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Abstract

After a short view about thiendamental problem of data
reconciliation, the paper presents some majors (&sts
balanceresiduals analysis known as method of pseudo
equations, the parity spa@pproach, the analysis of
residuals known as method ofeasurment test, the
analysis of the sum of squares deviations) and shtueiis
equivalence.

Introduction

In the last twodecades, the problem of detecting and
identifying gross errors imeasurements due to biases in
the measuring instruments Haeen well studied. Several
statistical tests for this purpose hawveen developped,
such as for example, tteonstraint test (CT) (Mah and
al., 1976), the measuremenést (MT) (Mah and
Tamhane, 1982),the iterative measurement test (IMT)
method, the screecombinatorial (SC) method (Serth,
1986), the dynamic measurement test (D¥R9Qsenberg,
1987), the generalized likelihood ratio (GLR) test
(Narasimhan, 1987) or the maximum power (MBE%t
(Crowe, 1989). There are different ways to identifgrge
error : with atheoretical analysis of all effects tiag to
this error, with hardwargedundancy by measuring a
given process variable with different sensbgschecking
the consistency of the raw data. This thitirndive is
selected here ; it is based analytical redundancy by
using the model equations of the proceBse general
procedure oérror detection is classicaly divided into two
main parts :

thegeneration of so-called residuals, which are functions
of measurements that are accentuated by the errors,

the detection, the isolation and the estimatiothef er
ror.

The model of a process generally relates the stateor
X(t) to the input vector u(t) and the output vector y(t)
using the matrices A, B and C. The well-knostate dis
crete equations are written :

X(t+1) = A x(t) + B u(t) (1a)
y(t) = C x(t) (1b)

with x(t), y(t) and u(t) have respective dimensiansm
and |.

After un slight rearangement one eliminatesstate vee
tor x in orderto generate the redundancy equations bet
ween the measured variables. If q isfdrevard shift ope
rator (q u(t) = u(t+1)), equations (1) are rewriten :

y® =C(al-AlBu() )

Defining the observation vector :

Ey(t) E
z(t) = 3
u(t)

we also have :

M(q) z(t) =0 (4)

Applying the equation (4) to thmeasurements yields a
set of residuals which magnitudes are strongly relaied
the measuremerdrrors devices. As it is well known
examination of theseesiduals is achieved to detect and
isolate the failure in the process or in femsors. In pro
cess engineering practise it is@mmon task to use as a
first data screeninmodel that are obtained from material
or energy balance equations ; they give the advaritage
be structurally exa@nd provide a correct analysis of the
residuals which are themnly due to the fault measure
ments. Thease of static balance equations has been po
pular in the chemicadnd mineralurgical engineering lite
rature since two decades ; see by example the appsbach
ten called data reconciliation or balance equilibration.

It is clear that reconciliatioand fault detection use simi
lar techniques ; howevegolation have to precede recon
ciliation and the later shoultk successful only after iso
lating andremoving the eroneous data. Unfortunately, as
it is not always possible to detect all the bad data fitem
rect examination, the reconciliatias performed on the
rawdata ; statistical tests can then be applied to analyse
the obtained estimation. Hence, thethods for gross -er
rors detection can bdivided into two groups : those
which apply a priori, without carryingut the full data
reconciliation, by testing theedundancy equations and
those which aply a posteriori orthe residuals between
the raw measurements and the estimations otdhes
ponding variables. On the applicatipoint of view both
methods are used together in order improve the
robustness of the gross error detecti®gased on this two
approaches, many algorithms have bpeposed. Most
of them concern the field of chemical engineering, but
someof them have been applied in the field of power



plant systenand there is, in fact, no limitation on their
field of application.

In the following, the processes undmnsideration are
described by :

a model equation MX* =0 (5a)
a measurement equation Z=H X" +¢ (5b)

where X is the vector of the process variables, Z the
measurements] the measurements selection matrix and
€ the vector of random errocharacterized by its variance
matrix. For reason of simplicity we focalipeir attention

on static system although equations (5) yields also for
dynamicalsystems as illustrated by equation (4) ; howe
ver, the example in tHast section will be given for dy
namical systems.

