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FAULT DETECTION IN NONLINEAR SYSTEMS

Kondo Adjallah, Frédéric Kratz, Didier Maquin

Centre de Recherche en Automatique de Nancy
BP 40 - Rue du doyen Marcel Roubault

54 501 Vandoeuvre les Nancy Cedex - FRANCE

Phone : (33) 83503080 Fax: (33) 83503096

Abstract— This communication deals with the problem of fault redundancy. The general procedure first generates the so-
detection and localization for a wide class of nonlinear systems called residuals (i.e., faults accentuated functions) before
subjected to bounded nonlinearities. A dedicated nonlinear proceeding to fault detection and isolation (i.e., determination

observer scheme (DNOS) for fault detection and identification of its location, duration, type, magnitude, source). The use of
of observable systems is proposed. observers is among the well established concepts for linear
systems [14]. For the general case of nonlinear systems, little
has so far been achieved in the development of associated
FDI observers [15], [16]. Solutions so far proposed are

State observation of nonlinear dynamical systems PS'fflcun to apply in real situations,

pecoming a growing topic.of investiga_ltion in the.specialized This note is organized into four sections. The first presents
literature. The reconstruction of the time behaviour of sta[%; observer design for nonlinear systems. The second

I. INTRODUCTION

variables remains a major problem both in control theory al%nsiders dedicated observers while the third deals with the

process diagnosis. R_esearchers attention Is being part|cul_aa[ alysis of generated residuals. The last section is devoted to
focused on the design of adaptive observers for on-li

O S ; mputational aspects and uses the numerical results to
process states estimation. There is increasing awareness [ light the strategy employed to isolate faults
ensuring robustness in performance requires simpler an '
stable adaptive observer schemes. Linear systems have
received considerable attention [1], [2] leading to several Il. OBSERVER DESIGN
stable adaptive observer systems [3], [4], [5], [6]. Linear
observer systems involving unknown inputs have also beenye shall consider nonlinear systems of the form:
developed and analyzed [7]. Nevertheless, the design of
asymptotically stable observers remains a hard task in thet) = f(x(t), u(t)) xOR", uOR" (1a)
nonlinear case, even when the nonlinearities are fully known.y(t) = Cx(t) yORP (1b)

Several observer design approaches have been prOposeyc\i/rllgreR”, andRP are the state and the output spaces of the
instance, proposed a new type of observers for syst '

subjected to bounded nonlinearities or uncertainties. T g ] / )
type of observer does not necessitate exact knowledge of §gsresponding state trajectoff) is defined for alk and that
system nonlinearities. Bastin [10] also describes an adaptivi$ continuously differentiable. Proceeding by analogy to the
observer/identifier, for SISO observable nonlinear systerrf@assical observer in the linear case, we seek an observer of
capable of state estimation and parameter adaptatitl§ following form:

simultaneously. Marino [11] developed the same idea and.

proposed a simpler observer restricted however to a class o&(t) = f(z(t), u(®)) + R(u(®) (y() - Cz(t) @R’ (2a)
systems with constant unknown parameters. As a main resultye(t) = C z(t) (2b)

the construction of an observer may be performed by finding

suitable state space and output changes of coordinates tbhe idea is to select a continuous mapdR{g(t)) so that
transform the nonlinear system into an observable form fronft) becomes a state estimator of the process under
which can be derived an observer with linear dynamics. Xgonsideration.

[12] and Krener [13] have given Lie algebraic and rank

conditions for nonlinear process observability and observerThe state and output errors are respectively defined by:
existence purpose.

e(t) = x(t) - z(t) (3a)
Simultaneously, the techniques of fault detection and r(t) = y(t) - ye(t) (3b)
isolation (FDI) are increasingly discussed in both researchr(t) = C e(t) (3c)

and applications. It is based on the use of analytical The state error is solution of the equation:



o) = fx(t), u() - fz(), u®) -RUE)Ce® @) Yey=eK P MWk (12)

The matrix functiorR(u(t))is chosen so that the state erromakingV(e) negative gives the matrik
e(t) asymptotically decreases and approaches zerteasls
to infinity. The errore(t) is then considered to be in the |f Ker(C) is reduced td0}, step 1 is bypassed amdis
neighbourhood of zero. By using (3a), a first order Taylagaking equal to the identity matrix.
expansion of the functioffx(t), u(t))in the neighbourhood of

the estimated state trajectorft) can then be obtained asStep 2With this P matrix previously determined, we now

follows: allow e 0 R" and try to determineR(u) which verifies

fx,u) = f(z+e, u) equation (8). For that, we observe that:

