
HAL Id: hal-00201395
https://hal.science/hal-00201395

Preprint submitted on 28 Dec 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Factorization (Splitting)
Karl Schlechta

To cite this version:

Karl Schlechta. Factorization (Splitting). 2007. �hal-00201395�

https://hal.science/hal-00201395
https://hal.archives-ouvertes.fr


ha
l-

00
20

13
95

, v
er

si
on

 1
 -

 2
8 

D
ec

 2
00

7

FACTORIZATION

Karl Schlechta ∗

Laboratoire d’Informatique Fondamentale de Marseille †

December 27, 2007

1 INTRODUCTION

Parikh and co-authors have investigated a notion of logical independence, based on the
sharing of essential propositional variables. We do a semantical analogue here. What
Parikh et al. call splitting on the logical level, we call factorization (on the semantical
level). Note that many of our results are valid for arbitrary products, not only for classical
model sets.

We claim no originality of the basic ideas, just our proofs might be new - but they are
always elementary and very easy.

The Situation:

We work here with arbitrary, non-empty products. Intuitively, Y is the set of models for
the propositional variable set U. We assume the Axiom of Choice.

Definition 1.1

Let U be an index set, Y = Π{Yk : k ∈ U}, let all Yk 6= ∅, and X ⊆ Y . Thus, σ ∈ X is
a function from U to

⋃
{Yk : k ∈ U} s.t. σ(k) ∈ Yk. We then note Xk := {y ∈ Yk : ∃σ ∈

X .σ(k) = y}.

If U ′ ⊆ U, then σ⌈U ′ will be the restriction of σ to U ′, and X⌈U ′ := {σ⌈U ′ : σ ∈ X}.

If A := {Ai : i ∈ I} is a partition of U, U ′ ⊆ U, then A⌈U ′ := {Ai ∩ U ′ 6= ∅ : i ∈ I}.

∗ks@cmi.univ-mrs.fr, karl.schlechta@web.de, http://www.cmi.univ-mrs.fr/ ∼ ks
†UMR 6166, CNRS and Université de Provence, Address: CMI, 39, rue Joliot-Curie, F-13453 Marseille

Cedex 13, France

1



Let A := {Ai : i ∈ I}, B := {Bj : j ∈ J} both be partitions of U, then A is called a
refinement of B iff for all i ∈ I there is j ∈ J s.t. Ai ⊆ Bj .

A partition A of U will be called a factorization of X iff X = {σ ∈ Y : ∀i ∈ I(σ⌈Ai ∈
X⌈Ai)}, we will also sometimes say for clarity that A is a partition of X over U.

We will adhere to above notations throughout these pages.

If X is as above, U ′ ⊆ U, and σ ∈ X⌈U ′, then there is obviously some (usually not unique)
τ ∈ X s.t. τ⌈U ′ = σ. This trivial fact will be used repeatedly in the following pages. We
will denote by σ+ some such τ - context will tell which are the U ′ and U. (To be more
definite, we may take the first such τ in some arbitrary enumeration of X .)

Given a propositional language L, v(L) will be the set of its propositional variables, and
v(φ) the set of variables occuring in φ. A model set C is called definable iff there is a
theory T s.t. C = M(T ) - the set of models of T.

2 THE RESULTS

Fact 2.1

If A, B are two partitions of U, A a factorization of X , and A a refinement of B, then B
is also a factorization of X .

Proof:

Trivial by definition. 2

Fact 2.2

Let A be a factorization of X over U, U ′ ⊆ U. Then A⌈U ′ is a factorization of X⌈U ′ over
U ′.

Proof:

If Ai ∩ U ′ 6= ∅, let σ′

i ∈ X⌈(Ai ∩ U ′). Let then σi := σ′+

i ⌈Ai. If Ai ∩ U ′ = ∅, let σi := τ⌈Ai

for any τ ∈ X . Then σ :=
⋃
{σi : i ∈ I} ∈ X by hypothesis, so σ⌈U ′ ∈ X⌈U ′, and

σ⌈(Ai ∩ U ′} = σ′

i. 2

Fact 2.3

2



If A∪A′ is a factorization of X over U, A a factorization of X⌈A over A, A′ a factorization
of X⌈A′ over A′, then A∪A′ is a factorization of X over U.

Proof:

Trivial 2.

Fact 2.4

If A, B are two factorizations of X , then there is a common refining factorization.

Proof:

Let σ s.t. ∀i ∈ I∀j ∈ J(σ⌈(Ai ∩Bj) ∈ X⌈(Ai ∩Bj)), show σ ∈ X . Fix i ∈ I. By Fact 2.2,
B⌈Ai is a factorization of X⌈Ai, so ∪{σ⌈(Ai ∩ Bj) : j ∈ J, Ai ∩ Bj 6= ∅} = σ⌈Ai ∈ X⌈Ai.

As A is a factorization of X , σ ∈ X . 2

This does not generalize to infinitely many factorizations:

Example 2.1

Take as index set ω + 1, all Yk := {0, 1}. Take X := {σ : σ⌈ω arbitrary, and σ(ω) := 0
iff σ⌈ω is finally constant }. Consider the partitions An := {n, (ω + 1) − n}, they are all
fatorizations of X , as it suffices to know the sequence from n + 1 on to know its value
on ω. A common refinement A will have some A ∈ A s.t. ω ∈ A. Suppose there is some
n ∈ ω ∩ A, then A 6⊆ n + 1, A 6⊆ (ω + 1) − (n + 1), this is impossible, so A = {ω}. If A
were a factorization of X , so would be {ω, {ω}} by Fact 2.1, but X does not factor into
X⌈ω and X⌈{ω}.

