Fault detection in nonlinear systems
Kondo Adjallah, Frédéric Kratz, Didier Maquin

To cite this version:
Kondo Adjallah, Frédéric Kratz, Didier Maquin. Fault detection in nonlinear systems. International Conference on Systems, Man and Cybernetics, SMC'93, Oct 1993, Le Touquet, France. pp.418-423, 10.1109/ICSMC.1993.385047. hal-00201433

HAL Id: hal-00201433
https://hal.science/hal-00201433
Submitted on 5 May 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Abstract — This communication deals with the problem of fault
detection and localization for a wide class of nonlinear systems
subjected to bounded nonlinearities. A dedicated nonlinear
observer scheme (DNOS) for fault detection and identification
of observable systems is proposed.

I. INTRODUCTION

State observation of nonlinear dynamical systems is
becoming a growing topic of investigation in the specialized
literature. The reconstruction of the time behaviour of state
variables remains a major problem both in control theory and
process diagnosis. Researchers attention is being particularly
focused on the design of adaptive observers for on-line
process states estimation. There is increasing awareness that
ensuring robustness in performance requires simpler and
stable adaptive observer schemes. Linear systems have
received considerable attention [1], [2] leading to several
stable adaptive observer systems [3], [4], [5], [6]. Linear
observer systems involving unknown inputs have also been
developed and analyzed [7]. Nevertheless, the design of
asymptotically stable observers remains a hard task in the
nonlinear case, even when the nonlinearities are fully known.

Several observer design approaches have been proposed in
recent years for nonlinear systems. Walcott [8], [9] for
instance, proposed a new type of observers for systems
subjected to bounded nonlinearities or uncertainties. This
type of observer does not necessitate exact knowledge of the
system nonlinearities. Bastin [10] also describes an adaptive
observer/identifier, for SISO observable nonlinear systems,
capable of state estimation and parameter adaptation
simultaneously. Marino [11] developed the same idea and
proposed a simpler observer restricted however to a class of
systems with constant unknown parameters. As a main result,
the construction of an observer may be performed by finding
suitable state space and output changes of coordinates to
transform the nonlinear system into an observable form from
which can be derived an observer with linear dynamics. Xia
[12] and Krener [13] have given Lie algebraic and rank
conditions for nonlinear process observability and observer
existence purpose.

Simultaneously, the techniques of fault detection and
isolation (FDI) are increasingly discussed in both research
and applications. It is based on the use of analytical
redundancy. The general procedure first generates the so-
called residuals (i.e., faults accentuated functions) before
proceeding to fault detection and isolation (i.e., determination
of its location, duration, type, magnitude, source). The use of
observers is among the well established concepts for linear
systems [14]. For the general case of nonlinear systems, little
has so far been achieved in the development of associated
FDI observers [15], [16]. Solutions so far proposed are
difficult to apply in real situations.

This note is organized into four sections. The first presents
the observer design for nonlinear systems. The second
considers dedicated observers while the third deals with the
analysis of generated residuals. The last section is devoted to
computational aspects and uses the numerical results to
highlight the strategy employed to isolate faults.

II. OBSERVER DESIGN

We shall consider nonlinear systems of the form:

\[
\begin{align*}
x(t) &= f(x(t), u(t)) & x \in \mathbb{R}^n, u \in \mathbb{R}^m \quad (1a) \\
y(t) &= C x(t) & y \in \mathbb{R}^p \quad (1b)
\end{align*}
\]

where \(\mathbb{R}^n \) and \(\mathbb{R}^p \) are the state and the output spaces of the
system, \(C \) is a constant matrix of appropriate dimensions. It is
assumed that for any input \(u(t) \) and initial state \(x_0 \) the
corresponding state trajectory \(x(t) \) is defined for all \(t \) and that \(f \) is
continuously differentiable. Proceeding by analogy to the
classical observer in the linear case, we seek an observer of
the following form:

\[
\begin{align*}
\dot{z}(t) &= f(z(t), u(t)) + R(u(t)) (y(t) - C z(t)) & z \in \mathbb{R}^n \quad (2a) \\
y_e(t) &= C z(t) \quad (2b)
\end{align*}
\]