1. Data reconciliation

The data reconciliatioproblem involves finding a set of
adjustments to theneasured data such that the adjusted
values satisfy model equations #dllowing the normal
distribution of the measurement errersthis optimiza
tion problem can be stated as :

maximize the probability density function :

1 1 « «
P(2) = o2 [VL2 exp(-;, (Z-HX )T V-1 (Z-HX))

(21
(6)

subjecttoM X =0

When the variance matrix V ismown, the solutiorX of
this problem is given by minimizing the criterion :

1 ho2
(p:§||Z—HX||V-1 (7a)
subject to the constraint M =0 (7b)

When the system is observalftank(MTHT) = dim(X")),
a global resolutiowf problem (7) by the Lagrange mul
tipliers technique leads to the unbiased estimator :

X=(GLl-GIMTMGLIMTyIMGYL) HTvlzZ
G1l=HTV-1IH + MM (8)

This general expressionay be simplify either if all the
variables are measured (H reduces to the idemtéirix)
or if a preliminaryextraction of the redundant part of the
equation is achieved. In this later case equation®dbte
to:

a model equation MrXf =0 (9a)
a measurement equation Z = X/ +¢ (9b)

As this system is structurallglentical to system (5), we
drop the subscript r and equations (8) are appkad
H = I. Some matrix simplificationsr a direct recalcuta
tion of the estimated may be undertaken. This leatieto
classical result :

X = (I-VvMT (MVMTyLlm) z (10)

A
in which X corresponds to the estimation of tieedundant
variables X .

From the formula for the variance of a lineambination

of randomvariables it can be proved that the variance of
the estimated is expressed by :

V=(0-VMT (MVMTy1m) v (12)

The vector E of adjustments (or residuals) tnedresidual
criterion@r are obtained by direct substitution :

E=z-X=vMT (MVMTylm z (12)
OR :% RT (MVM T)1R (13)
whereR=MZ (14)

In order to simplify these expressions, we look fora re
gular matrix T which transforms the matrix Mttee ma
trix A defined by A = T M \/2 with the property :

AAT=| (15)

It can be found that this transformation yields to the or
thogonalisation of the rows tfie matrix M ; the classi
cal Gram-Schmidt procedursay be applied for that pur
pose.

with M = T-1AV-Y2 reported in (10)(11), (12) and
(13), we obtain thestimated, the variance, the residuals,
and the criterion :

X = (1-VY2aT ay-1/2) 7 (16)
V = (l-VATAV (17)
E = VY/2AT av-1/27 (18)
¢R = % ZTv-12AT av-1127 (19)

The formula (10, 11, 12, 13) or equivalenh, 17, 18,
19) completely define the adjustedlues, their variance
and the residual criterion. Unfortunately,oiie or more
gross errofdue by example to a corrupted measurement,
a leak in a physical process or a fluctuatainthe pro
cess) is present in the measurements, the reconciliaftion
data will be stronglyaffected ; moreover, the statistical
hypothesis of purely random errors is not valids then

a necessity to detect and isolate these bad datpré&gent
now the different methods in use to solve this problem.

2. Grosserrorsdetection algorithm
Measurement adjustments analysis
The adjustment vector E can be tested to detgaiss er
ror by analysis the magnitude of its differegtms. From

equation (12) the variance matdk the adjustment terms
may easily be computed :



VE=VMT (MVMTyIM vV (20)

so that elements E(i) of E could be testgdinst the unit
normal variate :

EN() = el
\/VE(l,l)
Instead of E, a linear combination of E £TS E) may
also be used. Moreover the choice S/2 gives the
maximum power test sindewill be expected to exceed,
on absolute value, arother statistic for that error. Thus

it hasthe greatest probability to reject the null hypethe
sis that is no gross error in the data.

fori=1,..,n (22)

Instead of k(i) we may also use the more compact -defi
nition :

En = diag(p) 12 E (22)

Using the matrix A, (22) reduces to :

En = diag(ATA) 112 ATAV-1/2 7 (23)

From these expression, it would éemonstrate later that
when a gross err@xists in the data, the greatest term

En(i) of the vector Iy corresponds to the number of the
corrupted data.

