is driven by the input vector u and the output of a single dedicated sensor. The complete output (or part of it, for systems that are not completely observable) is estimated and the corresponding residuals are generated and analyzed. If, for example, a sensor fails, the corresponding estimated output will be erroneous. Such a sensor failure can easily be detected and localized using a suitable logic function.

In order to increase the robustness of such an observerbased FDI scheme, one can increase the number of inputs of the different observers; this constitutes the so-called generalized observer scheme introduced by Frank [START_REF] Frank | Fault diagnosis in dynamic systems via state estimation -a survey[END_REF] for linear systems. This can directly be extended to nonlinear systems. The solution consists of using the ith observer driven by all but the ith sensor so that a fault on sensor i affects all but the ith residual. With p observers, we then obtain q residuals which allow a unique fault isolator. The basic idea of observer approach is to reconstruct the state and output of the process under consideration and then analyze the output estimation error. It is worthwhile recalling here the differential equation governing the dynamics of the output estimation error:

e . = ( ∂f(z, u) ∂z -R(u) C) e (20) 
In the presence of process or sensor faults, equation (1) may be modified as follows:

x . = f(x, u) + ƒ 1 x ∈ R n , u ∈ R m (21a)
Fig. 2: observer scheme for residual generation and fault isolation

y = C x + ƒ 2 y ∈ R p (21b) IV. RESIDUAL ANALYSIS
where ƒ 1 (t) and ƒ 2 (t) represent process and sensor faults respectively. In this case, the state estimation error dynamic is given by: As previously mentioned, the residual vector results from the combined influence of faults. If there is no noise on the measured variables, any non zero residual is an indication of a fault. However, in a practical situation, the assumption of zero noise is not realistic. Hence we need to separate the influence of faults on residuals from that of noise. This is generally achieved through a statistical test based on the hypothesis that the noise is randomly distributed with zero mean and a given standard deviation.

e . = ( ∂f(z, u) ∂z -R(u) C) e + ƒ 1 -R(u) ƒ 2 (22)
Since the output estimation error r(t) = C e(t) is a function of ƒ 1 (t) and ƒ 2 (t), it can be used as a residual for indicating that a fault has occurred. It is clear from equation ( 22) that the output estimation error is affected by the faults. The system described by this equation is asymptotically stable, since the stability conditions of the observers are fulfilled. In the ensuing development, we shall limit our attention to sensor and actuator faults only. Generally, fault detection is achieved by comparing the residuals (normalized by their variance) to a specified threshold. To be more precise, the observer has to be designed to facilitate faults isolation. A well-known approach for sensor fault isolation based on dedicated observers scheme [START_REF] Clark | Instrument fault detection[END_REF] may be extended here to the The most common approach consists in testing the residuals with a separate test applied to each element of the residual vector. A Boolean signature vector is then formed whose entries are set to 1 if the test has fired and 0 otherwise. It is then possible to compare the experimental signature with all the predetermined theoretical signatures corresponding to the different fault situations. Another approach to test the residuals consists of defining a scalar statistic which is simply the sum of squares of the residuals (with the possibility of weighting the different residuals). As it is well known, in the linear case, when the noise is normally distributed and when there are no faults, this scalar follows a chi-square distribution; then the experimental value of this statistic can then be compared, for a given level of confidence, to a theoretical value. In the nonlinear case, this distribution does not hold, however, it is possible to use the sum of squares of the residuals as a test variable, the magnitude of which being related to those of faults. This test has the advantage of being easy to apply and to detect the existence of a fault; the isolation of the faults is not directly possible however. This is a major problem for isolation technique to solve. The associated algorithm must be designed to facilitate the recognition of specific failure types. The answer lies in the residual generation; through the use of dedicated observers it is possible to have structured residuals which are sensitive to specific faults. Generally speaking, isolation can be improved by desensitizing residuals with respect to certain faults. In the case of sensor faults isolation, this may be achieved by designing the observers in such a way that each of them uses a specific sensor output.

P =         .5 0 0 0 .1 0 0 0 2.7
The next step is to find a positive function h _ (u) and a constant c verifying equation [START_REF] Hengy | Component failure detection via nonlinear state observers[END_REF]. One choice is to take h _ (u) = 5 and c = 0.35.

| e T P ∂f(z,u) ∂z e | -h(u) || e || 2 be fulfilled.
The observer is then described by the equations:

z . = f(z,u) + 1.

C T (y -y e ) y e = C z

Here, our aim is to detect sensor faults. Figure 3 shows the input signal u(t). In this example, a fault is simulated between 4 sec. and 6 sec. on the first sensor and between 13 sec. and 15 sec. on the second. We then calculate the output residuals r(t) defined as r(t) = y(t) -y e (t). Figure 4a and4b show respectively the first and the second output, and their corresponding estimates and residuals: after a transient due to arbitrary initial conditions applied to the observer, the residuals are centred at the origin in the absence of fault. The faults are simultaneously accentuated in both residuals making it impossible to know which of the sensors is faulty.

V. EXAMPLE

Let us consider a system governed by the following differential equations:

x . = f(x,u) (23a) y = C x + ƒ (23b) B.
Example of DNOS observer where ƒ is a vector of sensor faults, with:

Nonlinear observer dedicated to y 1 f(x,u) =           x 2 -sin(x 1 ) + u cos(x 1 ) -0.4 x 2 x 3 1 1+x 2 2 -x 3 (24a)
The observer is controlled by the input u and the first sensor output y 1 . As the system is observable, the two outputs may be reconstructed and the two residuals generated. In this case, a fine reconstruction of the state would result in the fact that only r 1 (t) will be sensitive to a fault on y 2 .

C =         1 0 1 0 1 1 and u ∈ [-1 , 1] (24b)
For the design purpose, let us consider the observation matrix C 1 = (1 0 1) and e such that e ∈ Ker(C 1 ). From Comparing figure 5a and 5b, on time interval from 13 to 15 seconds reveals that the observer input is fault free. That means that the system's state is correctly estimated. It also means that y 1e and y 2e are correctly reconstructed; residual r 1 only remains fault sensitive with regards to the second sensor. The comparison of the evolution of r 1 and r 2 , on time interval from 4 to 6 seconds, shows that they are both affected by the first sensor fault in this observer scheme. Nonlinear observer dedicated to y 2

The second output helps to reconstruct the system state with dedicated nonlinear observer scheme. Results are interpreted in an analogous fashion as in the preceding case: the first residual is sensitive to faults due to both sensors while the second is sensitive to fault due to the second sensor only. Figure 6a and 6b show respectively the residual r 1 , the output y 1 , the output estimate y 1e and the residual r 2 , the output y 2 , the output estimate y 2e for fault simulated on the first and second sensor. We conclude that the observer controlled by the input u and all the sensor outputs is able to detect a sensor fault but not to localize it. Localization of faults necessitates use of dedicated observers which yield fault decoupled residuals with particular geometric fault direction. 

VI. CONCLUSION
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