Comment 2.1

Above set X is not definable as a model set of a corresponding language L : If φ is not a
tautology, there is a model m s.t. m |= ¬φ. φ is finite, let its variables be among p1, . . . , pn

and perhaps pω. If pω is not among its variables, it is trivially also false in some m′ in X .

If it is, then modify m accordingly beyond n. Thus, exactly all tautologies are true in X ,

but X 6= Y = the set of all L−models.

We have, however:

3



Fact 2.5

Let X =
⋂
{Xm : m ∈ M} and X ,Xm ⊆ Y for all m ∈ M.

Let A be a partition of U, and a factorization of all Xm.

Then A is also a factorization of X .

Proof:

Let σ s.t. ∀i ∈ I σ⌈Ai ∈ X⌈Ai.

But X⌈Ai = (
⋂
{Xm : m ∈ M})⌈Ai ⊆

⋂
{Xm⌈Ai : m ∈ M} : Let τ ∈ X⌈Ai, so by

X =
⋂
{Xm : m ∈ M} τ+ ∈ Xm for all m ∈ M, so τ ∈ Xm⌈Ai for all m ∈ M.

Thus, ∀i ∈ I, ∀m ∈ M : σ⌈Ai ∈ Xm⌈Ai, so ∀m ∈ M.σ ∈ Xm by prerequisite, so σ ∈ X . 2

Fact 2.6

Let A∪A′ be a partition of U, and for all σ ∈ X⌈A and all τ : A′ →
⋃
{Xk : k ∈ A′} with

τ(k) ∈ Xk σ ∪ τ ∈ X . Then

(1) A ∪ A′ is a factorization of X over U.

(2) Any partition A′ = {A′

k : k ∈ I ′} of A′ is a factorization of X⌈A′ over A′.

(3) If A is a factorization of X⌈A over A, and A′ a partition of A′, then A ∪ A′ is a
factorization of X .

Proof:

(1) and (2) are trivial, (3) follows from (1), (2), and Fact 2.3. 2

Corollary 2.7

Let U = v(L) for some language L. Let X be definable, and {Am : m ∈ M} be a set of
factorizations of X over U. Then A := ∪{Am : m ∈ M} is also a factorization of X .

Proof:

Let X = M(T ). Consider φ ∈ T. v(φ) is finite, consider X⌈v(φ). There are only finitely
many different ways v(φ) is partitioned by the Am, let them all be among Am0

, . . . ,Amp
.

M(φ)⌈v(φ) might not be factorized by all Am0
⌈v(φ), . . . ,Amp

⌈v(φ), but M(T )⌈v(φ) is by
Fact 2.2. By Fact 2.4, A⌈v(φ) is a factorization of M(T )⌈v(φ).

4



Consider now Xφ := (M(T )⌈v(φ)) × Π{(0, 1) : k ∈ v(L) − v(φ)}.

By Fact 2.6, (1) {v(φ), v(L)− v(φ)} is a factorization of Xφ over v(L).

By Fact 2.6, (2) A⌈(v(L)− v(φ)) is a factorization of Xφ⌈(v(L)− v(φ)) over v(L)− v(φ).

By Fact 2.6, (3) A is a factorization of Xφ over v(L).

M(T ) =
⋂
{(M(T )⌈v(φ)) × Π{(0, 1) : k ∈ v(L) − v(φ)}: φ ∈ T}, so by Fact 2.5, A is a

factorization of M(T ).

2

Comment 2.2

Obviously, it is unimportant here that we have only 2 truth values, the proof would just
as well work with any, even an infinite, number of truth values. What we really need is
the fact that a formula affects only finitely many propositional variables, and the rest are
free.

Remark 2.8

The Hamming distance cooperates well with factorization: Let T ⊢ φ, and we want
to revise by ¬φ. Let M(T ) factorize into A and A′, and let φ not “concern” A. Then
any φ−model can be made to agree on A with some T-model, with an at least as good
Hamming distance. (Proof: Take any φ−model, modify it on A as you like, it will still
be a φ−model.)

Unfortunately, the manner of coding can determine if there is a factorization, as can be
seen by the following example:

Example 2.2

(1) p= “blue”, q= “round”, q’= “blue iff round”.

Then

p ∧ q = blue and round, ¬p ∧ ¬q = ¬blue and ¬round

p ∧ q′ = blue and round, ¬p ∧ q′ = ¬blue and ¬round

Thus, both code the same (meta-) situation, the first cannot be factorized, the second
can.

(2)

5



More generally, we can code e.g. the non-factorising situation {p∧q∧r,¬p∧¬q∧¬r} also
using q′ = p ↔ q, r′ = p ↔ r, and have then the factorising situation {p∧q∧r,¬p∧q′∧r′}.

(3)

The following situation cannot be made factorising: {p ∧ q, p ∧ ¬q, ¬p ∧ ¬q}. Suppose
there were some such solution. Then we need some p′ and q′, and all 4 possibilities {p′∧q′,

p′ ∧ ¬q′, ¬p′ ∧ q′, ¬p′ ∧ ¬q′}. If we do not admit impossible situations (i.e. one of the
4 possibilities is a contradictory coding), then 2 possibilities have to contain the same
situation, e.g. p ∧ q. But they are mutually exclusive (as they are negations), so this is
impossible.

2

6


