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BP 40 - Rue du doyen Marcel Roubault
54 501 Vandoeuvre Cedex - FRANCE

Abstract After un slight rearangement one eliminates the state vec-
tor x in order to generate the redundancy equations bet-
ween the measured variables. If q is the forward shift ope-
rator (q u(t) = u(t+1)), equations (1) are rewriten :

After a short view about the fundamental problem of data
reconciliation, the paper presents some majors tests (the
balance residuals analysis known as method of pseudo-
equations, the parity space approach, the analysis of
residuals known as method of measurement test, the
analysis of the sum of squares deviations) and shows their
equivalence.

y(t) = C (q I - A)-1 B u(t) (2)

Defining the observation vector :

z(t) = 






y(t)

u(t)
(3)Introduction

In the last two decades, the problem of detecting and
identifying gross errors in measurements due to biases in
the measuring instruments has been well studied. Several
statistical tests for this purpose have been developped,
such as for example, the constraint test (CT) (Mah and
al., 1976), the measurement test (MT) (Mah and
Tamhane, 1982),  the iterative measurement test (IMT)
method, the screen combinatorial (SC) method (Serth,
1986), the dynamic measurement test (DMT) (Rosenberg,
1987), the generalized likelihood ratio (GLR) test
(Narasimhan, 1987) or the maximum power (MP) test
(Crowe, 1989). There are different ways to identify a large
error : with a theoretical analysis of all effects leading to
this error, with hardware redundancy by measuring a
given process variable with different sensors, by checking
the consistency of the raw data. This third alternative is
selected here ; it is based on analytical redundancy by
using the model equations of the process. The general
procedure of error detection is classicaly divided into two
main parts :

we also have :

M(q) z(t) = 0 (4)

Applying the equation (4) to the measurements yields a
set of residuals which magnitudes are strongly related to
the measurement errors devices. As it is well known
examination of these residuals is achieved to detect and
isolate the failure in the process or in the sensors. In pro-
cess engineering practise it is a common task to use as a
first data screening model that are obtained from material
or energy balance equations ; they give the advantage to
be structurally exact and provide a correct analysis of the
residuals which are then only due to the fault measure-
ments. The case of static balance equations has been po-
pular in the chemical and mineralurgical engineering lite-
rature since two decades ; see by example the approach of-
ten called data reconciliation or balance equilibration.

It is clear that reconciliation and fault detection use simi-
lar techniques ; however, isolation have to precede recon-
ciliation and the later should be successful only after iso-
lating and removing the eroneous data. Unfortunately, as
it is not always possible to detect all the bad data from di-
rect examination, the reconciliation is performed on the
raw data ; statistical tests can then be applied to analyse
the obtained estimation. Hence, the methods for gross er-
rors detection can be divided into two groups : those
which apply a priori, without carrying out the full data
reconciliation, by testing the redundancy equations and
those which apply a posteriori on the residuals between
the raw measurements and the estimations of the corres-
ponding variables. On the application point of view both
methods are used together in order to improve the
robustness of the gross error detection. Based on this two
approaches, many algorithms have been proposed. Most
of them concern the field of chemical engineering, but
some of them have been applied in the field of power

the generation of so-called residuals, which are functions
of measurements that are accentuated by the errors,

the detection, the isolation and the estimation of the er-
ror.

The model of a process generally relates the state vector
x(t) to the input vector u(t) and the output vector y(t)
using the matrices A, B and C. The well-known state dis-
crete equations are written :

x(t+1) = A x(t) + B u(t) (1a)
y(t) = C x(t) (1b)

with x(t), y(t) and u(t) have respective dimensions n, m
and l.



plant system and there is, in fact, no limitation on their
field of application.

X̂ =  (I - V MT (MVM T)-1M) Z (10)

in which X̂ corresponds to the estimation of the redundant
variables Xr* .

In the following, the processes under consideration are
described by :

From the formula for the variance of a linear combination
of random variables it can be proved that the variance of
the estimated is expressed by :

a model equation M X *  = 0 (5a)
a measurement equation Z = H X*  + ε (5b)

where X*  is the vector of the process variables, Z the
measurements, H the measurements selection matrix and
ε the vector of random errors characterized by its variance
matrix. For reason of simplicity we focalize our attention
on static system although equations (5) yields also for
dynamical systems as illustrated by equation (4) ; howe-
ver, the example in the last section will be given for dy-
namical systems.

