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Abstract

The goal of this paper is to obtain probabilistic representation formulas that are
suitable for the numerical computation of the (possibly non-continuous) density
functions of infima of reserve processes commonly used in insurance. In particu-
lar we show, using Monte Carlo simulations, that these representation formulas
perform better than standard finite difference methods. Our approach differs from
standard Malliavin probabilistic representation techniques which generally require
more smoothness on random variables, entailing the continuity of their density func-
tions.
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1 Introduction

In ruin theory, computational methods for finite-time ruin probabilities have
received considerable attention in the last decade. The reader is referred to
the books by Gerber [8], Grandell [10], Panjer and Willmot [17], Asmussen
[2], and Kaas et al. [12] for general results on ruin-related issues; see also, e.g.,
Gerber and Shiu [9], Albrecher et al. [1] for more recent results.

Email addresses: Stephane.Loisel@univ-lyon1.fr (Stéphane Loisel),
nprivaul@cityu.edu.hk (Nicolas Privault).



Consider the classical compound Poisson risk model, in which the surplus
process (Rx(t))t≥0 is defined as

Rx(t) = x+ f(t) − S(t), t ≥ 0, (1.1)

where x ≥ 0 is the amount of initial reserves and f(t) is the premium income
received between time 0 and time t > 0. Here, the aggregate claim amount up
to time t is described by the compound Poisson process

S(t) =
Nt
∑

k=1

Wk,

where the claim amountsWk, k ≥ 1, are non-negative independent, identically-
distributed random variables, with the convention S(t) = 0 if Nt = 0. The
number of claims Nt until t ≥ 0 is modeled by an homogeneous Poisson
process (Nt)t≥0 with intensity λ > 0, and claim amounts are assumed to be
independent of arrival times. However we do not make any assumption on the
claim amount distribution. Our results are general and operational for light or
heavy-tailed, discrete or continuous claim amount distributions, as illustrated
in Section 5.

Given T > 0 a finite time horizon, a formula for the finite-time ruin probability

ψ(x, T ) = P ( ∃ t ∈ [0, T ] : Rx(t) < 0)

has been proposed by Picard and Lefèvre [18], discussed by De Vylder [24]
and Ignatov et al. [11], and compared to a Prabhu or Seal-type formula by
Rullière and Loisel [23]. Its influence function and estimation risk (related to
the jump size distribution) have been studied by Loisel, Mazza and Rullière
in [14] and [13].

Another important practical problem is to obtain numerical values of the
sensitivity of the finite-time ruin probability with respect to the initial reserve

∂ψ

∂x
(x, T ),

in particular due to new solvency regulations in Europe. In [22] Privault and
Wei used the Malliavin calculus to compute the sensitivity of the probability

P (Rx(T ) < 0)

that the terminal surplus is negative with respect to parameters such as the
initial reserve x or the interest rate of the model.
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However the problem of computing the corresponding sensitivity for the finite-
time ruin probability ψ(x, T ) has not been covered in [22] because Rx(T ) does
not satisfy the smoothness conditions imposed therein. For this reason, in
this paper we develop an alternative solution to this problem, based on direct
integration by parts techniques.

This paper is organized as follows. We start in Section 2 by a review of the
principles of Malliavin’s calculus applied to density estimation. In Section 3
we present the particular setting of Malliavin’s calculus on the Poisson space
and we show in particular why the conditions imposed in this calculus are too
stringent for the random variables (infima) considered here. Indeed, as noted
in Privault and Wei [22], Remark 5.2, the differentiability conditions imposed
above are not satisfied e.g. by the infimum

inf
0≤t≤T

Rx(t),

corresponding to a finite time ruin probability, whose density may not be
continuous.

In Section 4 we propose to use a direct integration by parts on the Poisson
space to compute the density of the infimum

M[0,T ] = inf{f(t) − S(t), t ∈ [0, T ]}

of the process

(f(t) − S(t))t∈[0,T ]

between time 0 and some fixed time horizon T > 0. This provides an explicit
probabilistic representation formula in the case of a compound Poisson process
(which corresponds to the classical Crámer-Lundberg risk model) which is
suitable for simulation purposes. In the case of a jump-diffusion process (with
an independent Brownian component that models investment of the surplus
into a risky asset), we obtain a formula involving the density of the Brownian
bridge, which suggests how our method could be extended to such models after
further research. In the compound Poisson risk model, the ruin probability
ψ(x, T ) equals

ψ(x, T ) = P

(

M[0,T ] < −x
)

, x ≥ 0,

and the density of M[0,T ] at −x < 0 equals

−∂ψ
∂x

(x, T ).

In Section 5, we show that our method is much more stable than classical
finite-difference methods on several examples (for unit valued, exponential,
and Pareto distributed claim amounts).
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2 Malliavin calculus for density estimation

We start by a summary of Malliavin’s calculus and integration by parts formu-
las applied to the existence and smoothness of probability densities of random
variables. In particular, our goal is to determine more precisely the range of
application of these techniques to the suprema of compensated jump processes.

Existence of densities

Here we state conditional versions of classical results on the existence of prob-
ability densities, see e.g. § 3.1 of Nualart [16] or Corollary 5.2.3 of Bouleau
and Hirsch [3].

In the sequel we work on a probability space (Ω,F ,P).