¢ —¢ J9f(z. ) :
Oou) =fz, u) +—5 e ©) Vie)s< | e PﬂaZZ,_U) el-e'PRu)Ce<0 (13)

which, when substituted in (4), gives: ) o )
Using the structure proposed by TsiniasRdgu), that is:

e= "2 Rru)cye 6  Ru)=chuPLC a4)

The aim is to define the mappir@(u) so that whent where h(u) is a real positive valued function awda real
approaches infinity the error tends to zero. For that, let #9SItiVe constant, we obtain:
consider the Liapunov quadratic function:
L Vs 1ep MW chuyicelp <o (15)
V(e) =5 e€'Pe (7)
The basic problem comes to determiningr_t(m) which
where P is a positive definite matrix. We require timesatisfies the following inequality:
derivative ofV(e) to be negative:

Ve)=d pe &P MW o) ) jlejp <o (16)
vey=dp MY _pucye<o 8) - _ 5
0z If h(u) exists, we then look foc which verifies (15) by
letting:
This condition insures that decreases exponentially to _

zero [17], [18]. Tsinias [19] proposed an algorithm for h(u) = hu) (17)

determining the gairR(u) based on the assumption that

Ker(C) # {0}. The algorithm comprises two steps. which leads to:

Step 1 takinge O Ker(C) equation (8) can be reduced to: v (e)< h(u) |le|R - ¢ hu)||C e|R (18a)
: df(z, u) Instead of proceeding like Tsinias, we remark that (18a)
V(e)=€ P oz ¢ (9)  can also be written as [20]:

. _ . )
The problem is to find® which ensures the condition: V(e)< hu) (L -cliC ClDIlell (18Db)
: It is easy to see that with> —F < the initial condition
Ve)=dp M2V, g (10) y lcra
0 is verified.

Solving inequation (10) yields the value fBr For that 7o symmarize, the existence Bf a symmetrical positive
purpose, the assumptiéter(C) # {0} yields: definite matrix verifying equation (10), and lofu) verifying

KB (11) (18) are the two conditions needed to design the state

B observer (2). The block diagram of the resulting nonlinear

observer-based residual generation is shown in figure 1
where the time invariant matrikR(u) has to be determined
using the preceding algorithm. This will be illustrated by an
example in the last section of the paper.

whereK is right orthogonal t&C. Substituting (11) into (10)
gives:



u(t) X(t) y(t) nonlinear case. Each observer is driven by the input vector
—i | f I > C and the output of a single dedicated sensor. The complete
output (or part of it, for systems that are not completely
* observable) is estimated and the corresponding residuals are

generated and analyzed. If, for example, a sensor fails, the
corresponding estimated output will be erroneous. Such a
z(t) sensor failure can easily be detected and localized using a

—| f —?> | = C _95 suitable logic function.

f In order to increase the robustness of such an observer-
| based FDI scheme, one can increase the number of inputs of

the different observers; this constitutes the so-called
R ll¢——mm generalized observer scheme introduced by Frank [22] for
OBSERVER linear systems. This can directly be extended to nonlinear
Q systems. The solution consists of using fkie observer
driven by all but theith sensor so that a fault on sengor
affects all but thdth residual. Withp observers, we then

Fig. 1: observer-based residual generation obtainqg residuals which allow a unique fault isolator.
u y
1. DEDICATED NON LINEAR OBSERVER SCHEME (DNOS) _ Proces: ® E
The basic idea of observer approach is to reconstruct the T
state and output of the process under consideration and ther
analyze the output estimation error. It is worthwhile recalling
here the differential equation governing the dynamics of the
output estimation error: Observer : -
Logic
. f(z unit larm:
e= ("t -RW C)e 20) forfaure_| 2™
detection [—2
In the presence of process or sensor faults, equation (1) ) iso?ar\]t(ijon
may be modified as follows: Observer| |——=
ﬁ
X = f(x,u) + f1 x O Rn, uORM (21a) Fig. 2: observer scheme for residual generation and fault isolation

y=Cx+f yORP (21b)
IV. RESIDUAL ANALYSIS

where f1(t) and fo(t) represent process and sensor faults
respectively. In this case, the state estimation error dynamicAs previously mentioned, the residual vector results from
is given by: the combined influence of faults. If there is no noise on the
measured variables, any non zero residual is an indication of
a fault. However, in a practical situation, the assumption of
zero noise is not realistic. Hence we need to separate the
influence of faults on residuals from that of noise. This is

