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GENERATION OF PARITY EQUATIONS FOR SINGULAR SYSTEMS
APPLICATION TO DIAGNOSIS
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BP 40 - Rue du doyen Marcel Roubault

54501 Vandoeuvre les Nancy Cedex - FRANCE
Phone : (33) 83 50 30 80    Fax : (33) 83 50 30 96

Abstract - In this paper, we show how the generation
of parity equations technique can be extended to a
singular system. The decomposition of a singular
system into two subsystems, a slow and a fast
subsystems, allows us to generalize the technique
used for standard systems. For an observation
horizon with finished length, the system output
can be particularly expressed in terms of the initial
and terminal state and the inputs; then, the
elimination of these two particular states provides
the desired parity equations which can be used for
diagnosis.

adaptation of control law to reduce failure effects and repairing
of defective components.

To detect anomalies, one approach consists in using a
process model to control the process behaviour. In this way,
we use the analytical redundancy which connects the process
inputs and outputs owing to the model. If this latter is correct
(i.e. if it provides a reliable image of process behavior), we
can check the appropriateness of measurements carried out on
the process with the model; a non-null deviation can be a
result of component failure of the physical system, or of
actuator and/or sensor failures.

I. INTRODUCTION In general, the use of models allows us to generate
deviation variables called residuals representing the
functioning of the system. A residual can be the deviation
between the system output and the output predicted by an
observer or a Kalman filter. In normal conditions, the residual
is statistically null; in the presence of failures, it takes a
value whose amplitude and direction are connected to the
characteristics of these failures.

The process diagnosis is presently the major task entrusted
to calculators that supervise systems. The precocious
detection of unexpected problems in functioning may help to
avoid inducing the process into a critical functioning zone by
modifying the control law. As known, the diagnosis
comprises three important steps: the event detection, the
prognostic and the logic decision.

A lot of research has been done on the generation of
residuals [1], [2], [3]. The techniques use the direct
relationships between the inputs and the outputs of the
system (transfer function approach), the error of
reconstruction issued from a system output observer (for
example a Kalman filter innovation sequence), the sequence
generated during the identification of system parameters or the
redundancy generated by observing the system on a finished
horizon (parity space technique). We are interested in this
technique developed initially for static systems [4] then
extended to dynamic systems [5], [6]. The generation of
parity equations for singular systems has not yet been
developed a lot; it is the goal of our contribution.

The event detection consists in determining, at any time,
the process state of functioning be it normal or abnormal and
to detect its evolution. Some of the detected events are
normal because they are the result of actions taken by the
control system and/or by the operator; the others result from
control system or process failure. Therefore, the detection
ought to be completed by a recognition phase which is able
to classify and to recognize the real failures. After that, an
isolation step is necessary to localize the failures and an
estimation procedure allows the failure characteristics to be
determined; i.e. the amplitude and the duration of failures.
The function of prognostic is to define the probable evolution
of failure and its consequences on the process functioning. In
some cases, the prognostic cannot be established because of
lack of information; so it is necessary to wait for more
precise recognition of failure characteristics to make a better
prognostic. Finally, the decision constitutes the active part of
the diagnosis: in terms of the type of the failures and of their
foreseeable consequences, the control law ought to be adapted
or reconfigured in order to maintain the process objectives.
For some failure types, the control law is not modified and a
maintenance of the defective components is done (change of a
sensor for example). For a process with technological risk,
two modes of intervention are generally used: immediate

II. THE REPRESENTATION OF SINGULAR SYSTEMS

We consider the class of singular systems described by the
following discrete equations:

E x(k+1) = A x(k) + B u(k) (1a)
y(k) = C x(k) (1b)

where A and E ∈  Rn.n, B ∈  Rn.m, C ∈  Rp.n, x ∈  Rn,
u ∈  Rm and y ∈  Rp



As it is well-known [7], [8], for any two matrices E and A
of the same dimensions, there always exist two non-singular
matrices P and Q such that:

x1(k) = A1
k
 x1(0) + ∑

i=0

k-1
  A1

k-i-1
 B1 u(i) (5a)

x2(k) = N
L-k

 x2(L) - ∑
i=k+1

L
  N

i-k-1
 B2 u(i-1) (5b)Q E P = diag(In1, N) (2a)