Proposition 1 Let A ∈ F such that P(A) > 0 and assume that F satisfies
an integration by parts formula of the form

E[Gf ′(F )|A] = E[ΛF,Gf(F )|A] f ∈ C1
b (R), (2.1)

where G is a.s. positive on A and ΛF,G is an integrable weight depending on
F and G, and independent of f ∈ C1

b (R).

Then:

i) the law of F has a conditional density ϕF |A given A with respect to the
Lebesgue measure.

ii) if in addition G = 1 a.s. on A then this density is given by

ϕF |A(y) = E[ΛF,11{y≤F}|A], y ∈ R. (2.2)

Proof. We have

E[Gf ′(F )|A] = E[f(F )ΛF,G|A] ≤ ‖f‖∞E[|ΛF,G||A],

and taking f ′ = 1B yields

E[G1B(F )] ≤ m(B)E[|ΛF,G|],

where m(B) denotes the Lebesgue measure of any bounded Borel subset B of
R, hence the law of F is absolutely continuous with respect to the Lebesgue
measure since G > 0 a.s. If G = 1 a.s. on A, we have
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E[f(F )|A] = E

[

∫ F

−∞
f ′(y)dy

∣

∣

∣

∣

A

]

=
∫ 0

−∞
E

[

f ′(y + F )

∣

∣

∣

∣

A
]

dy

=
∫ 0

−∞
E

[

ΛF,1f(y + F )
∣

∣

∣

∣

A
]

dy

=
∫ ∞

−∞
f(y)E

[

1{F≥y}ΛF,1

∣

∣

∣

∣

A
]

dy.

�

Formulas of the type (2.1) can be used to show that

∂

∂ξ
E[f(Fξ)|A] = E[∂ξFξf

′(Fξ)|A] = E[ΛFξ,∂ξFξ
f(Fξ)|A], (2.3)

where Fξ is a random variable depending on a real parameter ξ, and can be
applied to sensitivity analysis in finance, see e.g. Fournié et al. [7] and in
insurance, Privault and Wei [22].

Continuity of densities

Proposition 1 ensures the existence of the density ϕF |A but not its smoothness.
The next proposition provides a more precise statement.

Proposition 2 Under the hypothesis of Corollary 2 with G = 1 on A, if in
addition ΛF,1 ∈ Lp(A) for some p > 1, the conditional probability density ϕF |A

is continuous on R.

Proof. Use the bound

|ϕF |A(y) − ϕF |A(z)| ≤ 1

P(A)
‖ΛF‖Lp(A)(E[1[z,y](F )])1/q, y, z ∈ R, (2.4)

that follows from (2.2), with 1/p+ 1/q = 1. �

The integrability of ΛF in Lp(A) for p > 1 can essentially be obtained under
strong (second order) differentiability conditions in the Malliavin sense, cf.
Section 3.

Integration by parts

Proposition 1 can be implemented by assuming the existence of a gradient
operator D : L2(Ω) → L2(Ω × R+) admitting an adjoint δ : L2(Ω × R+) →
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L2(Ω), with respective domains Dom(D|A) ⊂ L2(Ω) and Dom(δ|A) ⊂ L2(Ω×
R+), such that

E[〈DF, u〉|A] = E[Fδ(u)|A], F ∈ Dom(D|A), u ∈ Dom(δ|A), (2.5)

as recalled in the Corollaries 1 and 2 below, where 〈·, ·〉 = 〈·, ·〉L2([0,T ]) denotes
the scalar product in L2([0, T ]).

First, we treat the existence of densities in a corollary of Proposition 1, using
the duality (2.5) between D and δ.

Corollary 1 Let w ∈ Dom (δ|A) and F ∈ Dom (D|A) such that

〈DF,w〉 > 0, a.s. on A (2.6)

Then the law of F has a conditional density ϕF |A given A with respect to the
Lebesgue measure.

Proof. Letting G = 〈DF,w〉 we get

E[〈DF,w〉f ′(F )|A] = E

[

〈Df(F ), w〉
∣

∣

∣

∣

A
]

= E

[

f(F )δ(w)
∣

∣

∣

∣

A
]

,

hence it suffices to apply Proposition 1 with ΛF,G = δ(w). �

As a consequence, the existence of density for F can be obtained under first
order Malliavin differentiability conditions, cf. Section 3 for an implementation
in the setting of jump processes. In particular when w = DF in Corollary 1,
Condition (2.6) becomes that of Theorem 6 of Privault [20], cf. also Proposi-
tion 4.2.4 of Decreusefond [5] on the Poisson space.

Next we recall how the operators D and δ can be applied to the representation
and continuity of densities.

Corollary 2 Assume that (2.5) holds, that F ∈ Dom (D|A), and that there

exists w ∈ L2(Ω × R+) such that
wG

〈DF,w〉 ∈ Dom (δ|A). Then the conclusion

of Proposition 1 holds with the weight

ΛF,G = δ

(

G
w

〈DF,w〉

)

. (2.7)

Moreover, the density ϕF |A is continuous on R in case G = 1 a.s. on A.

Proof. Using the relation

f ′(F ) =
〈Df(F ), w〉
〈DF,w〉 , f ∈ C1

b (R),
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we get

E[Gf ′(F )|A] = E

[

G
〈Df(F ), w〉
〈DF,w〉

∣

∣

∣

∣

A

]

= E

[

f(F )δ

(

wG

〈DF,w〉

)

∣

∣

∣

∣

A

]

,

hence the existence of a conditional density follows from Proposition 1. The
continuity of ϕF |A in case G = 1 a.s. on A follows from Proposition 2 and the
fact that δ is L2(Ω)-valued on Dom(δ|A). �

Note that we may take w = DF in Corollary 2, in which case Relation (2.7)
becomes

ΛF,G = δ

(

GDF

〈DF,DF 〉

)

,

cf. e.g. Nualart [15], Proposition 2.1.1.