The state and output errors are respectively defined by:

\[
\begin{align*}
e(t) &= x(t) - z(t) \quad (3a) \\
r(t) &= y(t) - y_e(t) \quad (3b) \\
r(t) &= C e(t) \quad (3c)
\end{align*}
\]

The state error is solution of the equation:
\[
\dot{e}(t) = f(x(t), u(t)) - f(z(t), u(t)) - R(u(t)) C e(t) \tag{4}
\]

The matrix function \(R(u(t)) \) is chosen so that the state error \(e(t) \) asymptotically decreases and approaches zero as \(t \) tends to infinity. The error \(e(t) \) is then considered to be in the neighbourhood of zero. By using (3a), a first order Taylor expansion of the function \(f(x(t), u(t)) \) in the neighbourhood of the estimated state trajectory \(z(t) \) can then be obtained as follows:

\[
f(x, u) = f(z+e, u) = f(z, u) + \frac{\partial f(z, u)}{\partial z} e
\tag{5}
\]

which, when substituted in (4), gives:

\[
\dot{e} = \left(\frac{\partial f(z, u)}{\partial z} - R(u) C \right) e \tag{6}
\]

The aim is to define the mapping \(R(u) \) so that when \(t \) approaches infinity the error tends to zero. For that, let us consider the Liapunov quadratic function:

\[
V(e) = \frac{1}{2} e^T P e
\tag{7}
\]

where \(P \) is a positive definite matrix. We require time derivative of \(V(e) \) to be negative:

\[
\dot{V}(e) = e^T P \dot{e} = e^T P \left(\frac{\partial f(z, u)}{\partial z} - R(u) C \right) e < 0
\tag{8}
\]

This condition insures that \(e \) decreases exponentially to zero \([17], [18]\). Tsinias \([19]\) proposed an algorithm for determining the gain \(R(u) \) based on the assumption that \(\text{Ker}(C) \neq \{0\} \). The algorithm comprises two steps.

Step 1 taking \(e \in \text{Ker}(C) \), equation (8) can be reduced to:

\[
\dot{V}(e) = e^T P \frac{\partial f(z, u)}{\partial z} e \tag{9}
\]

The problem is to find \(P \) which ensures the condition:

\[
\dot{V}(e) = e^T P \frac{\partial f(z, u)}{\partial z} e < 0 \tag{10}
\]

Solving inequation (10) yields the value for \(P \). For that purpose, the assumption \(\text{Ker}(C) \neq \{0\} \) yields:

\[
e = K \bar{e}
\tag{11}
\]

where \(K \) is right orthogonal to \(C \). Substituting (11) into (10) gives:

\[
\dot{V}(e) = \bar{e}^T K^T P \frac{\partial f(z, u)}{\partial z} K \bar{e}
\tag{12}
\]

making \(\dot{V}(e) \) negative gives the matrix \(P \).

If \(\text{Ker}(C) \) is reduced to \(\{0\} \), step 1 is bypassed and \(P \) is taking equal to the identity matrix.

Step 2 With this \(P \) matrix previously determined, we now allow \(e \in \mathbb{R}^n \) and try to determine \(R(u) \) which verifies equation (8). For that, we observe that:

\[
\dot{V}(e) \leq |e^T P \frac{\partial f(z, u)}{\partial z} e| - c h(u) \|C e\|^2 < 0
\tag{13}
\]

Using the structure proposed by Tsinias for \(R(u) \), that is:

\[
R(u) = c h(u) P^{-1} C^T \tag{14}
\]

where \(h(u) \) is a real positive valued function and \(c \) a real positive constant, we obtain:

\[
\dot{V}(e) \leq |e^T P \frac{\partial f(z, u)}{\partial z} e| - c h(u) \|C e\|^2 < 0
\tag{15}
\]

The basic problem comes to determining an \(h(u) \) which satisfies the following inequality:

\[
|e^T P \frac{\partial f(z, u)}{\partial z} e| - c h(u) \|C e\|^2 < 0
\tag{16}
\]

If \(h(u) \) exists, we then look for \(c \) which verifies (15) by letting:

\[
h(u) = \bar{h}(u)
\tag{17}
\]

which leads to:

\[
\dot{V}(e) \leq \bar{h}(u) \|e\|^2 - c \bar{h}(u) \|C e\|^2
\tag{18a}
\]

Instead of proceeding like Tsinias, we remark that (18a) can also be written as \([20]\):

\[
\dot{V}(e) \leq \bar{h}(u) (1 - c \|C^T C\|) \|e\|^2
\tag{18b}
\]

It is easy to see that with \(c > \frac{1}{\|C^T C\|} \) the initial condition is verified.