Since the output estimation ermt) = C e(t) is a function generally achieved through a statistical test based on the
of f1(t) and f2(t), it can be used as a residual for indicatingyPothesis that the noise is randomly distributed with zero
that a fault has occurred. It is clear from equation (22) thEtéan and a given standard deviation.
the output estimation error is affected by the faults. The , , ,
system described by this equation is asymptotically stable,The most common approach consists in testing the
since the stability conditions of the observers are fuffilled. IFéSiduals with a separate test applied to each element of the
the ensuing development, we shall limit our attention tEeSidual vector. A Boolean signature vector is then formed
sensor and actuator faults only. Generally, fault detection W10se entries are set to 1 if the test has fired and 0 otherwise.
achieved by comparing the residuals (normalized by théfriS then possible to compare the experimental signature with
variance) to a specified threshold. To be more precise, th# the predetermined theoretical signatures corresponding to
observer has to be designed to facilitate faults isolation. 1€ different fault situations. Another approach to test the
well-known approach for sensor fault isolation based digsiduals consists of defining a scalar statistic which is
dedicated observers scheme [21] may be extended here to#@Ply the sum of squares of the residuals (with the

e= P2 RruyCre+ f-RW £ (22)



possibility of weighting the different residuals). As it is well |:|.5 0 O D

known, in the linear case, when the noise is normally

distributed and when there are no faults, this scalar follows 8P =—0 .1 0

chi-square distribution; then the experimental value of this

statistic can then be compared, for a given level of

confidence, to a theoretical value. In the nonlinear case, this _

distribution does not hold, however, it is possible to use theThe next step is to find a positive functibfu) and a

sum of squares of the residuals as a test variable, #wnstant verifying equation (15). One choice is to tdka)

magnitude of which being related to those of faults. This tests andc = 0.35

has the advantage of being easy to apply and to detect the

existence of a fault; the isolation of the faults is not directly af(z,u ,

possible however. This is a major problem for isolation eTPJaZ—) el - h(u)lle||? be fulfilled.

technique to solve. The associated algorithm must be

designed to facilitate the recognition of specific failure types. The opserver is then described by the equations:

The answer lies in the residual generation; through the use of

dedicated observers it is possible to have structured residuals = f(z,u) + 1.75 C(y - o)

which are sensitive to specific faults. Generally speaking,y,=C z

isolation can be improved by desensitizing residuals with

respect to certain faults. In the case of sensor faults isolationHere, our aim is to detect sensor faults. Figure 3 shows the

this may be achieved by designing the observers in suchngut signal(t). In this example, a fault is simulated between

way that each of them uses a specific sensor output. 4 sec. and 6 sec. on the first sensor and between 13 sec. and

15 sec. on the second. We then calculate the output residuals

r(t) defined asr(t) = y(t) - ye(t). Figure 4a and 4b show

respectively the first and the second output, and their
orresponding estimates and residuals: after a transient due to
rbitrary initial conditions applied to the observer, the

residuals are centred at the origin in the absence of fault. The

0 0 27

V. EXAMPLE

Let us consider a system governed by the followin
differential equations:

x = f(x,u) (23a) faults are simultaneously accentuated in both residuals
y=Cx+f (23b)  making it impossible to know which of the sensors is faulty.
where f is a vector of sensor faults, with: B. Example of DNOS observer
X0 Nonlinear observer dedicatedytp
sin(x) + u cos(x) - 0.4 % X3 The observer is controlled by the inputand the first
f(x,u) = (24a) sensor outputy;. As the system is observable, the two
1 outputs may be reconstructed and the two residuals
2 8 generated. In this case, a fine reconstruction of the state
1+x; would result in the fact that onhy (t) will be sensitive to a
fault onys.
1 01
C= andu [-1, 1] (24Db) For the design purpose, let us consider the observation
011 matrix C1 = (1 0 1)ande such thate [0 Ker(Cq). From

C41 e =0 we derive the relatioag = -e1. The inequality:

e’ PJ—)GfaZZ’u e<0

A. A global nonlinear observer

Following the proposed method, the first step is to find a
positive definite matrix such that ferC] Ker(C), we have the
inequality: holds with:

V(e)=¢& P%Zz’—u)e<0 e

0

N O O
LTI

o ¢ ©

FromCe = 0, we derive the relatiom, = e1 andez = -e1. P=
It is easily shown that the following positive definite matrix

o : " 0
P verifies the above inequality.