V̂ = (I - V MT (MVM T)-1M) V (11)

The vector E of adjustments (or residuals) and the residual
criterion φR are obtained by direct substitution :

E = Z - X̂ = V MT (MVM T)-1M Z (12)

φR  = 
1
2
  RT (MVM T)-1R (13)

1. Data reconciliation

The data reconciliation problem involves finding a set of
adjustments to the measured data such that the adjusted
values satisfy model equations (1). Following the normal
distribution of the measurement errors ε, this optimiza-
tion problem can be stated as :

where R = M Z (14)

In order to simplify these expressions, we look for a re-
gular matrix T which transforms the matrix M to the ma-
trix A defined by A = T M V1/2 with the property :

A AT = I (15)maximize the probability density function :
It can be found that this transformation yields to the or-
thogonalisation of the rows of the matrix M ; the classi-
cal Gram-Schmidt procedure may be applied for that pur-
pose.

P(Z) = 
1

(2π)m/2 |V|1/2 exp(- 
1
2
 (Z-HX* )T V-1 (Z-HX* ))

(6)
subject to M X*  = 0

With M = T-1AV-1/2 reported in (10), (11), (12) and
(13), we obtain the estimated, the variance, the residuals,
and the criterion :

When the variance matrix V is known, the solution X̂ of
this problem is given by minimizing the criterion :

X̂ =  (I - V1/2AT AV-1/2) Z (16)
φ = 

1
2
 || Z - H X̂ ||2V-1 (7a)

V̂ =  (I  -  V AT A) V (17)

subject to the constraint M X̂ = 0 (7b) E =  V1/2AT AV-1/2 Z (18)

φR =  
1
2
  ZTV-1/2AT AV-1/2 Z (19)When the system is observable (rank(MTHT) = dim(X* )),

a global resolution of problem (7) by the Lagrange mul-
tipliers technique leads to the unbiased estimator : The formula (10, 11, 12, 13) or equivalently (16, 17, 18,

19) completely define the adjusted values, their variance
and the residual criterion. Unfortunately, if one or more
gross error (due by example to a corrupted measurement,
a leak in a physical process or a fluctuation of the pro-
cess) is present in the measurements, the reconciliation of
data will be strongly affected ; moreover, the statistical
hypothesis of purely random errors is not valid. It is then
a necessity to detect and isolate these bad data. We present
now the different methods in use to solve this problem.

X̂ = (G-1 - G-1 MT (M G-1 MT)-1 M G-1)  HTV-1 Z
G-1 = HTV-1H + MTM (8)

This general expression may be simplify either if all the
variables are measured (H reduces to the identity matrix)
or if a preliminary extraction of the redundant part of the
equation is achieved. In this later case equations (5) reduce
to :

2. Gross errors detection algorithma model equation Mr Xr*  = 0 (9a)
a measurement equation Z = Xr*  + ε (9b) Measurement adjustments analysis

As this system is structurally identical to system (5), we
drop the subscript r and equations (8) are applied with
H = I. Some matrix simplifications or a direct recalcula-
tion of the estimated may be undertaken. This leads to the
classical result :

The adjustment vector E can be tested to detect a gross er-
ror by analysis the magnitude of its different terms. From
equation (12) the variance matrix of the adjustment terms
may easily be computed  :



VE = V MT (MVM T)-1M V (20)

ri  = 
exp(- 

1
2
 (R - δ mi )T VR

-1 (R - δ mi ))

exp(- 
1
2
 RTV R

-1R)
(28)

so that elements E(i) of E could be tested against the unit
normal variate :

EN(i) =  
E(i)

VE(i,i)
     for i = 1, ..., n (21) Since the log function is monotonic, instead of (28) we

use :

Instead of E, a linear combination of E (T = S E) may
also be used. Moreover the choice S = V-1 gives the
maximum power test since it will be expected to exceed,
on absolute value, any other statistic for that error. Thus
it has the greatest probability to reject the null hypothe-
sis that is no gross error in the data.

