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Abstract − This communication deals with the problem of fault
detection and localization for a wide class of nonlinear systems
subjected to bounded nonlinearities. A dedicated nonlinear
observer scheme (DNOS) for fault detection and identification
of observable systems is proposed.

redundancy. The general procedure first generates the so-
called residuals (i.e., faults accentuated functions) before
proceeding to fault detection and isolation (i.e., determination
of its location, duration, type, magnitude, source). The use of
observers is among the well established concepts for linear
systems [14]. For the general case of nonlinear systems, little
has so far been achieved in the development of associated
FDI observers [15], [16]. Solutions so far proposed are
difficult to apply in real situations.

I. INTRODUCTION

State observation of nonlinear dynamical systems is
becoming a growing topic of investigation in the specialized
literature. The reconstruction of the time behaviour of state
variables remains a major problem both in control theory and
process diagnosis. Researchers attention is being particularly
focused on the design of adaptive observers for on-line
process states estimation. There is increasing awareness that
ensuring robustness in performance requires simpler and
stable adaptive observer schemes. Linear systems have
received considerable attention [1], [2] leading to several
stable adaptive observer systems [3], [4], [5], [6]. Linear
observer systems involving unknown inputs have also been
developed and analyzed [7]. Nevertheless, the design of
asymptotically stable observers remains a hard task in the
nonlinear case, even when the nonlinearities are fully known.

This note is organized into four sections. The first presents
the observer design for nonlinear systems. The second
considers dedicated observers while the third deals with the
analysis of generated residuals. The last section is devoted to
computational aspects and uses the numerical results to
highlight the strategy employed to isolate faults.

II. OBSERVER DESIGN

We shall consider nonlinear systems of the form:

x
.
(t) = f(x(t), u(t)) x ∈  Rn, u ∈  Rm (1a)

y(t) = C x(t) y ∈  Rp (1b)

Several observer design approaches have been proposed in
recent years for nonlinear systems. Walcott [8], [9] for
instance, proposed a new type of observers for systems
subjected to bounded nonlinearities or uncertainties. This
type of observer does not necessitate exact knowledge of the
system nonlinearities. Bastin [10] also describes an adaptive
observer/identifier, for SISO observable nonlinear systems,
capable of state estimation and parameter adaptation
simultaneously. Marino [11] developed the same idea and
proposed a simpler observer restricted however to a class of
systems with constant unknown parameters. As a main result,
the construction of an observer may be performed by finding
suitable state space and output changes of coordinates to
transform the nonlinear system into an observable form from
which can be derived an observer with linear dynamics. Xia
[12] and Krener [13] have given Lie algebraic and rank
conditions for nonlinear process observability and observer
existence purpose.

where Rn, and Rp are the state and the output spaces of the
system, C is a constant matrix of appropriate dimensions. It is
assumed that for any input u(t) and initial state x0 the
corresponding state trajectory x(t) is defined for all t and that
f is continuously differentiable. Proceeding by analogy to the
classical observer in the linear case, we seek an observer of
the following form:

z
.
(t) = f(z(t), u(t)) + R(u(t)) (y(t) - C z(t)) z ∈  Rn (2a)

ye(t) = C z(t) (2b)

The idea is to select a continuous mapping R(u(t)) so that
z(t) becomes a state estimator of the process under
consideration.

The state and output errors are respectively defined by:

e(t) = x(t) - z(t) (3a)
r(t) = y(t) - ye(t) (3b)Simultaneously, the techniques of fault detection and

isolation (FDI) are increasingly discussed in both research
and applications. It is based on the use of analytical

r(t) = C e(t) (3c)
The state error is solution of the equation:



e
.
(t) = f(x(t), u(t)) - f(z(t), u(t))  - R(u(t)) C e(t) (4) V

.
(e) =  e

_
T KT P  

∂f(z, u)
∂z

  K  e
_

(12)

making V
.
(e) negative gives the matrix P.The matrix function R(u(t)) is chosen so that the state error

e(t) asymptotically decreases and approaches zero as t tends
to infinity. The error e(t) is then considered to be in the
neighbourhood of zero. By using (3a), a first order Taylor
expansion of the function f(x(t), u(t)) in the neighbourhood of
the estimated state trajectory z(t) can then be obtained as
follows:

If Ker(C) is reduced to {0}, step 1 is bypassed and P is
taking equal to the identity matrix.