We then selecth(u) = 8.75 to respect the constraint

1.
ki
| e’ Pﬂfazz,_u) el< h(u) || e |P, wherec is chosen greater than ey W[ﬁ Mwn‘* WM M,‘ e
0.5. A DNOS observer is designed watk 1. ‘[ ", Ji’ W‘f \‘
0.5/ | 1 §
| ! 8 \
z=f(z,u)+0.5C (y1 - C1 2) O ot o s tekor N o ey X
i PO A A AN /\,\‘ N vy I
Ye= Cz kwr
-0.5
5 10 15 20
Comparing figure 5a and 5b, on time interval from 13 to 15 Fig. 4b: (Nonlinear observer scheme results
seconds reveals that the observer input is fault free. That output y, estimate y, and residualy.
means that the system's state is correctly estimated. It also
means thaye andyoe are correctly reconstructed; residual 2 =,
ri1 only remains fault sensitive with regards to the second "y MR, AR
. . . - 7 N F
sensor. The comparison of the evolution pandry, on time ) H‘h\ W/ Y
interval from 4 to 6 seconds, shows that they are both * / ! o Il
affected by the first sensor fault in this observer scheme. 05 u) i de/ \
Nonlinear observer dedicatedytp e w/é B A
05 o
The second output helps to reconstruct the system state Fig. 5 _5D dicated 10 i b 1 h 2;
with dedicated nonlinear observer scheme. Results are 9 O?J-tgufm[cg‘;‘;mg‘;’e”;;‘;ar{d"r;s?m;C eme 1)
interpreted in an analogous fashion as in the preceding case:
the first residual is sensitive to faults due to both sensors ;.
while the second is sensitive to fault due to the second sensor | | ﬂﬁm ﬂ“‘% Ay
only. Figure 6a and 6b show respectively the residyahe 1)) W\,ﬁ JER N W'\*‘ o M
outputys, the output estimatg;e and the residualy, the W‘M Ji‘ *\1‘“ |
outputyp, the output estimatgye for fault simulated on the ~ °° Q‘ ! gl 4
first and second sensor. PRI W AT ) i otk
T RARRR \‘/‘4““\‘ w"”‘ﬁ\‘vy‘u\ R Rl
We conclude that the observer controlled by the input 5 L/
5 10 15 20

and all the sensor outputs is able to detect a sensor fault but °

not to localize it. Localization of faults necessitates use of
dedicated observers which vyield fault decoupled residuals
with particular geometric fault direction.

Fig. 5b: (Dedicated nonlinear observer scheme 1)
output y, estimate ¥ and residualy.

A "
1 15 ¥ \ | ,&m% I fﬂj Fﬂ/‘lL
. / Llh P Sy Ll ‘LM
05 S 1 J “ l“‘\ /‘W W h
=T [ b / | LL }N» i
\ 05 J) i ¢ \
oh ‘ E | L fﬁ
‘ Ol tomm s b e oy
[RVRATPAN v (R g v
050 f 5 Lﬁfl LRI,
05 5 10 15 20
1 > 4 6 8 10 12 14 16 18 20 Fig. 6a:t(D;edicat?d n?nlineardobseéverI scheme 2)
Fig. 3: input signal u(t) (t: sec.) OUIpUL Y, estimate ¥y and residuals:
15 Y .
2 S AT N o
p i A AP
15 ;FMM A’JW‘RGR NHA% L/ Y / ﬁw Wy ‘Mi A m“}
fo ¥ "t Y [Ny, f N :
1) "\ - i 0.5/ \ ) T }
/ \ ar” \ ' \ b 3
/ u \ Hﬁ £l {
0.5 / [ e Loy Al | r ! ’ ! ! N ‘\ | H
R O o= N 2ot = oy T ALY
;J . “VUI‘L k}:l: i EN Y, (f NN T R | i \ “\“WT
[ i o AR R IR PN TSRASTORES AR /
E*P 0.5
05 ' 0 5 10 15 20
0 5 10 15 20

Fig. 4a: (Nonlinear observer scheme results)
output ), estimate 1 and residual 5.

Fig. 6b: (Dedicated nonlinear observer scheme 2)
output y, estimate ¥» and residual 4.



In this paper, we have discussed the analytical redundancy
approach to FDI in nonlinear dynamic systems. It has been
pointed out how to design an observer with good properti?fz]

VI. CONCLUSION

for fault detection. Simulation and experimental results have

shown how to apply the dedicated nonlinear observer scheme
to the isolation of sensor faults. This observer design solve
one of the problems of

robustness with

nonlinearities in fault detection systems. In practice, it

concerns a very large class of nonlinear systems and

particularly bilinear systems.
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