si  = 2 Log(ri ) = RT V R
-1R - (R - δ mi )TV R

-1(R - δ mi )

(29)

The computation proceeds in two steps. First, for any
vector mi , we compute the estimate of δ ; direct search
for the maximum of si  yields :

Instead of EN(i) we may also use the more compact defi-
nition :

δ = (mi
T
 V R

-1 mi )
-1 (mi

T
 V R

-1 R) (30)

Then, substituting this value in (29), we obtain the cor-
responding value of si  :

EN = diag(VE)-1/2 E (22)

Using the matrix A, (22) reduces to :

si  = 
(mi

T
 V R

-1 R)2

m i
T
 V R

-1 mi

(31)
EN = diag(ATA)-1/2 ATAV-1/2 Z (23)

From these expression, it would be demonstrate later that
when a gross error exists in the data, the greatest term
EN(i) of the vector EN corresponds to the number of the
corrupted data.

This calculation has to be performed for every vector mi
and the supremum test is :

s = sup(si)   i=1, ..., n (32)

The generalized likelihood ratio method
Let  mi  the vector that leads to the optimum in equation
(32). The test statistic s is compared with a prespecified
threshold ; if s is greater than this threshold then a gross
error has been detected and its magnitude is estimated
with (30).

This method has been introduced by several authors,
among which Willsky and Jones (1976). When a gross
error of magnitude δ is present in the ith measurement,
we can write :

Residual criterion analysisZ = X + ε + δ ei (24)

where ei  is the ith vector of the identity matrix. Criterion function test
The gross errors (in the linear case) can be identified by
examinating the objective function. The quantity φR =

ET V-1 E, with E = X̂ - Z, has a chi-square distribution
with the number of degrees of freedom equal to the rank
of A. Thus the imbalances of the equations can be
globally tested against tabulated values of chi2. If all
gross errors in measurement have been correctly deleted,
the function φr will be below the threshold for the chi-
square with the appropriate confidence level.
Unfortunately, it does not proove, if the chi-square is
verify, that there are no gross errors in the measurement
set ; a gross error may exist among a large set of
measurements.

If no gross error are present (null hypothesis H0) R has
the following properties :

Exp(R) = 0 (25a)
Var(R) = MVMT (25b)

If a gross error is present in measurement i (alternative
hypothesis H1), we can show that :

Exp(R) = M δ ei  = δ mi (26a)
Var(R) =  MVMT (26b)

where mi  is the ith column of M.
A recursive algorithm has also been proposed which re-
sults from the deletion of suspect measurements ; some
algebraic manipulation avoids the inversion of large ma-
trices which appear in the computation of the projection
matrix. It is shown that if the deletion of a single measu-
rement decreases the objective function (in respect to a
statistical test), this measurement corresponds to a gross
error.

In order to test the hypothesis, we make use of the likeli-
hood ratio test defined in our case by :

ri  = 
Pr(R | H1)
Pr(R | H0)

(27)

Using the normal probability density function for R, and
with VR = MVMT, we obtain :



Criterion sensitivity in respect to the measurements ments by assigning them an infinite variance. The
corresponding variation of the criterion φ is then used to
detect the possible gross errors. By isolating the measure-
ment x2, for which the variance will be later modified, let
us consider the following partitioning of the matrices :

Let us consider the expression (13) of the residual crite-
rion in order to examine the effects on a modification ∆Z
of the measurements Z. As the criterion is a quadratic
form in terms of Z, we can directly derive the expression
of the sensitivity vector :

M = [ M 1 m2 ]  and  X = [ X1  x2 ] (40)

S = 
∂φR
∂Z

 = MT (MVM T)-1 M Z (33)
In the same time, let us consider a modification ∆v2 of
the variance of this measurement. Then the whole va-
riance matrix is written :The matrix variance of the sensitivity vector is :

V+∆V = 



V1 0

0 v2+∆v2
(41)Var(S) = MT (MVM T)-1 M (34)

and the normalized sensitivity vector SN :
The residual criterion (13) is then modified :

