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GENERATION OF PARITY EQUATIONS FOR SINGULAR SYSTEMS
APPLICATION TO DIAGNOSIS
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BP 40 - Rue du doyen Marcel Roubault
54501 Vandoeuvre les Nancy Cedex - FRANCE
Phone : (33) 83503080 Fax: (33) 83503096

Abstract - In this paper, we show how the generation adaptation of control law to reduce failure effects @mhiring
of parity equations technique can beextended to a of defective components.

singular system. The decomposition of a singular
system into two subsystemsa slow and a fast

; k To detect anomalies, one approach consists in using a
subsystems, allowss to generalize the technique

used for standard systems. For an observation process model tcontrol the process behaviour. In this way,
horizon with finished Iengfh the systemoutput WEUSE the analytical redundancy which connects the process

can be particularly expressed in terms ofhe initial  INPUts and outputs owing to the model. If this lattemoisect

and terminal state and the inputs; then, the (i.e.if it provides a reliable image of processhavior), we
elimination of these two particular states provides can check the appropriatenessmefasurements carried out on

the desired parity equations whichcan be used for the process with the model; a non-null deviation can be a
diagnosis. result of component failure of theghysical system, or of
actuator and/or sensor failures.

I INTRODUCTION In general, the use of models allows us generate

. . . eviation variables called residuals representitlie
The process dlagnOS|spses¢ntIy the major task entruste unctioning ofthe system. A residual can be the deviation
to calculators that supervise systems. The precocio

Hétween the system output and the output predictednb
detection of unexpected problemsfunctioning may help to W Y Lipu Uipue preci y

o . . > 9 observer or a Kalman filter. In normal conditions, tesidual
avoid inducing the process inteatical functioning zone by g giatistically null; in the presence of failurds,takes a
modifying the control law. As known, the diagnosis \ 5,6 whoseamplitude and direction are connected to the
comprises three important steps: the evdatection, the 5 acteristics of these failures.
prognostic and the logic decision.

. . - . A lot of research has been done on emeration of
The event detection consistsdetermining, at any time, | aciquals [1], [2],[3]. The techniques use the direct

thedproces$ state ?f functioning b?hd’”%al or aé)normal and rejationships between the inpuend the outputs of the
to detect its evolution. Some dhe detected events arequciem  (ransfer functionapproach), the error of

feconstruction issued from a system outpbserver (for
control system and/duy the operator; the others result fro.mexample a Kalman filteinnovation sequence), the sequence
control system oprocess failure. Therefore, the detectionenerated during the identification of system parameteiteor
oughtto be completed by a recognition phase which is abfg,nqancy generated by observing the sysiama finished
to classify and taecognize the real failures. After that, an, g izon (parity space technique). Ve interested in this

isolation step ismecessary to localize the failures and agychniguedeveloped initially for static systems [4] then
estimation procedurellows the failure characteristics to begyianded to dynamic systems [5], [6]. Theneration of

determined; i.e. the amplitude and the duratdnfailures. o equations for singular svstems has not been
The function of prognostic is to define the probablelution geve){opgd a lot it is the g%al of oﬁr contribution. b

of failure and its consequenaes the process functioning. In
some cases, the prognostic cannot be establlsteiise of
lack of information; so it is necessary to wait for more Il. THE REPRESENTATION OF SINGULAR SYSTEMS
precise recognition of failure characteristics to makeeter

prognostic. Finally, the decision constitutes the agias@ of ~ We consider thelass of singular systems described by the
the diagnosis: in terms of the typetbé failures and of their following discrete equations:

foreseeable consequences, the controldaght to be adapted

or reconfigured irorder to maintain the process objectives. E x(k+1) = A x(k) + B u(k) (1a)