The generalized likelihood ratio method

This method has been introduckg several authors,
among which Willsky andlones (1976). When a gross
error of magnituded is present irthe ith measurement,
we can write :

Z=X+e+dg (24)
where ¢ is the ith vector of the identity matrix.

If no gross error are present (null hypothesiy R has
the following properties :

Exp(R)=0 (25a)
Var(R) = MvMT (25b)

If a gross error ipresent in measurement i (alternative
hypothesis H), we can show that :

Exp(R) =Md g =0 m; (26a)
Var(R) = MvVMT (26b)

where mis the ith column of M.

In order to test the hypothesis, we makeafsthe likeli-
hood ratio test defined in our case by :

_Pr(R1H)

T Pr(R | ) @0

Using the normal probabilitgensity function for R, and
with VR = MVM T, we obtain :

exp(-% (R-5m)T Vi (R -5 m) o
r' =
| exp(-% RTViIR)

Since the log function is monotonic, instead of (2&)
use:

s =2 Log(r) = RT VAR - (R -3 m)TVA(R - 5 mj)
(29)

The computation proceeds in two steps. First, dioy
vector m), we compute the estimate of;, direct search
for the maximum of;syields :

5=m Vi m)l(m! viiR) (30)

Then, substitutinghis value in (29), we obtain the eor
responding value of s

T \ /-
(m; V3 Ry
=t 1 (31)
m; Vg m,
This calculatiorhas to be performed for every vectoy m
and the supremum test is :

s=sup(p i=1,...,n (32)

Let mj the vectotthat leads to the optimum in equation
(32). The test statistic s is compared withrespecified
threshold ; if s igreater than this threshold then a gross
error has been detectethd its magnitude is estimated
with (30).

Residual criterion analysis

Criterion function test
The gross errors (in the linear case) carideatified by
examinatingthe objective function. The quantityg =

ETV-L1E, with E =X - Z, has a chi-square distribution
with the number of degrees of freedom equal to the rank
of A. Thus the imbalancesf the equations can be
globally tesed against tabulatedalues of chi2. If all
gross errors in measurement have bemrectly deleted,
the function@y will be below the thresholdor the chi
square with the appropriate confidencéevel.
Unfortunately, it does not proovéf, the chi-square is
verify, that there are no gross errors in the measurement
set ; a gross error may exist amoaglarge set of
measurements.

A recursive algorithm has also beproposed which re
sults from the deletion of suspect measuremgrstsme
algebraiomanipulation avoids the inversion of large-ma
triceswhich appear in the computation of the projection
matrix. It is shown that if the deletion afsingle measu
rement decreasdbe objective function (in respect to a
statisticaltest), this measurement corresponds to a gross
error.



Criterion sendtivity in regpect to the measurements

Let us consider the expression (13) of tbsidual crite
rion in order to examine theffects on a modificatiohZ

of the measurements Z. As the criterion iguadratic
form in terms of Zwe can directly derive the expression
of the sensitivity vector :

_09R

S=,7= MT (MVMT)y1 Mz (33)

The matrix variance of the sensitivity vector is :

var(S) = M (MVM 1)1 M (34)
and the normalized sensitivity vectgy S
Sy = diag(Var(S))Y/2 s (35)

which can be also expressed with the matrix A :

SN = diag(AA) 12 ATAa v-1/27 (36)
The sensitivity vector may be analyzed in respechéo
error measurement. Using equation (24d neglecting
the random terra gives :

SN = ddiag(ATA) 12 ATA v-1/2 g (37)

If ajj are used for therms of the matrix AA, then the
kth term of  is :

-1/2

-1/2
SN(K) =0 akk Okj Vi (38)

Two of the terms of g are compared with the ratio :

Sn(K) _ -
SNG) o 42 o712

(39)

Using the definition of theerms agj and remembering
the triangulary inequality, it is then clear that tlsiger
ratio is always lesthan one. The greatest term off &
the one which is corrupted by the gross error.