Non-continuous densities

To close this section, note that (2.1) can be replaced by an expression of the
form

E[f ′(F )|A] = E





Z
∑

j=1

Λjf(Fj)

∣

∣

∣

∣

A





where Z, Fj, Λj, j ≥ 1, are random variables, which also implies the existence
of a conditional density of F given A as

ϕF |A(y) = E





Z
∑

j=1

Λj1{y≤Fj}

∣

∣

∣

∣

A



 . (2.8)

However, Relation (2.8) no longer ensures the continuity of ϕF |A as the bound
(2.4) is no longer valid. Such expressions will be obtained in Section 4, Propo-
sition 4, for the infimum M[0,T ] of Rξ(t), t ∈ [0, T ].

3 Malliavin calculus on the Poisson space

In order to apply the results of the preceding section to functionals of jump
processes, we now turn to a specific implementation of the Malliavin calculus
on Poisson space, cf. Carlen and Pardoux [4], Privault [19]. Here, (Ω,F ,P)
denotes the canonical probability space of the standard the Poisson process
(Nt)t∈R+ whose jumps are denoted by (Tk)k≥1, with T0 = 0.

Definition 1 Given N ∈ N we denote by SN the space of Poisson functionals
of the form

F = h(T1 ∧ T, . . . , Tn ∧ T ), h ∈ C1([0, T ]n), n ≥ N, (3.1)
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with the boundary condition F = 0 on {NT < N}, i.e.

h(t1, . . . , tN−1, T ) = 0, t1, . . . , tN−1 ∈ [0, T ]. (3.2)

Every F ∈ SN can be written as

F =
∞
∑

k=N

1{NT =k}fk(T1, . . . , Tk), (3.3)

where f0 ∈ R and fk ∈ C1([0, T ]k) satisfies

fk(T1, . . . , Tk) = h(T1, . . . , Tn∧k, T, . . . , T ), k ≥ N, on {NT = k}. (3.4)

Note that Condition (3.2) is void when N = 0.

Definition 2 Let DtF , t ∈ R+, denote the gradient of F ∈ SN , defined as

DtF = −
n
∑

k=1

1[0,Tk](t)∂kh(T1 ∧ T, . . . , Tn ∧ T ),

for F ∈ SN of the form (3.1), where ∂kh denotes the partial derivative of h
with respect to its k-th variable.

For F of the form (3.3) we have:

DtF = −
∞
∑

n=N∨1

1{NT =n}

n
∑

k=1

1[0,Tk](t)∂kfn(T1, . . . , Tn).

From now on we consider A of the form A = {NT ≥ N} for some N ∈ N,
and let DomN (D), DomN (δ) respectively denote Dom (D|NT ≥ N) and
Dom (δ|NT ≥ N). Similarly we will denote E[F |NT ≥ N ] by EN [F ] for sim-
plicity of notation.

Lemma 1 The operator D can be extended to its closed domain DomN (D)
and admits an adjoint δ with domain DomN (δ) such that

EN [〈DF, u〉] = EN [Fδ(u)], F ∈ DomN (D), u ∈ DomN (δ). (3.5)

Moreover for all u ∈ L2([0, T ]) and F ∈ DomN (D) we have

δ(Fu) = F
∫ T

0
u(t)d(Nt − λdt) −

∫ ∞

0
u(t)DtFdt. (3.6)

Proof. The proof of this proposition is a conditional version of classical inte-
gration by parts results on the Poisson space, and is given for completeness in
the Appendix Section 6 . �
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In case the continuity condition (6.1) is not satisfied, then assuming in addition
∫ T
0 u(s)ds = 0 we still get

EN [〈DF, u〉] = EN



F
NT
∑

k=1

u(Tk)



 = EN

[

F
∫ T

0
u(t)dN(t)

]

for F of the form (3.3).

As an example of application of Propositions 1 and 2 in this context, consider
a constant premium income rate equal to 1, with deterministic claim amounts
equal to 1 as well. The infimum

M[0,T ] = inf
0≤t≤T

(t−Nt) = inf
Tk≤T, k≥0

(Tk − k) = 1{NT ≥1} inf
Tk≤T, k≥1

(Tk − k), (3.7)

satisfies (3.3) with f0 = 0 and

fn(t1, . . . , tn) = inf
1≤k≤n

(tk − k), n ≥ 1,

and we have {M[0,T ] < 0} = {NT ≥ 1}. Hence taking N = 1,

M[0,T ] =
∞
∑

k=1

(Tk − k)1{M[0,T ]=Tk−k}

belongs to Dom1 (D) with M[0,T ] = 0 on A = {NT ≥ 1}, and

〈DM[0,T ], w〉 = −1{M[0,T ]<0}

∞
∑

k=1

w(Tk)1{M[0,T ]=Tk−k}.

