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Abstract

A systematic design procedure is developed for determining
unknown inputs of a dynamic system. The results
presented in this paper can be used directly for the design
of fault detection and isolation observers for systems with
unknown inputs or for systems with faulty inputs.

1.   Introduction

In the last several years, considerable attention has been
focused on the design of observer for linear systems with
unknown inputs. Johnson (1975) and Hostetter (1973)
proposed methods which assume some a priori knowledge
about the unmeasurable inputs; this may impose some
limitations. Kobayashi (1982) suggested an approach
which follows Silverman's system inverse method. Using
the simplest matrix generalised inverse, a procedure has
been established by Miller (1982) for the construction of a
reduced-order Luenberger observer. Necessary and sufficient
conditions for the existence of an observer for linear
multivariable systems with unknown inputs have been
presented by Kudva (1980) and Kurek (1983). Fairman
(1984) proposed a method of designing a Luenberger
observer capable of determining the state of a system
having some inputs which are completely unknown; this
method is based on singular value decomposition
technique. Yang (1988) developed a direct design procedure
of a full order observer using straightforward matrix
calculation. The case of singular systems with unknown
inputs has been discussed by Yang (1989). Recently, Hou
(1992) suggested a design of reduced-order observer with
some comparison within the framework of descriptor
system observers design principles.

In that recent paper, Hou presents a design of reduced-order
observers for linear systems with unknown inputs. He
proposes to decompose the state equation of the system
into two subsystems; the first one depends on the
unknown inputs and, in the second one, the unknown
inputs may be dropped. Under the assumption that the
state of the second subsystem may be obtained through the
measurement equation, he designs a reduced-order observer
for the unknown inputs. However, they are many
situations in which this hypothesis does not hold and
therefore we suggest an alternative method.

In this paper, the procedure proposed by Hou is briefly
presented with some modification, then a straightforward
treatment allowing the unknown input estimation is
proposed.

2.   The basic procedure

Consider the linear time-invariant system

x(k+1) = A x(k) + B u(k) + D d(k) (1a)
y(k) = C x(k) (1b)

where x ∈ Rn, u ∈  Rp, y ∈  Rm, d ∈  Rs  are respectively
the state vector, the input vector, the measurement vector
and the unknown input vector. The matrices A, B, C and
D are constant with appropriate dimensions. Without loss
of generality, we assume that C is a full row rank matrix
and that D is a full column rank matrix. This last
assumption yields the decomposition:

D = H 



R

0
  KT (2)

where H ∈ Rn.n, R ∈ Rs.s, K ∈ Rs.s.

The system (1) is restricted system equivalent to:

x
_
(k+1)  = A

_
 x
_
(k)  + B

_
  u(k) + 



R

0
 d
_
(k) (3a)

y(k) = C
_

 x
_
(k) (3b)

where:

A
_

  = HT A H B
_

  = HT B C
_

  = C H (4a)
x
_
(k)  = HT x(k) (4b)

d
_
(k)  = KT d(k) (4c)

The partitioning of x
_
  into (x

_
 1  x

_
 2)T where x

_
 1 ∈ Rs and

x
_
 2 ∈ Rn-s, points out the decomposition of the system (3)

into an unknown-input depending subsystem and an
unknown-input-free subsystem:

x
_
 1(k+1) = A

_
 1 1 x

_
 1(k) + A

_
 1 2 x

_
 2(k) + B

_
 1 u(k) + R d

_
(k) (5a)

x
_
 2(k+1) = A

_
 2 1 x

_
 1(k) + A

_
 2 2 x

_
 2(k) + B

_
 2 u(k) (5b)

y(k) = C
_

 1 x
_
 1(k) + C

_
 2 x

_
 2(k) (5c)

with C1 ∈ Rm.s  and  C2 ∈ Rm.(n-s).

As R is a regular matrix, the equation (5a) may be used to
estimate the unknown input d

_
(k) (or equivalently d(k)) .