Q A P = diag(A1, In2) (2b)

The pair (x1(0), x2(L)) forms a complete condition which
enables to estimate the state and the output of the system as
follows:

where:

n1 + n2 = n
A1 ∈  Rn1.n1 , N ∈  Rn2.n2

x(k) = P  



x1(k)

x2(k)and N is a nilpotent matrix with an index h (this property
will not be used in the sequel).

x(k) = P E1 (A1
k
 x1(0) + ∑

i=0

k-1
 A1

k-i-1
 B1 u(i))With the change of variables:

  + P E2 (N
L-k

 x2(L) - ∑
i=k+1

L
  N

i-k-1
 B2 u(i-1)) (6a)

x(k) = P 



x1(k)

x2(k)

y(k) = C x(k) (6b)
where x1 ∈  Rn1, x2 ∈  Rn2, the system (1) can be
partitioned under the following form:

with E1 = 






I

0
 and E2 = 







0

Ix1(k+1) = A1 x1(k) + B1 u(k) (3a)
N x2(k+1) = x2(k) + B2 u(k) (3b)
y(k) = C1 x1(k) + C2 x2(k) (3c) This general form provides the state and the output of the

system at each moment in function of the input sequence. It
presents the particularity to depend on an initial state and a
terminal state; moreover, the solution at the moment k
depends not only on the previous inputs but also on the
future inputs until the end of the observation horizon L.

where C P = (C1   C2) and Q B = 




B1

B2

This form is said to be the first standard decomposition of a
singular system. The subsystem (3a) corresponds to the slow
mode and the subsystem (3b) to the fast one. The
measurement equation (3c) couples the two subsystems.

III. PRINCIPLE OF REDUNDANCIES GENERATION

As previously mentioned, the fundamental idea of residual
generation consists in using some existing redundancies
between different variables of the system. This redundancy
may take two essential forms: the direct redundancy or the
hardware redundancy (relation between the sensor outputs at
each moment) and the temporal redundancy or analytic
redundancy (time-dependant relation between the actuator
inputs and the sensor outputs). The use of those relations
allows us to compare the system outputs. The residuals
obtained from this comparison constitute a measurement of
the non-functioning of the process or of its control system.

Now, we consider the series of values obtained by
integrating (1a) between 0 and L. We assume that L > n.
The system states x(k) are generated from the series u(0), ...,
u(L):











-A E . . . 

. -A E . . 

. . . . . 

. . -A E . 

. . . -A E

 











x(0)

x(1)

. 

. 

x(L)

 = 











B u(0)

. 

. 

. 

B u(L)

 (4)

Let us consider the process described by the state equations
(1). The direct redundancy between the sensors will exist if
one of the sensor signal can be valued, at each moment, by
the other sensor signals. This corresponds to a situation
where some rows of the matrix C are linearly dependant. In
this case, we can find a matrix Ω which satisfies:

Under the regularity of the system, Det(q E - A) ≠ 0,
Luenberger [9] has shown that a complete solution of the
state equation (4) may be obtained whether from x(0) or from
x(L); moreover, the solution is unique. The equivalent form
(3) is well adapted to the search of this solution. Indeed, the
equation (3a) is integrated in the forward direction from the
initial condition x1(0) and the equation (3a) is integrated from
the terminal condition x2(L) in the backward direction:

Ω C = 0 (7)

This allows the redundancy relation to be written as:







q E - A -B 0

C 0 -I
 







x(k)

u(k)

y(k)

 = 



0

0
(13)Ω y(k) = 0 (8)

This relation holds when all sensors are well-functioning.
Should it be otherwise, one defines a residual vector r(k):

Let ω(q) a vector with appropriate size such that:
r(k) = Ω y(k) (9)

ωT(q) 



q E - A

C
 = 0 (14)where the amplitude and the direction characterize the output

failure. So, the direct redundancy allows us to detect and to
localize (with respect to some isolability conditions) the
sensor failures. But it is ineffective to supervise the process
actuators. The temporal redundancy connects the input
variables and the output variables during the time. Then it
allows us to detect the actuator and the sensor failures. The
generation of these redundancies may directly be obtained
from the process state equations. From the model (1) with
square matrices A and E, the unknown state x(k) of the
system can be easily eliminated:

The solutions set of (14) constitutes the matrix Ω(q). The
redundancy equations are then obtained by multiplying (13)
by ΩW:

Ω(q)  



-B 0

0 -I
 



u(k)

y(k)
 = 0 (15)

Numerically, the only difficulty consists to solve the
equation (14) with regard to ω. The solution can be searched
under a polynomial form: ω(q) = ω0 + q ω1 + ... + qj  ωj .
The coefficients ωj  are then solutions of a simple linear
system and moreover it is possible to define, a priori, the
index value j [7].

y(k) - C (q E - A )-1 B u(k) = r(k) (10)

When failures do not occur, the vector r(k) is equal to zero
at each moment. It is sensitive to process input and output
failures; indeed, by a simple differentiation, we obtain:

( I     - C (q E - A )-1 B ) 



∆y(k)

∆Du(k)
 = ∆r(k) (11)

IV. GENERATION OF PARITY EQUATIONS

Previously, we have established the expression of the state
x(k) and the output y(k) in terms of the sequence of the
inputs u(k). The obtained solution depends on the initial state
x1(0) and on the terminal state x2(L). The elimination of
these particular states allows the parity equations to be
deduced from this expression. Remember that the aim of the
generation of parity equations is to provide equations which
only depend on known or measured variables that is the
inputs u(k) and the outputs y(k). The principle of the
generation is simple: we have just to eliminate, at different
moments of observation and from the different expressions of
outputs y(k), the undesirable states x1(0) et x2(L). Let us
consider the case where L = 3 (generalizing for an horizon
with any dimension does not present a particular problem).

This equation connects the amplitudes of the sensor and
actuator failures ∆y(k) and ∆u(k), to the residual one ∆r(k).
This form allows us to state some simple rules for failure
detection and isolation. For failure detection of the i th

actuator to be detectable, the ith column of the inverse of the
matrix C (q E - A )-1 B, might not be null; according to the
same principle, we remark that a sensor failure is always
detectable. Two failures i and j are isolable if the ith and the
j th columns of the matrix in (11) are distinct and different of
the other columns. From a practical aim, we note that the
vectors we have to test the independence, result from a
rational fraction matrix; it may be easier to test this
independence from a coprime factorization, using polynomial
matrices computed from the system transfer function. We deduce from (5a) and (5b) that:

We note that the equation (11) can be developed to express,
during the time, the residuals ∆r(k) in terms of failures ∆u(k)
and ∆y(k). This form is only available for singular systems
with square matrices A and E; it requires the calculus of the
inverse matrix of q E - A. A slightly different formulation
can be proposed. First, the state equation is written as:















x1(0)

x2(0)

x1(1)

x2(1)

x1(2)

x2(2)

x1(3)

x2(3)

  = 















I 0

0 N3

A1 0

0 N2

A1
2

0

0 N

A1
3

0

0 I

 



x1(0)

x2(3)
(q E - A) x(k) - B u(k) = 0 (12a)
y(k) - C x(k) = 0 (12b)

or under a compact form:



+ 















0 0 0

-B2 -NB2 -N2B2

B1 0 0

0 -B2 -NB2

A1B1 B1 0

0 0 -B2

A1
2
B1 A1B1 B1

0 0 0

 







u(0)

u(1)

u(2)

The equation (18) is expressed in terms of known variables
(system inputs or outputs) and particularly it is independent
on the system state x(k). The existence of the parity vector
depends on the Ω matrix structure. If rank(A) < number of
rows of A, the solution Ω exists then the parity vector can
be defined; increasing the duration of the observation horizon,
this condition can always be satisfied. The size of the parity
vector depends on the state equations and also on the duration
of observation horizon. As in standard system case, it is
possible to bound the horizon length by using a consequence
of Cayley-Hamilton's theorem. The quantity p(k) is known as
generalized parity vector which is extended here to singular
systems case. It depends in amplitude and direction, on
different values of system inputs and outputs. It is clear that,
under normal circumstances the vector p(k) is close to zero.
When a fault occurs (involving abnormal values in the series
y(k) and/or u(k)), p(k) differs significantly from zero.