Moreover the gradient norm

〈DM[0,T ], DM[0,T ]〉=1{M[0,T ]<0}

∞
∑

k=1

Tk1{M[0,T ]=Tk−k}

=1{M[0,T ]<0}

∞
∑

k=1

(M[0,T ] + k)1{M[0,T ]=Tk−k}

is a.e. positive on A = {M[0,T ] < 0} = {NT ≥ 1}, thus ensuring the existence
of the density of M[0,T ] conditionally to {M[0,T ] < 0} from Proposition 1 and
Corollary 1.

The continuity of the density of F can be obtained from Proposition 2 pro-
vided ΛF,1 ∈ Lp for some p > 1, and from Corollary 2 the divergence formula
(3.6) can be used to satisfy this condition. However, applying the divergence
formula (3.6) to G = 1/〈DF,w〉 requires F to be twice differentiable for D.
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In order to check that ΛF,G defined in (2.7) belongs to Lp, we can proceed as
follows.

Let U denote the space of processes of the form

u =
n
∑

k=1

Fkhk, h1, . . . , hn ∈ C1
c ((0, T )), F1, . . . , Fn ∈ SN , n ≥ 1, (3.8)

and let the covariant derivative ∇ be defined as

∇sut = Dsut − 1[0,t](s)u̇t, s, t ∈ R+, u ∈ U .

Proposition 3 For all u ∈ U we have the Skorohod isometry

EN [|δ(u)|2] = EN [‖u‖2
L2([0,T ])] + EN

[

∫ T

0

∫ T

0
∇sut∇tusdsdt

]

. (3.9)

Proof. cf. the Appendix Section 6 . �

The isometry (3.9) implies the bound

EN [|δ(u)|2] ≤ EN [‖u‖2
L2([0,T ])] + EN [‖∇u‖2

L2([0,T ]2)], (3.10)

which provides sufficient conditions for a process u ∈ U to belong to Dom(δ).

Again, applying this bound to u = w/〈DF,w〉 as in Corollary 2,w ∈ C1
c ((0, T )),

F ∈ SN , requires a second order D-differentiability of F which is not satisfied
by F = M[0,T ].

In [22], the computation of the probability density of Rx(T ) defined in (1.1)
relied on strong (second order) differentiability conditions in the Malliavin
sense, which are not satisfied by the infimum M[0,T ] defined in (3.7). It is
natural that such differentiability conditions do not hold here since they would
ensure the continuity of the probability density of M[0,T ], a property which is
not satisfied here, cf. Relation (5.1) and Figure 1 below.

4 Calculation of densities by integration by parts

Our goal in this section is to develop a direct integration by parts method
in order to obtain an algorithm for the numerical computation of the non-
continuous density functions of the infima of jump processes such as M[0,T ].
We consider both the cases of deterministic and random drifts.
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Monotone deterministic drift

Let f : R+ → R+ be an increasing function mapping t > 0 to the premium
income f(t) received between time 0 and time t, such that f(0) = 0, and
assume that (S(t))t∈R+ has the form

S(t) = YNt
, t ∈ R+,

where Y0 = 0 and (Yk)k≥1 is a sequence of random variables, independent of
(Nt)t∈R+ , i.e. in the compound Poisson risk model, S(t) represents the aggre-
gate claim amount and

Yk =
k
∑

j=1

Wj, k ∈ N.

Consider the infimum

M[0,T ] = inf
0≤t≤T

(f(t) − S(t)).

Clearly we have M[0,T ] ≤ 0 = f(0) hence the law of M[0,T ] is carried by
(−∞, 0]. On the other hand, we have M[0,T ] = 0 if and only if NT = 0 or
f(Tk)−Yk > 0 for all k = 1, . . . , NT . Hence the law of M[0,T ] has a Dirac mass
at 0 with weight

P(M[0,T ] = 0) = P(NT = 0) + P({M[0,T ] ≥ 0} ∩ {NT ≥ 1})

= e−λT + e−λT
E

[

∞
∑

k=1

λk
∫ T

0

∫ tk

0
· · ·

∫ t2

0
1{f(t1)>Y1} · · ·1{f(tk)>Yk}dt1 · · · dtk

]

.

In the next proposition we not only compute the density of M[0,T ], we also pro-
vide a probabilistic representation which is suitable for simulation purposes.

Proposition 4 The density at y ∈ R of M[0,T ] given that NT ≥ 1 is equal to

ϕM[0,T ]|NT≥1(y) =

λ

1 − e−λT
E





NT
∑

j=1

1{y≤inf1≤l≤j(f(Tl)−Yl)}1{f(Tj−1)−Yj<y}1{y≤infj≤l≤NT
(f(Tl)−Yl+1)}





+
λ

1 − e−λT
E

[

1{0<YNT +1+y<f(T )}1{f(TNT
)<YNT +1+y}1{inf1≤l≤NT

(f(Tl)−Yl)>y}

]

,

where we use the convention inf∅ = +∞.

Proof. Since f is increasing we have

M[0,T ] = inf
Tk≤T, k≥0

(f(Tk) − Yk) = 1{NT ≥1} inf
Tk≤T, k≥1

(f(Tk) − Yk),
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with T0 = 0. Hence

P({M[0,T ] ≥ y} ∩ {NT ≥ 1}) (4.1)

= e−λT
E

[

∞
∑

k=1

λk
∫ T

0

∫ tk

0
· · ·

∫ t2

0
1{y<inf1≤l≤k(f(tl)−Yl)}dt1 · · · dtk

]

= λe−λT
E

[

∞
∑

k=0

λk
∫ T

0

∫ tk+1

0
· · ·

∫ t2

0
1{f(t1)>Y1+y} · · ·1{f(tk+1)>Yk+1+y}dt1 · · · dtk+1

]

In order to determine the density of M[0,T ] given that NT ≥ 1, it suffices to
compute the derivative

∂

∂y
P({M[0,T ] ≥ y} ∩ {NT ≥ 1}).