To summarize, the existence of \(P \), a symmetrical positive definite matrix verifying equation (10), and of \(h(u) \) verifying (18) are the two conditions needed to design the state observer (2). The block diagram of the resulting nonlinear observer-based residual generation is shown in figure 1 where the time invariant matrix \(R(u) \) has to be determined using the preceding algorithm. This will be illustrated by an example in the last section of the paper.
In order to increase the robustness of such an observer-based FDI scheme, one can increase the number of inputs of the different observers; this constitutes the so-called generalized observer scheme introduced by Frank [22] for linear systems. This can directly be extended to nonlinear systems. The solution consists of using the ith observer driven by all but the ith sensor so that a fault on sensor i affects all but the ith residual. With p observers, we then obtain q residuals which allow a unique fault isolator.

As previously mentioned, the residual vector results from the combined influence of faults. If there is no noise on the measured variables, any non zero residual is an indication of a fault. However, in a practical situation, the assumption of zero noise is not realistic. Hence we need to separate the influence of faults on residuals from that of noise. This is generally achieved through a statistical test based on the hypothesis that the noise is randomly distributed with zero mean and a given standard deviation.

The most common approach consists in testing the residuals with a separate test applied to each element of the residual vector. A Boolean signature vector is then formed whose entries are set to 1 if the test has fired and 0 otherwise. It is then possible to compare the experimental signature with all the predetermined theoretical signatures corresponding to the different fault situations. Another approach to test the residuals consists of defining a scalar statistic which is simply the sum of squares of the residuals (with the nonlinear case. Each observer is driven by the input vector u and the output of a single dedicated sensor. The complete output (or part of it, for systems that are not completely observable) is estimated and the corresponding residuals are generated and analyzed. If, for example, a sensor fails, the corresponding estimated output will be erroneous. Such a sensor failure can easily be detected and localized using a suitable logic function.

As previously mentioned, the residual vector results from the combined influence of faults. If there is no noise on the measured variables, any non zero residual is an indication of a fault. However, in a practical situation, the assumption of zero noise is not realistic. Hence we need to separate the influence of faults on residuals from that of noise. This is generally achieved through a statistical test based on the hypothesis that the noise is randomly distributed with zero mean and a given standard deviation.

The most common approach consists in testing the residuals with a separate test applied to each element of the residual vector. A Boolean signature vector is then formed whose entries are set to 1 if the test has fired and 0 otherwise. It is then possible to compare the experimental signature with all the predetermined theoretical signatures corresponding to the different fault situations. Another approach to test the residuals consists of defining a scalar statistic which is simply the sum of squares of the residuals (with the
possibility of weighting the different residuals). As it is well known, in the linear case, when the noise is normally distributed and when there are no faults, this scalar follows a chi-square distribution; then the experimental value of this statistic can then be compared, for a given level of confidence, to a theoretical value. In the nonlinear case, this distribution does not hold, however, it is possible to use the sum of squares of the residuals as a test variable, the magnitude of which being related to those of faults. This test has the advantage of being easy to apply and to detect the existence of a fault; the isolation of the faults is not directly possible however. This is a major problem for isolation technique to solve. The associated algorithm must be designed to facilitate the recognition of specific failure types. The answer lies in the residual generation; through the use of dedicated observers it is possible to have structured residuals which are sensitive to specific faults. Generally speaking, isolation can be improved by desensitizing residuals with respect to certain faults. In the case of sensor faults isolation, this may be achieved by designing the observers in such a way that each of them uses a specific sensor output.

\[P = \begin{pmatrix} .5 & 0 & 0 \\ 0 & .1 & 0 \\ 0 & 0 & 2.7 \end{pmatrix} \]

The next step is to find a positive function \(\bar{h}(u) \) and a constant \(c \) verifying equation (15). One choice is to take \(\bar{h}(u) = 5 \) and \(c = 0.35 \).

\[|e^T P \frac{\partial f(z,u)}{\partial z} e| - \bar{h}(u) \| e \|^2 \] be fulfilled.