Under the assumption that the state x
_
 1(k) may be obtained

from y(k), equations (5b) and (5c) describe a dynamic linear
system which depends on x

_
 2(k) only. Thus, following

Hou and Müller works, C
_

 1 is supposed to be a full
column rank matrix and may be expanded as:

C
_

 1 = H1 



R1

0
  K

T

1  (6)



with H1 ∈ Rm.m, R1 ∈ Rs.s and  K1 ∈ Rs.s. Let us consider
the partition H1 = (H1 1  H1 2) where H1 1 ∈  Rm.s, H1 2 ∈
Rm.(m-s) and the transformed output y

_
(k)  = H

T
1  y(k). Then,

the measurement equation may be decomposed:

y
_
 1(k) = R1 K

T
1 x

_
 1(k) + H

T
1 1 C

_
 2 x

_
 2(k) (7a)

y
_
 2(k) = H

T
1 2 C

_
 2 x

_
 2(k) = C2 x

_
 2(k) (7b)

It should be noticed that:

y
_
 1(k) = G

T
s   y

_
(k) (8)

with:  G
T
s   = ( Is      0s.(m-s) ) ∈ Rs.m

As R1 and  K
T
1  are regular, one can deduce from (7a):

x
_
 1(k) = K1 R

-1
1

 
 G

T
s   H

T
1 (y(k) - C

_

2 x
_

2(k)) (9)

Sustituting (9) into (5b) leads to:

x
_
 2(k+1) = A2 x

_
 2(k) + B2 u(k) + D2 y(k) (10)

with:

A2 = A
_

 2 2 - A
_

 2 1 K1 R
-1
1   G

T
s   H

T
1 C

_
 2 (11a)

B2 = B
_

 2 (11b)

D2 = A
_

 2 1 K1 R
-1
1   G

T
s   H

T
1 (11c)

After the elimination of the unknown inputs, the system
is described by the state equation (10) and the measurement
equation (7b). As suggested by Hou, following the
conventional Luenberger observer design procedure, one
can design a reduced-order observer for the unknown-input
free system (10)-(7b). However, this design is conditioned
by the detectability of the pair {A2, C2}. A full order

observer can be written as:

x
_̂
 2(k+1) = (A2 - LC2) x

_̂
 2(k) + B2 u(k) + (D2 + LH

T

1 2 )

y(k)
(12)

In order to obtain an estimation of the unknown inputs,
one uses the definition (4c) and the equation (5a), in which
the state x

_
 1(k) has to be eliminated:

d̂(k)  = K R-1 ((q I - A
_

 1 1)  x
_
 1(k) - A

_
 1 2 x

_
 2(k) - B

_
 1 u(k))(13)

d̂(k)  = α(q) y(k) + β(q) x
_
 2(k) + γ(q) u(k) (14)

with:

α(q) =  K R-1 (q I - A
_

 1 1) K1 R
-1
1   G

T
s   H

T
1 (15a)

β(q) = - K R-1 (A
_
 1 2 + (q I - A

_
 1 1) K1 R

-1
1   G

T
s   H

T
1 C

_
 2)(15b)

γ(q) = - K R-1 B
_

 1 (15c)

3.   Examples

Let us consider the following discrete system:

A = 





-1 1 0

-1 0 0

0 -1 -1

     B = 





1

0.5

1

     C = 





1 0 0

0 0 1
     D = 






-1

0

0

 

Following (2), it could be verified that:

H = 








-1 0 0

0 1 0

0 0 1

 K = 1 R = 1

The change of variables (4) yields:

A
_

  = 








-1 -1 0

1 0 0

0 -1 -1

 B
_

  = 








-1

0.5

1

 C
_

  = 



-1 0 0

0 0 1
 

and the state equations (5) are expressed:

x
_
 1(k+1) = - x

_
 1(k) + (-1   0) x

_
 2(k) - u(k) + d(k)

x
_
 2(k+1) = 



1

0
 x
_
 1(k) + 



0 0

-1 -1
 x
_
 2(k) + 



0.5

1
  u(k)

y(k) = 



-1

0
 x
_
 1(k) + 



0 0

0 1
 x
_
 2(k)

The unknown input is estimated by:

d̂(k)  = - (q + 1) y.1(k) + x
_̂

 
2.1(k) + u(k)

where z.i denotes the ith entry of the vector z.