Step 2With this P matrix previously determined, we now

allow e ∈  Rn and try to determine R(u) which verifies
equation (8). For that, we observe that:

f(x,u) = f(z+e, u)

f(x,u) = f(z, u) + 
∂f(z, u)

∂z
 e (5)

V
.
(e) ≤  | eT P 

∂f(z, u)
∂z

  e | - eT P R(u) C e < 0 (13)

which, when substituted in (4), gives:
Using the structure proposed by Tsinias for R(u), that is:

e
.
 = (

∂f(z, u)
∂z

  - R(u) C) e (6) R(u) = c h(u) P-1 CT (14)

where h(u) is a real positive valued function and c a real
positive constant, we obtain:

The aim is to define the mapping R(u) so that when t
approaches infinity the error tends to zero. For that, let us
consider the Liapunov quadratic function:

V
.
 (e) ≤   | eT P  

∂f(z, u)
∂z

  e | - c h(u) || C e ||2  < 0 (15)
V(e) = 

1
2
 eT P e (7)

The basic problem comes to determining an h
_
(u) which

satisfies the following inequality:where P is a positive definite matrix. We require time
derivative of V(e) to be negative:

V
.
(e) = eT P e

.
| eT P  

∂f(z, u)
∂z

  e |  - h
_
(u) || e ||2 < 0 (16)

V
.
(e) = eT P  (

∂f(z, u)
∂z

  - R(u) C) e < 0 (8)
If h

_
(u) exists, we then look for c which verifies (15) by

letting:
This condition insures that e decreases exponentially to

zero [17], [18]. Tsinias [19] proposed an algorithm for
determining the gain R(u) based on the assumption that
Ker(C) ≠ {0} . The algorithm comprises two steps.

h(u) =  h
_
(u) (17)

which leads to:

V
.
 (e) ≤  h

_
(u) || e ||2  - c  h

_
(u) || C e ||2 (18a)Step 1 taking e ∈  Ker(C), equation (8) can be reduced to:

V
.
(e) = eT P  

∂f(z, u)
∂z

  e (9)
Instead of proceeding like Tsinias, we remark that (18a)

can also be written as [20]:

V
.
 (e) ≤  h

_
(u) (1 - c || CT C||) || e ||2 (18b)The problem is to find P which ensures the condition:

It is easy to see that with c > 
1

|| CT C||
, the initial condition

is verified.
V
.
(e) = eT P  

∂f(z, u)
∂z

  e < 0 (10)

Solving inequation (10) yields the value for P. For that
purpose, the assumption Ker(C) ≠ {0} yields:

To summarize, the existence of P, a symmetrical positive
definite matrix verifying equation (10), and of h(u) verifying
(18) are the two conditions needed to design the state
observer (2). The block diagram of the resulting nonlinear
observer-based residual generation is shown in figure 1
where the time invariant matrix R(u) has to be determined
using the preceding algorithm. This will be illustrated by an
example in the last section of the paper.

e = K e
_

(11)

where K is right orthogonal to C. Substituting (11) into (10)
gives:
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nonlinear case. Each observer is driven by the input vector u
and the output of a single dedicated sensor. The complete
output (or part of it, for systems that are not completely
observable) is estimated and the corresponding residuals are
generated and analyzed. If, for example, a sensor fails, the
corresponding estimated output will be erroneous. Such a
sensor failure can easily be detected and localized using a
suitable logic function.

In order to increase the robustness of such an observer-
based FDI scheme, one can increase the number of inputs of
the different observers; this constitutes the so-called
generalized observer scheme introduced by Frank [22] for
linear systems. This can directly be extended to nonlinear
systems. The solution consists of using the ith observer
driven by all but the ith sensor so that a fault on sensor i
affects all but the ith residual. With p observers, we then
obtain q residuals which allow a unique fault isolator.Fig. 1: observer-based residual generation
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III. DEDICATED NON LINEAR OBSERVER SCHEME (DNOS)

The basic idea of observer approach is to reconstruct the
state and output of the process under consideration and then
analyze the output estimation error. It is worthwhile recalling
here the differential equation governing the dynamics of the
output  estimation error:

e
.
 = (

∂f(z, u)
∂z

  - R(u) C) e (20)