The system output is then defined by:

Y = 









C1 C2 0 0 0 0 0 0

0 0 C1 C2 0 0 0 0

0 0 0 0 C1 C2 0 0

0 0 0 0 0 0 C1 C2

 















x1(0)

x2(0)

x1(1)

x2(1)

x1(2)

x2(2)

x1(3)

x2(3)

This technique allows us to generate some parity equations
which depend on all process inputs and outputs. Then,
generally, each component of the parity vector is sensitive to
different sensor and actuator failures.

In practice, an essential quality of supervision and
diagnosis system is its aptitude to isolate the failures, i.e. to
distinguish failures. For this, it is desirable to structure the
parity vector p(k) for making its components sensitive to
failures we want to detect and insensitive to the others.

Y = 









y(0)

y(1)

y(2)

y(3)

 =  A 



x1(0)

x2(3)
 + B 







u(0)

u(1)

u(2)

(16) Let us consider the expression (18) under the form:

p(0) = M (y(0) y(1) . . . u(0) . . . u(L))T

with: with M = (Ω    -Ω B)

A = 











C1 C2N3

C1A1 C2N2

C1A1
2

C2N

C1A1
3

C2

In order to point out this isolability ability, we define an
occurrence matrix O by its elements Oij :

Oij  = 1 if M ij  ≠ 0
Oij  = 0 if M ij  = 0

In other terms, M is a matrix representing the relations
between the process inputs and outputs; Oij  = 1 yields that a
failure on the jth variable (sensor or actuator) has an influence
on the ith component of the parity vector and Oij  = 0
involves that this variable has not any influence on the
others. Analyzing the matrix O, allows us, a priori, to know
the failure influences on the components of p(k). The
detection of the failure of the jth measurement is ensure if the
j th column O.j of O is not null; the isolation of this failed
measurement is theoretically ensure if the column O.j is
different from the others [10]. In practice, we are interested in
isolation in a statistical sense, because a failure (for example
a sensor bias) is generally mixed with random noise. Then we
do not base our reasoning on variable occurrence only; a
detection threshold has to be defined in order to decide, if a
parity vector component is upper this threshold, that a failure

B = 









-C2B2 -C2NB2 -C2N2B2

C1B1 -C2B2 -C2NB2

C1A1B1 C1B1 -C2B2

C1A1
2
B1 C1A1B1 C1B1

 (17)

Let us consider the vector Ω such that Ω A = 0. If this
vector exists, we will define the vector p(0) described by :

p(0) = Ω 

















y(0)

y(1)

y(2)

y(3)

 - B 







u(0)

u(1)

u(2)

 (18)



occurs [11], [12]. If the isolation cannot be achieved, it is
necessary to transform the parity equations to attain this aim.
The new parity vector may has the same size as the first one
(but the parity equations are then structured differently), a
smaller size (if we are interested in the detection of privileged
failures) or a bigger one (in this case, supplementary
independent or not parity equations have to be generated). In
any cases, the construction of other parity vectors requires a
modification of the instrumentation system and generally a
precise definition of the measurement matrix C to guarantee
the isolation of any failures. In any cases, the restructuration
of the parity equations leads to design, in the most interesting
manner, the position of "0" and "1" of the occurrence matrix.
In the simple event of the structure of the observation matrix
C is not modified, the problem can be formulated as follows:
we dispose of the occurrence matrix O which corresponds to a
structure of the parity equations, we assign the structure of
ideal occurrence matrix Or (i.e. which satisfies isolability
constraints) and we search the transformation which allows
us, by linear combination of the primary parity equations, to
transform the matrix O into its ideal form Or [2].

These equations may also be expressed in terms of the
delay operator q:

p1(k) = y1(k) + q (1 - q) y2(k) - (2 + q) u1(k) + 2 q u2(k)
p2(k) = y1(k) - q (2 - q) y2(k) - u1(k) + (1 - q) u2(k)

Let us remark here that the system order is equal to 4 and
that the observation horizon L has been chosen less or equal
to 2. It means that all potential redundancies of the system
have not been necessary exploited. However, the components
of the parity vector are sensitive to both actuator and sensor
faults and therefore the fault detectability is guaranteed.

VI. CONCLUSION

We have proposed an extension of generating parity
equations to singular systems. These equations can be useful
in a procedure of detection and isolation of sensor or actuator
failures.
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