SN = diag(Var(S))-1/2 S (35) φR+∆φR = 
1
2
  RT MT (M(V+∆V)MT)-1 R (42)

which can be also expressed with the matrix A : from which, when ∆v2 is infinite, the following varia-
tion can be deduced :

SN  = diag(ATA)-1/2 ATA V-1/2 Z (36)

∆φR = - 
RTKm2m2

TKR

m2
TKm2

(43)The sensitivity vector may be analyzed in respect to the
error measurement. Using equation (24) and neglecting
the random term ε gives :

with K = (MVM T)-1
SN  = δ diag(ATA)-1/2 ATA V-1/2 ei (37)

Equation (43) gives a simple expression of the reduction
in the objective function when deleting a single measu-
rement. Then, aside from vector-matrix multiplications,
the only computational effort needed is the calculus of K
which is done once and once only whatever is the suspect
variable.

If α ij  are used for the terms of the matrix ATA, then the
kth term of SN is :

SN(k) = δ α kk
-1/2

 αki  v ii
-1/2

(38)

Two of the terms of SN are compared with the ratio : Equation residuals analysis
SN(k)
SN(i)

 = 
αki

α kk
-1/2

 α ii
-1/2 (39) Generally, the measurement vector Z does not satisfy the

constraint equations. With the previous hypothesis of a
gaussian distribution of the measurement errors, one
shows that the imbalance residuals vector R follows a
normal distribution with zero mean and covariance VR :

Using the definition of the terms αki  and remembering
the triangulary inequality, it is then clear that this latter
ratio is always less than one. The greatest term of SN is
the one which is corrupted by the gross error. VR = M V MT (44)

Sequential error detection by measure suppression In order to compare the elements of the R vector, let us
define a normalized imbalanced vector RN whose element
RN(i) is defined by :

A difficulty with this global test is that while it indicates
well the presence of gross errors it is not able to identify
the source of these errors. The use of a sequential proce-
dure allows one to locate the streams which contain a
gross error. For the set of all process measurements one
first calculates the global test φR ; if an error is indicated
by the test, all measurements are considered as suspect
candidates. Then, the measurements are "deleted" sequen-
tially from the process (in groups of size 1, 2, ...). After
each deletion the global test is again applied. In this ap-
proach we wish to assess the effect of deleting a particular
set of measurement on the objective function and on the
estimations. Moreover, it is possible to have the same
approach as the one developped in the case of multiple-
observer for state reconstruction (Frank, 1989) by compa-
ring together the different estimations obtained after each
deletion. It is also possible to consider suspect measure-

RN(i) = 
R(i)

VR(i,i)
   for i = 1, ..., n (45)

Each element RN(i) has a normal distribution with a zero
mean and unity variance. Then, a simple statistical test
criterion of data inconsistency can be used. From a
cumulative normal distribution table the probability of
RN(i) being, for example, in the interval of 1.96 to 1.96
is read to be 0.95. Therefore, when | RN(i) | > 1.96, we
might say that the inconsistency is significant with a
probability of 0.95. This denotes that equation i is a bad
equation. If we assume the presence of only one gross



error which affects only one stream of the process, it has
been established that the equation which contains this
stream has the bigger residual. Then, a simple exami-
nation of the elements of R shows the suspect stream.

When the kth sensor is faulty, then the parity vector P
follows the direction of the kth column of W which is
the greatest projection of P on the axis. Then after the de-
tection of several failed sensors, we locate those with the
greatest projection. Next, we delete the suspect sensor and
calculate the detection test after the deletion of each sen-
sor. We stop the procedure when the magnitude of the pa-
rity vector P corresponding to the remaining sensors no
longer satisfies the detection test.

When several gross errors are present, their location is
more complicated. It has been proposed (Mah, 1982) to
apply the preceding test to each equation and also to the
aggregates of two or more equations, which are called
pseudoequations.

3. Comparisons
Parity space approach

Normalized correctives terms and parity vector
In the absence of gross errors, the measurements depend
on the true values following the linear relation : Let us remember the expression of the corrective terms :

Z = HX*  + ε (46) EN = diag(AT A)-1/2 AT AV-1/2 Z (52a)
EN = diag(AT A)-1/2 AT T R (52b)

where Z is the (v.1) measurement vector, H the (v.m)
measurement matrix, X*  the (m.1) vector of true values
and ε the (v.1) measurement errors vector with variance V.