In the presence of process or sensor faults, equation (1)
may be modified as follows:

x
.
 = f(x, u) + ƒ1 x ∈  Rn, u ∈  Rm (21a) Fig. 2: observer scheme for residual generation and fault isolation

y = C x + ƒ2 y ∈  Rp (21b)

IV. RESIDUAL ANALYSIS
where ƒ1(t) and ƒ2(t) represent process and sensor faults
respectively. In this case, the state estimation error dynamic
is given by:

As previously mentioned, the residual vector results from
the combined influence of faults. If there is no noise on the
measured variables, any non zero residual is an indication of
a fault. However, in a practical situation, the assumption of
zero noise is not realistic. Hence we need to separate the
influence of faults on residuals from that of noise. This is
generally achieved through a statistical test based on the
hypothesis that the noise is randomly distributed with zero
mean and a given standard deviation.

e
.
 = (

∂f(z, u)
∂z

  - R(u) C) e + ƒ1 - R(u) ƒ2 (22)

Since the output estimation error r(t) = C e(t) is a function
of ƒ1(t) and ƒ2(t), it can be used as a residual for indicating
that a fault has occurred. It is clear from equation (22) that
the output estimation error is affected by the faults. The
system described by this equation is asymptotically stable,
since the stability conditions of the observers are fulfilled. In
the ensuing development, we shall limit our attention to
sensor and actuator faults only. Generally, fault detection is
achieved by comparing the residuals (normalized by their
variance) to a specified threshold. To be more precise, the
observer has to be designed to facilitate faults isolation. A
well-known approach for sensor fault isolation based on
dedicated observers scheme [21] may be extended here to the

The most common approach consists in testing the
residuals with a separate test applied to each element of the
residual vector. A Boolean signature vector is then formed
whose entries are set to 1 if the test has fired and 0 otherwise.
It is then possible to compare the experimental signature with
all the predetermined theoretical signatures corresponding to
the different fault situations. Another approach to test the
residuals consists of defining a scalar statistic which is
simply the sum of squares of the residuals (with the



possibility of weighting the different residuals). As it is well
known, in the linear case, when the noise is normally
distributed and when there are no faults, this scalar follows a
chi-square distribution; then the experimental value of this
statistic can then be compared, for a given level of
confidence, to a theoretical value. In the nonlinear case, this
distribution does not hold, however, it is possible to use the
sum of squares of the residuals as a test variable, the
magnitude of which being related to those of faults. This test
has the advantage of being easy to apply and to detect the
existence of a fault; the isolation of the faults is not directly
possible however. This is a major problem for isolation
technique to solve. The associated algorithm must be
designed to facilitate the recognition of specific failure types.
The answer lies in the residual generation; through the use of
dedicated observers it is possible to have structured residuals
which are sensitive to specific faults. Generally speaking,
isolation can be improved by desensitizing residuals with
respect to certain faults. In the case of sensor faults isolation,
this may be achieved by designing the observers in such a
way that each of them uses a specific sensor output.

P = 







.5 0 0

0 .1 0

0 0 2.7

The next step is to find a positive function h
_
(u) and a

constant c verifying equation (15). One choice is to take h
_
(u)

= 5 and c = 0.35.

| eT P 
∂f(z,u)

∂z
  e | - h(u) || e || 2 be fulfilled.

The observer is then described by the equations:

z
.
   = f(z,u) + 1.75 CT(y - ye)

ye = C z

Here, our aim is to detect sensor faults. Figure 3 shows the
input signal u(t). In this example, a fault is simulated between
4 sec. and 6 sec. on the first sensor and between 13 sec. and
15 sec. on the second. We then calculate the output residuals
r(t) defined as r(t) = y(t) - ye(t). Figure 4a and 4b show
respectively the first and the second output, and their
corresponding estimates and residuals: after a transient due to
arbitrary initial conditions applied to the observer, the
residuals are centred at the origin in the absence of fault. The
faults are simultaneously accentuated in both residuals
making it impossible to know which of the sensors is faulty.

V. EXAMPLE

Let us consider a system governed by the following
differential equations:

x
.
 = f(x,u) (23a)

y = C x + ƒ (23b)

B.   Example of DNOS observerwhere ƒ is a vector of sensor faults, with:

Nonlinear observer dedicated to y1

f(x,u) = 









x2

- sin(x1) + u cos(x1) - 0.4 x2 x3

1

1+x
2
2

  - x3

(24a)
The observer is controlled by the input u and the first

sensor output y1. As the system is observable, the two
outputs may be reconstructed and the two residuals
generated. In this case, a fine reconstruction of the state
would result in the fact that only r1(t) will be sensitive to a
fault on y2.