Now, (4.1) implies:

− ∂

∂y
P({M[0,T ] ≥ y} ∩ {NT ≥ 1})

= λe−λT
E





∞
∑

k=0

λk
k
∑

j=1

∫ T

0

∫ tk+1

0
· · ·

∫ tj+1

0

∫ tj−1

0
· · ·

∫ t2

0

1{y<inf1≤l<j(f(tl)−Yl)}1{f(tj−1)<Yj+y<f(tj+1)}1{y<infj<l≤k+1(f(tl)−Yl)}dt1 · · · dtk+1

]

+λe−λT
E

[

∞
∑

k=0

λk1{0<Yk+1+y<f(T )}

∫ T

0
1{f(tk)<Yk+1+y}

∫ tk

0
· · ·

∫ t2

0
1{y<inf1≤l≤k(f(tl)−Yl)}dt1 · · · dtk

]

= λe−λT
E





∞
∑

k=0

λk
k
∑

j=1

∫ T

0

∫ tk−1

0
· · ·

∫ t2

0

1{y≤inf1≤l<j(f(tl)−Yl)}1{f(tj−1)<y+Yj<f(tj )}1{y≤infj≤l≤k(f(tl)−Yl+1)}dt1 · · · dtk

+
∞
∑

k=0

λk1{0<Yk+1+y<f(T )}

∫ T

0
1{f(tk)<Yk+1+y}

∫ tk

0
· · ·

∫ t2

0
1{y<inf1≤l≤k(f(tl)−Yl)}dt1 · · · dtk

]

= λe−λT
E





∞
∑

k=0

λk
k
∑

j=1

∫ T

0

∫ tk

0
· · ·

∫ t2

0

1{y≤inf1≤l≤j(f(tl)−Yl)}1{f(tj−1)−Yj<y}1{y≤infj≤l≤k(f(tl)−Yl+1)}dt1 · · · dtk

+
∞
∑

k=0

λk1{Yk+1+y<f(T )}

∫ T

0

∫ tk

0
· · ·

∫ t2

0
1{f(tk)<Yk+1+y}1{y<inf1≤l≤k(f(tl)−Yl)}dt1 · · · dtk

]

= λE





NT
∑

j=1

1{y≤inf1≤l≤j(f(Tl)−Yl)}1{f(Tj−1)−Yj<y}1{y≤infj≤l≤NT
(f(Tl)−Yl+1)}





+λE

[

1{0<YNT +1+y<f(T )}1{f(TNT
)<YNT +1+y}1{inf1≤l≤NT

(f(Tl)−Yl)>y}

]

.
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�

Note that in some cases, other analytic expressions for the density of M[0,T ]

can be obtained. For example, when (Yk)k≥1 are independent, exponentially
distributed random variables with parameter µ > 0 and f(t) = αt is linear,
α ≥ 0, Theorem 4.1 and Relation (4.6) of Dozzi and Vallois [6] show that

P(M[0,T ] < x)

= λ
∫ T

0

(

x
∞
∑

n=0

(λµt(x+ αt))n

(n!)2
+ αt

∞
∑

n=0

(λµt(x+ αt))n

n!(n+ 1)!

)

e−µ(x+αt)−λt

x+ αt
dt,

which provides another expression for the density of M[0,T ] by differentiation
with respect to x.

The following corollary is useful to derive sensitivity analysis formulas such as
Relation (2.3) above.

Corollary 3 We have for all g ∈ C1
b (R):

E1[g
′(M[0,T ])]

= λE1





NT
∑

j=1

g
(

min
(

inf
1≤l≤j

(f(Tl) − Yl), inf
j≤l≤NT

(f(Tl) − Yl+1)
))

− g(f(Tj−1) − Yj)





+λE1

[

g
(

min
(

inf
1≤l≤NT

(f(Tl) − Yl), f(T ) − YNT +1

))

− g(f(TNT
) − YNT +1)

]

.

Proof. We apply Proposition 4 and the relation

E1[g
′(M[0,T ])] =

∫ ∞

−∞
g′(z)ϕM[0,T ]|NT≥1(z))dz.

�

Note that the above formula has the same form as (2.8) which, as noted in
Section 2, does not ensure the continuity of the associated probability density.

Random drift

Consider now the infimum

M[0,T ] = inf
0≤t≤T

(Zt − S(t))

13



where (Zt)t∈R+ is a stochastic process with independent increments and Z0 =
0, independent of (S(t))t∈R+ , and such that

inf
t∈[a,b]

Zt, 0 ≤ a < b,

has a density denoted by ϕa,b(x). For example, if (Zt)t∈R+ is a standard Brow-
nian motion then ϕa,b(x) is given by

∫ ∞

x
ϕa,b(z)dz = P

(

inf
t∈[a,b]

Zt ≥ x

)

= E

[

1{Za<x}P

(

inf
t∈[a,b]

Zt ≥ x
∣

∣

∣

∣

Za

)]

+ E

[

1{Za≥x}P

(

inf
t∈[a,b]

Zt ≥ x
∣

∣

∣

∣

Za

)]

= E

[

1{Za<x}P

(

inf
t∈[0,b−a]

Bt ≥ x− Za

∣

∣

∣

∣

Za

)]

+ P(Za ≥ x)

= 2E

[

1{Za<x}P (Bb−a ≥ x− Za|Za)
]

+ P(Za ≥ x)

=
1

π
√

a(b− a)

∫ ∞

0
e−(x−y)2/(2a)

∫ ∞

y
e−z2/(2(b−a))dzdy +

1√
2πa

∫ ∞

x
e−z2/(2a)dz.