We note a strong connexion between the expression of
the parity vector projection onto the fault directions (50)
and those of the corrective terms (52). Therefore, we
examine the equivalence of the playing role of the ma-
trices A and W. In order to define precisely this equiva-
lence, we first proceed with the elimination  of the cons-
traint M X*  = 0 :

The parity vector is related to the measurement vector Z
through a projection matrix W of dimension n.v (n=v-m) :

P = W V-1/2 Z (47)

where the matrix W has the following properties : We extract from M its greater regular part M1 :

W H = 0 M = [ M 1  M2 ] (53)
W WT = 0
WT W = I - V-1/2 H (HT V-1/2 H)-1 HT V-1/2 (48) The vector of true data X*  may be decomposed following

this partitionning :
Equations of parity show that for normal functioning, the
magnitude of parity vector is small (presence of measu-
rement noise). If a failure occurs in only one of the sen-
sors, then the parity vector may grow in a fixed direction
associated with the failed sensor. Moreover the compo-
nents of the parity vector have the same probability dis-
tribution as the measurement errors which are independent
gaussian with a zero mean value. The variance-covariance
matrix of the parity vector P is given by :

X*  = 






X1

*

X2
* (54)

The true data verify the constraint :

M1 X1
*  + M2 X2

*  = 0 (55)

As M1 is a regular matrix, X1
*  may be expressed :

X1
*  = - M1

-1 M2 X2
* (56)VP = I (49)

We then obtain for the whole vector :As the variable c2 = PTV-1
PP is the sum of the square of

(v-m) normally distributed variables, it has a chi-square
probability distribution with (v-m) degrees of freedom and

may be compared to the threshold c2
1-α where c21-α is the

value of chi-square at a confidence level α . Once the
detection of gross errors has been made, we try to locate
them. For each column Wj  of the projection matrix W,
we compute the projection of the parity vector which is
given by :

X*  = C X2
* (57)

where :

C = 






- M

-1
1  M2
  I

   with dimension v.(v - n) (58)

Then, the measurement equation take a form which looks
like (5b) :

Pj  = 
Wj

T P

|| Wj ||
(50)

X = C X2
*  + ε (59)

The parity vector P is then defined by :

More globally, the projection vector is then given by :
P = W V-1/2 X (60)

Proj(P/W) =  diag(WTW)-1/2 WT P (51)



According to the preceding formulation, the estimation
problem is reduced to find the minimum of the criterion

φ, in respect to X̂2 :
m2 = T-1 a2 v-1/2

2 (73)

Reporting (73) in (68) then gives :
φ = 

1
2
 || C X̂2 - X ||2 (61)

∆φR = -  
(RTTTa2)2

v2∆v-1
2  + aT

2a2

(74)the solution yields :

X̂2 = (CT V-1C)-1 CT V-1/2X (62)

and for the complete vector : In the case of an infinite variance, (74) reduces to :

X̂ = C X̂2 (63)

∆φR = -  
(RTTTa2)2

aT
2a2

(75)X̂ = C (CT V-1C)-1 CT V-1/2X (64)

Moreover, if we compare the estimations (16) and (64) :
In this expression let us remember that T is a transforma-
tion matrix (eq 69), R is the vector of equation residuals
and a2 states for the column of the incidence matrix of
the removed data corresponding to an infinite variance. It
is then easy to give the influence of the removing of a
each measurement by considering that a2 is one of the
columns of the matrix A. One then obtain the vector of
the variations of the criterion when each measurement has
been successively removed :

AT A = I - V-1/2C (CTV-1 C)-1 CTV-1/2 (65)

And comparing (48) et (65) :

WT W = AT A (66)

On the other hand, we simply verify that :

WT P = AT T  R (67)

∆φR = - diag(ATA)-1 ATT R .* ATT R (76)The equations (66) and (67) demonstrate the identity of
the effect of the matrices W and A and also the identity
between the projections of the parity vector (51) and the
vector of the normalized corrective terms (52b). The
comparison would be achieved when its can be proved
that A follows the two supplementary properties condi-
tions given by Potter and Suman. These conditions may
be easily fulfilled by a judicious choice of the method
used for the orthonormalisation of A.

where the operator .* is used to calculate the product of
two vectors element by element.