Sequential error detection by measure suppression

A difficulty with this global test is thawhile it indicates

well the presence of gross errdrés not able to identify

the sourcef these errors. The use of a sequential proce
dure allows one to locate the streams which cordain
grosserror. For the set of all process measurements one
first calculates the global tegk ; if an error is indicated

by thetest, all measurements are considered as suspect
candidates. Then, the measurements are "deletzqllien
tially from the process (in groupd size 1, 2, ...). After
each deletiothe global test is again applied. In this ap
proach we wish to assess the effect of deletjpayticular

set ofmeasurement on the objective function and on the
estimations. Moreover, it possible to have the same
approach as the one developped indase of multiple
observer for state reconstruction (Frank, 1988rompa

ring togethethe different estimations obtained after each
deletion.lt is also possible to consider suspect measure

ments by assigning them ainfinite variance. The
corresponding variation a@he criteriong is then used to
detect the pagble gross errors. By isolatirtige measure
ment », for which the variance will be later modifiddt
us consider the following partitioning of the matrices :
M=[M1ma] and X=[X X2] (40)

In the same time, let us consider a modificatforp of

the variance of this measurement. Then wimwle va
riance matrix is written :

V+AV @/1 0 ﬁ 41
+ =

0 wot+Avao (41)
The residual criterion (13) is then modified :
OR+AGR :% RTMT (MV+AVMTYIR  (42)

from which, whenAvs is infinite, the following varia
tion can be deduced :

T T
R Km2m2KR

T (43)
m2Km2

A(m:_

with K = (MvM T)-1

Equation (43pives a simple expression of the reduction
in the objective function when deletirgg single measu
rement. Thenaside from vector-matrix multiplications,
the only computational efforteeded is the calculus of K
which is done once and once only whatagahe suspect
variable.

Equation residuals analysis

Generally, the measurement vec@odoes not satisfy the
constraint equations. With therevious hypothesis of a
gaussian distributiorof the measurement errors, one
shows that the imbalance residuals vector R follews
normal distribution with zero mean and covariange ¥V
VR=MV MT (44)

In order to compare the elements of the R vector, let us
define a normalized imbalancedctor R; whose element

Rp(i) is defined by :

Ru) = o

fori=1,..,n
=(H)!

(45)

Each element (i) has a normatiistribution with a zero

mean and unity variance. Then,simple statistical test
criterion of datainconsistency can be used. From a
cumulative normal distribution table the probabildf
Rp(i) being, for example, in thiaterval of 1.96 to 1.96
is reado be 0.95. Therefore, when \® | > 1.96, we

might say that the inconsistency significant with a
probability of 0.95. Thiglenotes that eqtian i is a bad
equation. Ifwe assume the presence of only one gross



error which affects only orgtream of the process, it has
been established that tleguation which contains this
stream has the bigger residual. Thersiraple exami

nation of the elements of R shows the suspect stream.

Whenseveral gross errors are present, their location is
more complicated. It has been propogkthh, 1982) to
applythe preceding test to each equation and also to the
aggregates of two or more equatiowjch are called
pseudoequations.

Parity space approach

In the absence of gross errors, theasurements depend
on the true values following the linear relation :
Z=HX" +¢ (46)
whereZ is the (v.1) measurement vector, H the (v.m)

measurement matrix, Xthe (m.1) vector of trugalues
ande the(v.1) measurement errors vector with variance V.