We have M[0,T ] ≤ Z0 = 0 a.s., hence the law of M[0,T ] is carried by (−∞, 0].

Proposition 5 The probability density at y ∈ R of M[0,T ] is equal to

ϕM[0,T ]
(y)=−λe−λT

E





∞
∑

k=0

λk
k+1
∑

j=1

∫ T

0

∫ tk+1

0
· · ·

∫ t2

0
ϕtj−1,tj (y + S(tj−1))

P

(

y + S(tk+1) < inf
t∈[tk+1,T ]

Zt

∣

∣

∣

∣

S

)

k+1
∏

l=1

l 6=j

P

(

y + S(tl−1) < inf
t∈[tl−1,tl)

Zt

∣

∣

∣

∣

S

)

dt1 · · ·dtk+1









−λe−λT
E

[

∞
∑

k=0

λk
∫ T

0

∫ tk+1

0
· · ·

∫ t2

0

ϕtk+1,T (y + S(tk+1))
k+1
∏

l=1

P

(

y + S(tl−1) < inf
t∈[tl−1,tl)

Zt

∣

∣

∣

∣

S

)

dt1 · · · dtk+1

]

.

Proof. We have

M[0,T ] = min

(

min
Tk≤T, k≥1

inf
t∈[Tk−1,Tk)

(Zt − S(Tk−1)), inf
t∈[TNT

,T ]
(Zt − S(TNT

))

)

.

Hence

14



P(M[0,T ] ≥ y) = e−λT
E

[

∞
∑

k=1

λk
∫ T

0

∫ tk

0
· · ·

∫ t2

0
(4.2)

1{y+S(tk)<inft∈[tk,T ] Zt}

k
∏

l=1

1{y+S(tl−1)<inft∈[tl−1,tl)
Zt}dt1 · · · dtk

]

= λe−λT
E

[

∞
∑

k=0

λk
∫ T

0

∫ tk+1

0
· · ·

∫ t2

0

1{y+S(tk+1)<inft∈[tk+1,T ] Zt}

k+1
∏

l=1

1{y+S(tl−1)<inft∈[tl−1,tl)
Zt}dt1 · · · dtk+1

]

= λe−λT
E

[

∞
∑

k=0

λk
∫ T

0

∫ tk+1

0
· · ·

∫ t2

0

P

(

y + S(tk+1) < inf
t∈[tk+1,T ]

Zt

∣

∣

∣

∣

S

)

k+1
∏

l=1

P

(

y + S(tl−1) < inf
t∈[tl−1,tl)

Zt

∣

∣

∣

∣

S

)

dt1 · · ·dtk+1

]

,

and in order to determine the density ϕM[0,T ]
of M[0,T ] it remains to compute

the derivative − ∂

∂y
P(M[0,T ] ≥ y). �

By a simple change of variable this allows one to treat exponential jump
diffusion processes of the form eZt−S(t).

The limitation of this result is that it involves the density of a stochastic (e.g.
Brownian) bridge. A more detailed analysis could lead to a more operational
formula, which would be useful for applications not only in ruin theory, but
also in finance and in credit risk to obtain greek letters for some barrier options
and CDO’s in jump-diffusion models.

5 Numerical simulations

We present an example of simulation when f(t) = t and Wk = 1, k ∈ N, i.e.
for the infimum

M[0,T ] = inf
0≤t≤T

(t−Nt) = inf
Tk≤T, k≥0

(Tk − k) = 1{NT ≥1} inf
Tk≤T, k≥1

(Tk − k).

In this case the density function found in Proposition 4 rewrites as

∂

∂y
P({M[0,T ] ≥ y} ∩ {NT ≥ 1})

=λE





NT
∑

j=1

1{y≤inf1≤l≤j−1(Tl−l)}1{Tj−1−j<y}1{y≤infj≤l≤NT
(Tl−l−1)}





+λE

[

1{TNT
<NT +1+y<T}1{y<inf1≤l≤NT

(Tl−l)}

]

15



=λE





NT
∑

j=1

1{y≤inf1≤l≤j−1(Tl−l)}1{Tj−1−j<y}1{y≤infj≤l≤NT
(Tl−l−1)}





+λ
∞
∑

k=0

E

[

1{NT =k}1{Tk<k+1+y<T}1{y<inf1≤l≤k(Tl−l)}

]

=λE





NT
∑

j=1

1{y≤inf1≤l≤j−1(Tl−l)}1{Tj−1−j<y}1{y≤infj≤l≤NT
(Tl−l−1)}





+λ
∞
∑

i=0

1[T−i−2,T−i−1](y)
i
∑

k=0

E

[

1{NT =k}1{Tk<k+1+y}1{y<inf1≤l≤k(Tl−l)}

]

(5.1)

=λE





NT +1
∑

j=1

1{Tj−1−j<y≤min(inf1≤l≤j(T∧Tl−l),infj≤l≤NT
(Tl−l−1))}



 .