For some failure types, the contfalv is not modified and a  y(k) = C x(k) (1b)
maintenance of the defective components is domange of a

sensor for example). Far process with technological risk, where A and E1 R"-N B [0 RM-M C [0 RP-N x [0 RN,

two modes of intervention are generaliged: immediate \; 0 RM and yOJ RP



As it is well-known [7], [8], for anywo matrices E and A .k -1 k-i-1 .
of the samalimensions, there always exist two non-singular X1(K) = A1 x1(0) + 2 A1 Bpu() (5a)
matrices P and Q such that:

Q E P = diag¢{1, N) (2a) xo(K) = NK xo(L) - g Nt B u(i-1) (5b)
Q AP =diag(A, In2) (2b) =k+1
where: The pair (4(0), xo(L)) forms a complete conditiowhich

enables to estimate tlstate and the output of the system as
nL+m=n follows:
A1 DO Rnl.nl, N [J RN2.n2
1K)
and N is a nilpotenmatrix with an index h (this property x(k) =P @2(@
will not be used in the sequel).

k -1 k-i-1 .
With the change of variables: x(k) =P Ep (A1 x1(0) + %Al " By u())
1=
L-k i-k-1
= F)@1(@ FPRN X0 - g N By (1) (6a)
2(K) i=k+1
where x O RM, xo O RN2, the system (1) carbe y(k) =Cx(k) (6b)
partitioned under the following form: | 0
xi(k+1) = Ag xa(K) + By u(k) (3a) WIhE1= Eo Ea”d B= E | E
N x2(k+1) = x(K) + B2 u(k) (3b)
y(K) = Crxa(k) + G2 x2(k) (3¢) This general form provides the state and the output of the
system at eacimoment in function of the input sequence. It
- 1 presents the particularity to depend onimitial state and a
where CP =(¢ C)andQB :@2@ terminal state; moreover, the solutied the moment k

depends not only on the previoimputs but also on the

This form is said to be the first standard decompositian ofUture inputs until the end of the observation horizon L.

singular system. The subsystem (8ajresponds to the slow
mode and the subsysteif8b) to the fast one. The lIl. PRINCIPLE OF REDUNDANCIES GENERATION
measurement equation (3c) couples the two subsystems.

. : . As previously mentioned, the fundamental ideaesidual
_ Now, we consider the series of values obtained Dyeneration consists in using some existirgundancies
integrating (lapetween 0 and L. We assume that L > Mheqyeen different variables of the systefhis redundancy
The system states x(k) agenerated from the series u(0), ...may taketwo essential forms: the direct redundancy or the

u(L): hardware redundancy (relation betwdbe sensor outputs at

each moment) and th&emporal redundancy or analytic

AE . .. (0) u(0) redundancy (time-dependant relatidietween the actuator
-AE .. (2) ; inputs and the sensor outputs). The use of tmekions

(4) allows us to compare the system outpufbe residuals
obtained from this comparisaonstitute a measurement of
the non-functioning of the process or of its control system.

AE . HH. .
. -AE L) u(L)

Let us consider the procedsscribed by the state equations

Under the regularity of theystem, Det(q E - A 0, (1). The direct redun_dancy betwettre sensors will exist if
Luenberger [9] has shown that a complete solutiorihef one of the sensor signal can be valued, at each motment,
state equation (4) may be obtained wheff@mn x(0) or from the other sensor signals. Th|s corres.ponds teituation
x(L); moreover, the solution is unique. The equivalemm Where some rows of the matrix C are lineatgpendant. In
(3) iswell adapted to the search of this solution. Indeed, tfiis case, we can find a matdx which satisfies:
equation (3a) is integrated the forward direction from the
initial condition x (0) and the equation (3a)iigegrated from Q2 C=0 (7)

the terminal condition (L) in the backward direction: ) ) .
This allows the redundancy relation to be written as:



QyK =0 (®) ﬁq EC‘ A (E)‘ ‘_)l ﬁ Et; éz @ﬁ (13)