Theparity vector is related to the measurement vector Z
throughaprojectionrmatrix W of dimension n.v (n=v-m) :

P=wvl2z (47)

where the matrix W has the following properties :

WH =0
WWwWT =0
WITW =1-Vv12H (HT v-1/2 H)-l HT v-1/2 (48)

Equations of parity show that for nornfahctioning, the
magnitude of parity vector is smglpresence of measu
rement noise). l& failure occurs in only one of the sen
sors, then the parity vector mgsow in a fixed direction
associated witthe failed sensor. Moreover the compo
nentsof the parity vector have the same probability dis
tribution as the measurement errors whichratependent
gaussian with a zero mewsalue. The variance-covariance
matrix of the parity vector P is given by :

Vp=1 (49)

As the variable T= PTV'F}P is the sum of the square of
(v-m) normally distributedvariables, it has a chi-square
probability distribution with (v-m) degrees of freedand
may be compared to the threshcﬁda where é_a is the
value of chi-square a confidence levebi. Once the
detection ofjyross errors has been made, we try to locate
them. For each column }/\bf the projectionmatrix W,

we compute the projection of the parity vector whigh
given by :

-
b Vi P
TRVYAT

(50)

More globally, the projection vector is then given by :

Proj(P/W) = diag(Ww)/2wT p (51)

When the kth sensor is faulty, thdre parity vector P
follows the direction of the ktltolumn of W which is
the greatest projection of P on the axis. Then &feede
tection of several failed sensovge locate those with the
greatest projection. Next, we delete the suspect sams$or
calculatethe detection test after the deletion of each sen
sor. We stop the procedure when the magnitudeeopa

rity vector P corresponding to the remainggnsors no
longer satisfies the detection test.

3. Comparisons
Normalized correctives terms and parity vector
Let us remember the expression of the corrective terms :

En = diag(AT A)-1/2 AT Av-1/2 7
En = diag(AT A)12AT TR

(52a)
(52b)

We note astrong connexion between the expression of
the parityvector projection onto the fault directions (50)
andthose of the corrective terms (52). Therefore, we
examine the equivalence tife playing role of the ma
trices A and W. In order to defingrecisely this equiva
lence, we first proceed witlhe elimination of the cons
traintM X" =0 :

We extract from M its greater regular par{ M
M=[M1 M2] (53)

The vector of true data®™Xmay be decomposed following
this partitionning :

X* = E *1 E (54)
X2

The true data verify the constraint :

My X] + My X5 =0 (55)

As My is a regular matrix, i(may be expressed :

* -1 *
X1 =-Mj M2X2 (56)
We then obtain for the whole vector :

X" =CX, (57)
where :

-1
C= E My MZE with dimension v.(v-n) (58)
I

Then, the measurement equation takera which looks
like (5b) :

X=CXy,+e (59)
The parity vector P is then defined by :
P=wwvl2Zx (60)



According to the preceding formulation, testimation
problemis reduced to find the minimum of the criterion

A
@, in respect tX» :

9=211CXz- X | (61)
the solution yields :

X5 = (CT v-1cyl T v-1/2x (62)
and for the complete vector :

X =CX» (63)
X =c ( v-icyl cTv-1/2x (64)

Moreover, if we compare the estimations (16) and (64) :
ATA=1-v-12c (cTv-1 )l cTy-1/2 (65)

And comparing (48) et (65) :
wiw=ATA (66)
On the other hand, we simply verify that :

WP =ATT R (67)

The equations (66and (67) demonstrate the identity of
the effect of the matrices W and A and alse identity
betweerthe projections of the parity vector (51) and the
vector of the normalizedtorrective terms (52b). The
comparison would be achieved when its canphmved
that A follows thetwo supplementary properties condi
tions givenby Potter and Suman. These conditions may
be easily fulfilled by a judicious choice of the method
used for the orthonormalisation of A.

Orthogonal matrix and sensitivity of the criterion

Sensitivity of the criterion related to a modificationtlo#
measurement variancesan be well studied when an
orthogonal matrix is used. From equation (4®)can be
obtained the criterion variation :

(RKm,)?