Note that the non-continuous component of the density appears explicitly in
(5.1) of the above expression. For the purpose of sensitivity analysis, the result
of Corollary 3 becomes:

E[g′(y + M[0,T ])]

= λE





NT
∑

j=1

g
(

min
(

inf
1≤l≤j−1

(Tl − l), inf
j≤l≤NT

(Tl − l − 1)
))

− g(Tj−1 − j)





+λE

[

g
(

min
(

inf
1≤l≤NT

(Tl − l), T −NT − 1
))

− g(TNT
−NT − 1)

]

= λE





NT +1
∑

j=1

g
(

min
(

inf
1≤l≤j

(T ∧ Tl − l), inf
j≤l≤NT

(Tl − l − 1)
))

− g(Tj−1 − j)



 .

For a same number of iteration, the integration by parts algorithm is not
significantly slower than the finite differences method, because it only involves
the computation of two infima instead of one. However it yields a much greater
level of precision: one can check in Figure 1 that our results are much less noisy
than the ones of finite-difference method. Besides, the density at each point
is obtained independently from other points, which is not the case with finite
difference or kernel estimation methods. This is especially important for non-
continuous densities, for which kernel estimators will introduce some form of
unwanted smoothing.
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Figure 1. Estimation of the probability density of M[0,T ] by our method (IBP) and
by finite differences (FD) with N = 100000 trials.

In Figure 2 we illustrate the fact that our method requires much fewer trials
to accurately estimate the target value.
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Figure 2. Estimation of the probability density of M[0,T ] at y = −0.5 vs number of
trials by our method (IBP) and by finite differences (FD).

After this simple example, we also illustrate the case of exponentially and
Pareto distributed claim amounts in Figures 3, 4 and 5 below, to show that
our method is operational for typical light and heavy-tailed insurance models.
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Figure 3. Probability density of M[0,T ] by finite differences and integration by parts
for exponentially distributed claim amounts with N = 100000 trials.

The respective computation times to obtain the graph of Figure 3 above are
2m35s for the finite difference method and 4m5s for the integration by parts
method.
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Figure 4. Comparaison of density estimates of M[0,T ] for exponentially distributed
claim amounts by integration by parts with N = 1000 and N = 100000 trials.

In Figure 4 above we present a density estimate obtained via the integration
by parts method with N = 1000 samples and a computation time of 2.6s, to
be compared with the similar level of precision reached in Figure 3 by a finite
difference method with N = 100000 samples and a computation time of 4m5s.
Finally, in Figure 5 below we consider the case of Pareto-distributed claims.
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Figure 5. Probability density of M[0,T ] by finite differences and integration by parts
for Pareto-distributed claim amounts with N = 100000 trials.

6 Appendix

For completeness, in this appendix we provide the proofs of Lemma 1 and
Proposition 3, which are conditional versions of existing results, see e.g. [21],
[22], and references therein.

Proof of Lemma 1. Recall that for all F ∈ SN of the form (3.3) we have:

EN [F ] = e−λT
∞
∑

n=N

λn
∫ T

0

∫ tn

0
· · ·

∫ t2

0
fn(t1, . . . , tn)dt1 · · · dtn.

By standard integration by parts we first prove (3.5) when u ∈ L2([0, T ]):

EN [〈DF, u〉]

= −e−λT
∞
∑

n=N∨1

λn

n!

n
∑

k=1

∫ T

0
· · ·

∫ T

0

∫ tk

0
u(s)ds∂kfn(t1, . . . , tn)dt1 · · · dtn

= e−λT
∞
∑

n=N∨1

λn

n!

n
∑

k=1

∫ T

0
· · ·

∫ T

0
fn(t1, . . . , tn)u(tk)dsdt1 · · · dtn

−e−λT
∞
∑

n=N∨1

λn

(n− 1)!

∫ T

0
u(s)ds

∫ T

0
· · ·

∫ T

0
fn(t1, . . . , tn−1, T )dt1 · · · dtn−1.

From (3.4) we have the continuity condition

fn−1(t1, . . . , tn−1) = fn(t1, . . . , tn−1, T ), n ≥ N, (6.1)
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hence

EN [〈DF, u〉]= e−λT
∞
∑

n=N∨1

λn

n!

∫ T

0
· · ·

∫ T

0
fn(t1, . . . , tn)

n
∑

k=1

u(tk)dt1 · · · dtn

−λe−λT
∫ T

0
u(s)ds

∞
∑

n=N

λn

n!

∫ T

0
· · ·

∫ T

0
fn(t1, . . . , tn)dt1 · · · dtn

= EN



F





NT
∑

k=1

u(Tk) − λ
∫ T

0
u(s)ds









= EN

[

F
∫ T

0
u(t)d(Nt − λt)

]

.

Next we define δ(uG), G ∈ SN , by (3.6), i.e.