In order to illustrate the non-applicability of the method
proposed by Hou, let us consider the following fourth-
order dynamic system described by:

A = 









-1 0 -1 0

0 1 0 1

1 0 0 0

0 1 0 -1

   B = 









-1

0

0.5

0

   C = 



-1 1 0 0

0 0 0 1
   D = 









1 0

0 0.5

0 0

0 0

 

For this example, it is clear that:

C
_

 1 = 



-1 1

0 0
 

As C
_

 1 is not a full column rank matrix the decomposition
(6) does not hold and the deduction of the sub-state x

_
 2(k)

from the measurement equation is not possible. However,
the estimation of the unknown input may be achieved.
Indeed from the decomposition (5) one obtains:

x
_
 1(k+1) = 



-1 0

0 1
 x
_
 1(k) + 



-1 0

0 1
 x
_
 2(k)

                       + 



-1

0
  u(k) + 



1 0

0 0.5
 d
_
(k) (16a)

x
_
 2(k+1) = 



1 0

0 1
 x
_
 1(k) + 



0 0

0 -1
 x
_
 2(k) + 



0.5

0
  u(k)

(16b)

y(k) = 



-1 1

0 0
 x
_
 1(k) + 



0 0

0 1
 x
_
 2(k) (16c)

Then, equation (16b) allows x
_
 1(k) to be expressed as a

function of x
_
 2(k) and u(k); therefore, from (16c), x

_
 2(k)

may be deduced.

x
_
 2(k) =  - 

1

q
 



1 -(q+1)

0 -q
  y(k) + 

1

q
 



0.5

0
  u(k) (17a)



x
_
 1(k) =  



-1 q+1

0 q+1
  y(k) (17b)

Substituting the state variables in (16a), the expression of
the unknown input is obtained as:

d
_
(k)  = 











-(q+1+
1

q
)

(q+1)(q2+q+1)

q

0 2(q2-2)

  y(k) + 










1+
0.5

q

0

  u(k)

(18)

4.   The  proposed solution

In the case where the matrix C
_

 1 is not of full row rank,
the decomposition (6) is not available. In order to be
independent of this hypothesis, consider once again the
equations (5). They form a linear system in respect with
the states x

_
 1(k), x

_
 2(k) and the unknown inputs d

_
(k) . As

R is a regular matrix and due to the fact that d
_
(k)  is only

present in equation (5a), this equation may be used to
estimate d

_
(k) . The remaining equations (5b) and (5c) are

then used to determine the states x
_
 1(k) and x

_
 2(k). A

global approach for this estimation may be achieved by
rewriting the system (5) as:

N
x 1(k)

x 2 (k)

 

 
 

 

 
 = N

u(k)

y(k)

 

 
 

 

 
 + Pd (k) (19)

with:

M =

−A 2 1

C 1

qI −A 1 1

qI − A 2 2

C 2

−A 1 2

 

 

 
 
 

 

 

 
 
 

 ,   N =

B 2

0

B 1

0

I

0

 

 

 
 
 

 

 

 
 
 
 ,   P=

0

0

R

 

 

 
  

 

 

 
  

(20)

If Ω(q) = (ω1(q)  ω 2(q)  ω 3(q)) is a matrix orthogonal to
M (this is not a tedious task because M is a binomial
matrix (Gantmacher, 1959)), one may deduce from (19) the
relationship between the unknown inputs d

_
(k)  and the

known inputs and outputs u(k) and y(k):

Ω(q) N
u(k)

y(k)

 

 
 

 

 
 + Pd (k)

 

 
 

 

 
 = 0 (21)

or with an appropriate partitioning of Ω:

(ω1(q)B
_

 2 + ω3(q)B
_

 1)) u(k) + ω2(q)y(k) + ω 3(q)R d
_
(k)  =

0
(22)

The unknown inputs are then estimated after analysing the
rank of the polynomial matrix ω3(q)R. For the proposed

example, one obtains:

M = 









-1 0 q 0

0 -1 0 q+1

-1 1 0 0

0 0 0 1

q+1 0 1 0

0 q-1 0 -1

  N = 









0.5 0 0

0 0 0

0 1 0

0 0 1

-1 0 0

0 0 0

  P = 









0 0

0 0

0 0

0 0

1 0

0 0.5

 

For example, the following matrix Ω is orthogonal to M:

Ω = 



0 q-1 0 2-q2 0 1

1 -(1+q+q2) -(1+q+q2) (1+q)(1+q+q2) -q 0
 

With:

N
u(k)

y(k)

 

 
 

 

 
 + Pd (k) =

0.5u(k)

0

y.1 (k)

y.2 (k)

− u(k) + d .1(k)

0. 5d .2 (k)

 

 

 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 

one may verify that the equation (21) allows one to obtain
directly the estimations (18) of d(k) founded from the state
equations of the system.
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