AR = Av'2l + mgsz (68)
With the change of matrix :

A=TMV12 (69)
we also have :

M=T1lav-12 (70)
The new incidence matrix A is partitionned :
A=[A;a] (71)
which terms are defined by :

My =T1A v2 (72)

mp =Tt a, v @

Reporting (73) in (68) then gives :

TT_ 12
~ (RTa)
AR avie da, 74
BV T Ay
In the case of an infinite variance, (74) reduces to :
T+T,42
(RTa)
-
%%
In this expression let us remember that & tsansforma
tion matrix (eg69), R is the vector of equation residuals
and & states for the columaf the incidence matrix of
the removed dateorresponding to an infinite variance. It
is then easy to give the influencetbhe removing of a
each measurement lopnsidering that ais one of the
columnsof the matrix A. One then obtain the vector of

the variations of the criterion when each measuremasnt
been successively removed :

Agr = (75)

Agr =-diag @A) T ATTR *ATTR (76)

where the operator .* is used to calculate grezluct of
two vectors element by element.

When comparing (52) and (76} note that the variation
of the criterion dugo a measurement deletion corres
ponds, except for the sign, to the square ofitrenalized
corrective term corresponding to this stream betbee
measurement has been removed.

GLR and comparison
Letus return to expression (31) of the log of the likeli

hood function. By substitutin® by its definition (14)
and H by its definition, we obtain :

€ MTK M2)?

(r7)
e MK Me,

It is clearthat this expression is identical, except for the
sign, to the sensitivity of the criterion obtained in (43).

4. Numerical results

For the class of dynamical systems described by eitpé1)
above described results whapply directly to the filte
ring of both the state and the input.

Xk+1 = A Xk + B Uk (78a)

Yk = C Xk (78b)

On a windowof length N, the constraint equations (78a)
are condensed :

MX =0 (79)



with :
A B -l
. . A B - . . .
M = (80)
. . . . A B - .

where, for simplification, thé." stand for zero blocks,
and with :

X=(Xg Ug X1 Ug X5 Us ... U\)T (81)
The measurement equation (78b) is writen :
Z=HX (82)

As the inputs and only a part of tetate (equation 1b)
are considered tbe measured, we have the following de
finition of the selection matrix H :

C
=TT e (83)
I

When considering thenaximum likelihood, the evalua
tion balance problem consistsrtrieving the minimum

value with respect to Xf the function :

_1 012

0= 5112 - HXI{1 (84)

under the constraint (79) Whe)?(erepresents the vector of
the estimated values and V stands for the variance
covariance matriXthe coeffcients of which being all

known) of the error measurgents.

The solution is given by eqgn (8) wherecén easily be
proved that G is a regular matrix tiie matrix M of
constraints if full row rank. The formula (8) can also
beused only to update the terms "situated" in a window
of a width corresponding to the significaetms of the
projection matrix. Thisvindow width corresponds to the
memory of the procedure ; it is relatedthe matrix of
the state equmn and tothe noise level affecting the
measurements dioth the state X and the control U. As
previously explaied in the first section, theorrective
terms are then computedtheir analysis on a sliding
window allowsthe detection of abnormal changes due to
faulty measumments.

A third order system has been simulated ; the correspon
ding state equations are defined by :

0.77 0.19 0.00 0.053
A=4-039 0.58 0.30 B =40.389
-0.60 -0.45 0.86 0.126

1 0
C:EO OE (85)
0 1

oOr o

In this simulation example, several tests hbgen per
formed in order to improve the detection algoritifhe
figure 1 shows the states and the input measurements;
differents measurements faults have bieearporated (for
state 1 between time 22 and 242, for state 2 betteen
111and 131, for input between time 333 and 343). The
figure 2 gives the evotions of thecorrective terms by
using all the state measements accordingly to the
definition of C. A detection of jumpssing, by example,
the Page-Hinkley test enables the detection of the faults.
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Figure 1 : states and input measurements



Residual 1
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Figure 2 : residuals

In conclusion we havprooved the equivalence of three
tests commonly used fahe gross errors detection pur
pose: parity vector, normalized corrective terms, GLR
test,variation of the residual criterion after measurement
deletion.
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