δ(uG) := G
∫ T

0
u(t)d(Nt − λdt) − 〈u,DG〉,

with for all F ∈ SN :

EN [G〈DF, u〉]= EN [〈D(FG), u〉 − F 〈DG, u〉]

= EN

[

F

(

G
∫ T

0
u(t)dN(t) − 〈DG, u〉

)]

= EN [Fδ(uG)],

which proves (3.5). The closability of D then follows from the integration
by parts formula (3.5): if (Fn)n∈N ⊂ SN is such that Fn → 0 in L2(Ω) and
DFn → U in L2(Ω), then (3.5) implies

|EN [〈U,Gu〉L2([0,T ])]| ≤ |EN [Fnδ(uG)] − EN [UG]| + |EN [Fnδ(uG)]|
= |EN [(〈DFn, u〉 − U)G]| + |EN [Fnδ(uG)]|
≤ ‖〈DFn, u〉 − U‖L2({NT ≥N})‖G‖L2({NT ≥N})

+‖Fn‖L2({NT ≥N})‖δ(uG)‖L2({NT ≥N}), n ∈ N,

hence EN [UG] = 0, G ∈ SN , i.e. U = 0 in L2({NT ≥ N}), which implies
U = 0 in L2(Ω) by construction of SN .

As a consequence of (3.5) the operator D can be extended to its closed domain
DomN (D) of functionals F ∈ L2({NT ≥ N}) for which there exists a sequence
(Fn)n∈N ⊂ SN converging to F such that (DFn)n∈N converges in L2(Ω × R+),
by letting

DF = lim
n→∞

DFn,

for all such F ∈ DomN (D), and DF is well-defined due to the closability of
D. The argument is similar for δ. �
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Proof of Proposition 3. See also Proposition 2 of Privault [21] for unconditional
versions of this result. For simplicity of notation, let

DuF = 〈DF, u〉, F ∈ DomN(D), u ∈ L2(Ω × [0, T ]).

and

∇uv(t) =
∫ T

0
∇sv(t)ds, u ∈ C1

c ((0, T )).

For all u, v ∈ C2
c ((0, T )) we have

(DuDv −DvDu)Tn =−Du

∫ Tn

0
vsds+Dv

∫ Tn

0
usds

= vTn

∫ Tn

0
usds− uTn

∫ Tn

0
vsds

=
∫ Tn

0

(

v̇(t)
∫ t

0
usds− u̇(t)

∫ t

0
vsds

)

dt

=D∇uv−∇vuTn,

hence
(DuDv −DvDu)F = D∇uv−∇vuF, F ∈ SN . (6.2)

On the other hand we have

Duδ(v)=−
∞
∑

k=1

v̇(Tk)
∫ Tk

0
usds

=−δ
(

v·

∫ ·

0
usds

)

−
∫ ∞

0
v̇(t)

∫ t

0
usdsdt

= δ(∇uv) + 〈u, v〉L2(R+),

hence the commutation relation

Duδ(v) = δ(∇uv) + 〈u, v〉L2(R+), u, v ∈ C2
c ((0, T )), (6.3)

between D and δ.

Next, note that for u =
∑n

i=1 hiFi ∈ U of the form (3.8) we have δ(u) ∈
DomN(D) and

EN [δ(hiFi)δ(hjFj)] = EN [FiDhi
δ(hjFj)]

= EN

[

FiDhi
(Fjδ(hj) −Dhj

Fj)
]

= EN

[

(FiFjDhi
δhj + Fiδ(hj)Dhi

Fj − FiDhi
Dhj

Fj)
]

= EN

[

(FiFj〈hi, hj〉L2(R+) + FiFjδ(∇hi
hj) + Fiδ(hj)Dhi

Fj − FiDhi
Dhj

Fj)
]

= EN

[

(FiFj〈hi, hj〉L2(R+) +D∇hi
hj

(FiFj) +Dhj
(FiDhi

Fj) − FiDhi
Dhj

Fj)
]
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= EN

[

(FiFj〈hi, hj〉L2(R+) +D∇hi
hj

(FiFj) +Dhj
FiDhi

Fj + Fi(Dhj
Dhi

Fj −Dhi
Dhj

Fj))
]

= EN

[

(FiFj〈hi, hj〉L2(R+) +D∇hi
hj

(FiFj) +Dhj
FiDhi

Fj + FiD∇hj
hi−∇hi

hj
Fj)

]

= EN

[

(FiFj〈hi, hj〉L2(R+) + FjD∇hi
hj
Fi + FiD∇hj

hi
Fj +Dhj

FiDhi
Fj)

]

= EN

[

FiFj〈hi, hj〉L2(R+) + Fj

∫ T

0
DsFi

∫ T

0
∇thj(s)hi(t)dtds

+Fi

∫ T

0
DtFj

∫ T

0
∇shi(t)hj(s)dsdt+

∫ T

0
hi(t)DtFj

∫ T

0
hj(s)DsFidsdt

]

,

where we used the commutation relations (6.2) and (6.3). �

References

[1] H. Albrecher, J.L. Teugels, and R.F. Tichy. On a Gamma series expansion for
the time-dependent probability of collective ruin. Insurance Math. Econom.,
29:245–355, 2001.

[2] S. Asmussen. Ruin Probabilities. World Scientific Publishing Co. Inc., 2000.

[3] N. Bouleau and F. Hirsch. Dirichlet Forms and Analysis on Wiener Space. de
Gruyter, 1991.

[4] E. Carlen and E. Pardoux. Differential calculus and integration by parts
on Poisson space. In S. Albeverio, Ph. Blanchard, and D. Testard,
editors, Stochastics, Algebra and Analysis in Classical and Quantum Dynamics
(Marseille, 1988), volume 59 of Math. Appl., pages 63–73. Kluwer Acad. Publ.,
Dordrecht, 1990.
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