When comparing (52) and (76) we note that the variation
of the criterion due to a measurement deletion corres-
ponds, except for the sign, to the square of the normalized
corrective term corresponding to this stream before the
measurement has been removed.

Orthogonal matrix and sensitivity of the criterion
GLR and comparison

Sensitivity of the criterion related to a modification of the
measurement variances can be well studied when an
orthogonal matrix is used. From equation (42), its can be
obtained the criterion variation :

Let us return to expression (31) of the log of the likeli-
hood function. By substituting R by its definition (14)
and H by its definition, we obtain :

∆φR = -  
 (RTKm2)2

∆v-1
2  + mT

2Km2

(68)
si = 

(ei
T
 MT K M Z)2

ei
T
 MT K M ei

(77)

With the change of matrix : It is clear that this expression is identical, except for the
sign, to the sensitivity of the criterion obtained in (43).

A = T M V1/2 (69)

4. Numerical results
we also have :

For the class of dynamical systems described by eq (1) the
above described results when apply directly to the filte-
ring of both the state and the input.

M = T-1 A V -1/2 (70)

The new incidence matrix A is partitionned  :
Xk+1 = A Xk + B Uk (78a)

A = [ A1 a2 ] (71) Yk = C Xk (78b)

On a window of length N, the constraint equations (78a)
are condensed :

which terms are defined by :

M1 = T-1 A1 V-1/2
2 (72)

M X̂  =  0 (79)



In this simulation example, several tests have been per-
formed in order to improve the detection algorithm. The
figure 1 shows the states and the input measurements;
differents measurements faults have been incorporated (for
state 1 between time 22 and 242, for state 2 between time
111 and 131, for input between time 333 and 343). The
figure 2 gives the evolutions of the corrective terms by
using all the state measurements accordingly to the
definition of C. A detection of jumps using, by example,
the Page-Hinkley test enables the detection of the faults.

with :

M = 









A B -I . . . . .

. . A B -I . . .

. . . . A B -I .

. . . . . . . .

(80)

where, for simplification, the "." stand for zero blocks,
and with :

-20
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40

0 100 200 300 400 500

State measure 1
X = ( X0  U0  X1  U1  X2  U2 … UN )

T (81)

The measurement equation (78b) is writen :

Z = H X (82)

As the inputs and only a part of the state (equation 1b)
are considered to be measured, we have the following de-
finition of the selection matrix H :

H = 









C . . . . . . .

. I . . . . . .

. . C . . . . .

. . . I . .

(83)

-20

-10

0

10

20

30

40

0 100 200 300 400 500

State measure 2

When considering the maximum likelihood, the evalua-
tion balance problem consists in retrieving the minimum

value with respect to X^  of the function :

φ  =   
1
2
  || Z  -  H X̂ ||

2
V-1 (84)

under the constraint (79) where X̂ represents the vector of
the estimated values and V stands for the variance-
covariance matrix (the coefficients of which being all
known) of the error measurements.
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State measure 3

The solution is given by eqn (8) where it can easily be
proved that G is a regular matrix if the matrix M of
constraints is of full row rank. The formula (8) can also
be used only to update the terms "situated" in a window
of a width corresponding to the significant terms of the
projection matrix. This window width corresponds to the
memory of the procedure ; it is related to the matrix of
the state equation and to the noise level affecting the
measurements of both the state X and the control U. As
previously explained in the first section, the corrective
terms are then computed ; their analysis on a sliding
window allows the detection of abnormal changes due to
faulty measurements.
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A third order system has been simulated ; the correspon-
ding state equations are defined by :

A = 






0.77 0.19 0.00

-0.39 0.58 0.30
-0.60 -0.45 0.86

B = 






0.053

0.389
0.126 Figure 1 : states and input measurements

C = 






1 0 0

0 1 0
0 0 1

(85)
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