This relation holds when all sensaage well-functioning. (k)
Should it be otherwise, one defines a residual vector r(k): ] . )
Let wxq) a vector with appropriate size such that:
r(k) =Q y(k) 9
T E-AL
wherethe amplitude and the direction characterize the output® (@) C =0 (14)

failure. So, the direct redundancy allowstasdetect and to
localize (with respect to some isolabiligonditions) the
sensor failures. But it is ineffective to supervise phacess
actuators. The temporal redundancy conneitis input
variables and theutput variables during the time. Then it
allows us to detect the actuator and skasor failures. The
generationof these redundancies may directly be obtained Q) @LB 0 ﬁ@;(k) ﬁ: 0
from the processtate equations. From the model (1) with 0 -l (K)
square matriced and E, the unknown state x(k) of the

system can be easily eliminated: Numerically, theonly difficulty consists to solve the
equation (14) with regar . The solution can be searched
y(K)-C(@E-A)LBuk) =rK (10)  under a polynomial formu(@) = wg + q Wy + ... + d W
The coefficientswy arethen solutions of a simple linear
system andnoreover it is possible to define, a priori, the
index value j [7].

The solutions seaif (14) constitutes the matri&(q). The
redundancy equations atieen obtained by multiplying (13)
by QW:

(15)

When failures do not occuhe vector r(k) is equal to zero
at each moment. It is sensitive to prociegait and output
failures; indeed, by a simple differentiation, we obtain:

Ay(K) IV. GENERATION OF PARITY EQUATIONS
(1 -C(qE—A)lB)ﬁ Q:Ar(k) (11)
ADu(k) Previously, we have establishin® expression of the state
x(k) and the output y(k) interms of the sequence of the
inputs u(k). The obtained solution depends onrihial state
x1(0) and on the terminal state(k). The elimination of

these particular stategllows the parity equations to be

This equation connects the amplitudes of the seastr
actuator failuredy(k) andAu(k), to the residuabne Ar(k).
This form allows ugo state some simple rules for failure

detection and isolation. ';%r, failure dete(?tlon of e deduced fronthis expression. Remember that the aim of the
actugtor to be dete::LctabIe',t dgolumnof the inverse of the generation of parity equations is to provigtgiations which
matrix C (q E - A)* B, might not be null; according to the only depend on known or measured variables that is the
same principle, we remark thatsansor failure is always inputs u(k) and the outputs y(k). The principle of the
detectable. Two failuresand j are isolable if théh and the generation is simple: we have justeliminate, at different

jth columns of the matriin (11) are distinct and different of moments of observation and from thiéerent expressions of
the other columns. From practical aim, we note that theoutputs y(k), the undesirable stateg(® et »(L). Let us
vectors we have to test thedependence, result from aconsider the casehere L = 3 (generalizing for an horizon

rational fraction matrix; it maybe easier to test this with any dimension does not present a particular problem).
independence fromeoprime factorization, using polynomial

matrices computed from the system transfer function. We deduce from (5a) and (5b) that:
We note that the equation (11) cardeeeloped to express, o1 T o]
during the time, the residuals (k) in termsof failuresAu(k) 10) - |— 3
andAy(k). This form is only available for singulaystems 2(0) D N
with square matrices A and E; it requires the calculus of the 1) | A1 0 [ |
inverse matrix of g E A. A slightly different formulation - — N2 [
can be proposed. First, the state equation is written as: 21| [ X _il(O)
2| [ | A1 0 3
(QE-A)x(k) - Bu(k) =0 (123) 1 11410 | B
y(k) - C x(k) =0 (12b) 22) | [P N[
3) 3 4 L
or under a compact form: 1O = 1 0




The system output is then defined by:
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Let us consider the vect6 such thatQ A = 0.

p(0) =Q

I

(1)

(@)
3)

(0)
- B (ng
(2)

(16)

17)

If this
vector exists, we will define the vector p(0) described by :

(18)