The observer is then described by the equations:

\[\dot{z} = f(z,u) + 1.75 C^T (y - y_e) \]
\[y_e = C z \]

Here, our aim is to detect sensor faults. Figure 3 shows the input signal \(u(t) \). In this example, a fault is simulated between 4 sec. and 6 sec. on the first sensor and between 13 sec. and 15 sec. on the second. We then calculate the output residuals \(r(t) \) defined as \(r(t) = y(t) - y_e(t) \). Figure 4a and 4b show respectively the first and the second output, and their corresponding estimates and residuals: after a transient due to arbitrary initial conditions applied to the observer, the residuals are centred at the origin in the absence of fault. The faults are simultaneously accentuated in both residuals making it impossible to know which of the sensors is faulty.

B. Example of DNOS observer

Nonlinear observer dedicated to \(y_1 \)

The observer is controlled by the input \(u \) and the first sensor output \(y_1 \). As the system is observable, the two outputs may be reconstructed and the two residuals generated. In this case, a fine reconstruction of the state would result in the fact that only \(r_1(t) \) will be sensitive to a fault on \(y_2 \).

For the design purpose, let us consider the observation matrix \(C_1 = (1 \ 0 \ 0) \) and \(e \) such that \(e \in Ker(C_1) \). From \(C_1 e = 0 \), we derive the relation \(e_3 = -e_1 \). The inequality:

\[e^T P \frac{\partial f(z,u)}{\partial z} e < 0 \]

holds with:

\[P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & .5 & 0 \\ 0 & 0 & 2 \end{pmatrix} \]
We then select \(h(u) = 8.75 \) to respect the constraint
\[
\| e^T P \frac{\partial f(z,u)}{\partial z} e \| < h(u) \| e \|^2,
\]
where \(c \) is chosen greater than 0.5. A DNOS observer is designed with \(c = 1 \).

\[
\dot{z} = f(z,u) + 0.5 C^T (y_1 - C_1 z)
\]
\[
y_e = C z
\]

Comparing figure 5a and 5b, on time interval from 13 to 15 seconds reveals that the observer input is fault free. That means that the system's state is correctly estimated. It also means that \(y_1_e \) and \(y_2_e \) are correctly reconstructed; residual \(r_1 \) only remains fault sensitive with regards to the second sensor. The comparison of the evolution of \(r_1 \) and \(r_2 \), on time interval from 4 to 6 seconds, shows that they are both affected by the first sensor fault in this observer scheme.

Nonlinear observer dedicated to \(y_2 \)

The second output helps to reconstruct the system state with dedicated nonlinear observer scheme. Results are interpreted in an analogous fashion as in the preceding case: the first residual is sensitive to faults due to both sensors while the second is sensitive to fault due to the second sensor only. Figure 6a and 6b show respectively the residual \(r_1 \), the output \(y_1 \), the output estimate \(y_1_e \) and the residual \(r_2 \), the output \(y_2 \), the output estimate \(y_2_e \) for fault simulated on the first and second sensor.

We conclude that the observer controlled by the input \(u \) and all the sensor outputs is able to detect a sensor fault but not to localize it. Localization of faults necessitates use of dedicated observers which yield fault decoupled residuals with particular geometric fault direction.
VI. CONCLUSION

In this paper, we have discussed the analytical redundancy approach to FDI in nonlinear dynamic systems. It has been pointed out how to design an observer with good properties for fault detection. Simulation and experimental results have shown how to apply the dedicated nonlinear observer scheme to the isolation of sensor faults. This observer design solve one of the problems of robustness with respect to nonlinearities in fault detection systems. In practice, it concerns a very large class of nonlinear systems and particularly bilinear systems.

REFERENCES