C = 






1 0 1

0 1 1
    and u ∈  [-1 , 1] (24b) For the design purpose, let us consider the observation

matrix C1 = (1  0  1) and e such that e ∈  Ker(C1). From
C1 e = 0, we derive the relation e3 = -e1. The inequality:

A.   A global nonlinear observer

eT P 
∂f(z,u)

∂z
 e < 0Following the proposed method, the first step is to find a

positive definite matrix such that for e ∈  Ker(C), we have the
inequality: holds with:

V
.
(e) = eT  P 

∂f(z,u)
∂z

  e < 0

P = 







1 0 0

0 .5 0

0 0 2

From Ce = 0, we derive the relation: e2 = e1 and e3 = -e1.
It is easily shown that the following positive definite matrix
P  verifies the above inequality.



We then select h(u) = 8.75 to respect the constraint

| eT P 
∂f(z,u)

∂z
 e |< h(u) || e ||2, where c is chosen greater than

0.5. A DNOS observer is designed with c = 1.
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z
.
 = f(z,u) + 0.5 CT (y1 - C1 z)

ye = C z

Comparing figure 5a and 5b, on time interval from 13 to 15
seconds reveals that the observer input is fault free. That
means that the system's state is correctly estimated. It also
means that y1e and y2e are correctly reconstructed; residual
r1 only remains fault sensitive with regards to the second
sensor. The comparison of the evolution of r1 and r2, on time
interval from 4 to 6 seconds, shows that they are both
affected by the first sensor fault in this observer scheme.

Fig. 4b: (Nonlinear observer scheme results
output y2, estimate ye2 and residual r2.
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Nonlinear observer dedicated to y2

The second output helps to reconstruct the system state
with dedicated nonlinear observer scheme. Results are
interpreted in an analogous fashion as in the preceding case:
the first residual is sensitive to faults due to both sensors
while the second is sensitive to fault due to the second sensor
only. Figure 6a and 6b show respectively the residual r1, the
output y1, the output estimate y1e and the residual r2, the
output y2, the output estimate y2e for fault simulated on the
first and second sensor.

Fig. 5a: (Dedicated nonlinear observer scheme 1)
output y1, estimate ye1 and residual r1.
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We conclude that the observer controlled by the input u

and all the sensor outputs is able to detect a sensor fault but
not to localize it. Localization of faults necessitates use of
dedicated observers which yield fault decoupled residuals
with particular geometric fault direction.

Fig. 5b: (Dedicated nonlinear observer scheme 1)
output y2, estimate ye2 and residual r2.
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0 2 4 6 8 10 12 14 16 18 20 Fig. 6a: (Dedicated nonlinear observer scheme 2)
output y1, estimate ye1 and residual r1.

Fig. 3: input signal u(t) (t: sec.)
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output y2, estimate ye2 and residual r2.

Fig. 4a: (Nonlinear observer scheme results)
output y1, estimate ye1 and residual r1.



VI. CONCLUSION [11] R. Marino. Adaptive observers for single output
nonlinear systems. IEEE Trans. on Auto. Control, 35
(9), p. 1054-1058, 1990.In this paper, we have discussed the analytical redundancy

approach to FDI in nonlinear dynamic systems. It has been
pointed out how to design an observer with good properties
for fault detection. Simulation and experimental results have
shown how to apply the dedicated nonlinear observer scheme
to the isolation of sensor faults. This observer design solve
one of the problems of robustness with respect to
nonlinearities in fault detection systems. In practice, it
concerns a very large class of nonlinear systems and
particularly bilinear systems.

[12] X.H. Xia and W.B. Gao. On exponential observer for
nonlinear systems. Systems and Control Letters, 11, p.
319-325, 1988.

[13] A.J. Krener and A. Isodori. Linearization by output
injection and nonlinear observers. Systems and Control
Letters, 3, p. 47-52, 1983.

[14] R.J. Patton, P.M. Frank and R.N. Clark. Fault diagnosis
in dynamic systems. Prentice Hall, 1989.
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