The equation (18) is expressedeénms of known variables
(system inputs or outputs) and particularlysitindependent
on the system state x(k). The existencehef parity vector
depends on th€ matrix structure. Ifrank(A) < number of
rows of A, the solutionQ exists then the parity vectoan
be defined; increasing the duration of tieservation horizon,
this conditioncan always be satisfied. The size of the parity
vector depends on the state equationsadsal on the duration
of observation horizon. An standard system case, it is
possible to bound the horizéength by using a consequence
of Cayley-Hamilton's theorem. The quantity p(k) is kn@gn
generalized parity vectarhich is extended here to singular
systems case. ltlepends in amplitude and direction, on
different values of system inputs amatputs. It is clear that,
under normal circumstances the vector p(k) is ctoseero.
When a fault occurs (involvingbnormal values in the series
y(k) and/or u(k)), p(k) differs significantly from zero.

This technique allows us tgenerate some parity equations
which dependon all process inputs and outputs. Then,
generally, each component of the paviégtor is sensitive to
different sensor and actuator failures.

In practice, anessential quality of supervision and
diagnosis system is its aptitutteisolate the failures, i.e. to
distinguish failures. For this, it is desiralite structure the
parity vector p(k) for making itomponents sensitive to
failures we want to detect and insensitive to the others.

Let us consider the expression (18) under the form:

p(0) =M (y(0) y(1) . . . u(0) . . . u(L)
withM=(Q -QB)

In order to point out this isolability ability, wdefine an
occurrence matri© by its element®j;:

Ojj =1ifMj;#0
Ojj =0ifMj; =0

In other terms, M is a matrix representing tiedations
between the process inputs and outpOis;= 1 yields that a
failure on the‘ih variable (sensor or actuator) hadrgtuence
on the fh component of the parity vector ar@j = 0
involves that this variable has not any influence tha
others. Analyzing the matri®, allows usa priori, to know
the failure influences on the componeras p(k). The
detection of the failure of th&hjmeasurement is ensufehe
jth columnO j of O is not null; the isolation of this failed
measurement is theoreticalgnsure if the columrO j is
different from the others [10]. In practicge are interested in
isolation in a statisticaense, because a failure (for example
a sensor bias) is generally mixed with random noise. Ween
do not base oureasoning on variable occurrence only; a
detection threshold has to be definedider to decide, if a
parity vector component is upper this threshtidt a failure



occurs [11], [12].If the isolation cannot be achieved, it is These equations may also égpressed in terms of the
necessary to transform the parity equatiorattiin this aim. delay operator q:

The new parity vector may hétee same size as the first one

(but the parity equations atken structured differently), a p1(k) =y1(k) +q (1 -q) v(k) - (2 + q) u(k) + 2 g w(k)
smaller size (if we are interestedtie detection of privileged  po(k) = y1(K) - g (2 - q) $(K) - ur(k) + (1 - 9) B(K)

failures) or abigger one (in this case, supplementary

independenor not parity equations have to be generated). In et usremark here that the system order is equal to 4 and
any cases, the construction of other parity vectors reqaireshat the observatiohorizon L has been chosen less or equal
modification ofthe instrumentation system and generally g 2. It means that all potentisddundancies of the system
precise definition of the measurement matrix Qytiarantee have not been necessamploited. However, the components
the isolation of anyailures. In any cases, the restructuratiogf the parity vector are sensitive to both actuator and sensor

of the parity equations leads to design, in the nmbstesting faults and therefore the fault detectability is guaranteed.
manner, the position of "0" and "t the occurrence matrix.

In the simple event of the structwkthe observation matrix
C is not modified, the problem che formulated as follows: VI. CONCLUSION
we dispose of the occurrence matthwhich corresponds @
structure of the parity equationse assign the structure of We have proposedn extension of generating parity
ideal occurrence matri©; (i.e. which satisfies isolability equations to singulaystems. These equations can be useful
constraints) anave search the transformation which allowdn a procedure of detecti@nd isolation of sensor or actuator
us, by linear combination dlie primary parity equations, to failures.
transform the matriX into its ideal fornO, [2].
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