
HAL Id: hal-00201313
https://hal.science/hal-00201313

Submitted on 11 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stability Analysis of Filtered Mass-Spring Systems
Alexandre Ahmad, Samir Adly, Olivier Terraz, Djamchid Ghazanfarpour

To cite this version:
Alexandre Ahmad, Samir Adly, Olivier Terraz, Djamchid Ghazanfarpour. Stability Analysis of Fil-
tered Mass-Spring Systems. Theory and Practice of Computer Graphics 2007, Jun 2007, Bangor,
United Kingdom. pp.45-52. �hal-00201313�

https://hal.science/hal-00201313
https://hal.archives-ouvertes.fr

Stability Analysis of Filtered Mass-Spring Systems

Alexandre Ahmad and Samir Adly and Olivier Terraz and Djamchid Ghazanfarpour

University of Limoges, XLIM UMR CNRS 6172

Abstract

Mass-spring systems simulations rely on the numerical integration method used for solving the resulting ordi-
nary differential equations. Implicit schemes, which solve such equations, are unconditionally stable and are thus
widely used. Part of this stability is due to force filtering which is inherent to the implicit formulation and is re-
ferred to artificial damping. We extract this artificial damping and we analyse frequencies. This analysis enables
us to define a non arbitrary damping value and a stability criterion in accordance to filtering. This directly comes
from a decrease of velocity vectors’ eigenvalues resulting in an increase of the time step in the same proportion.
Moreover we applied a simple filtering model reproducing artificial damping to explicit schemes and results re-
veal an increase of the time step. Implementation of this method is straightforward for existing physically based
simulators. Applications to cloth and fish animations are presented.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism–Animation G.1.7 [Numerical Analysis]: Ordinary Differential Equations

1. Introduction

Physically based animations are widely used nowadays in
the field of computer graphics. Adding principles of physics
to control motion not only helps artists in their tasks, but
also is a challenging problem for scientists. When dealing
with mass-spring systems, an important topic concerns the
displacement, i.e how does a particle move from one position
to another. According to Newton’s second law of motion, the
system of equations is transformed into a system of ordinary
differential equations (ODE).

The numerical integration of ODEs is not an easy task.
Explicit methods are the simplest ones for solving these
equations, but they exhibit poor stability properties: the time
step has to be small enough to ensure convergence, i.e. many
iterations have to be computed per frame. This makes the
explicit scheme often useless in practise. Because of its un-
conditional stability, implicit formulation is more efficient:
large steps can be taken. Even though using this method lin-
ear systems have to be solved (which is computationally ex-
pensive), it still computes stiff issues much faster than ex-
plicit schemes. Part of this stability relies on filtering which
is inherent to the implicit formulation and is often referred
to artificial damping [Kas95, MDDB01].

When a spring is compressed or stretched, it produces
counter forces in order to get back to its initial length. This
leads to an oscillation phase before stabilisation, which in
the case of cloth simulation produces unrealistically bouncy
behaviours. Damping attenuates oscillations, in other words
it reduces the bounciness. As it is well-known in the com-
puter graphics community, damping increases arbitrarily the
stability of the numerical integration. After analysis of im-
plicit filtering, i.e. artificial damping, we show how this
damping increases the stability of the numerical integration.
We then define a simple filtering model for explicit schemes
and a stability criterion: according to the filter’s value, maxi-
mal time step for a stable numerical integration can be com-
puted.

We applied the proposed filter to the most used explicit
methods and results reveal a computational time acceleration
of 20% in average. Since our damping proposal is achieved
in a post-treatment, then the numerical integration scheme
used is independent. Experiments show that for practical stiff
examples, computational time comparisons are close when
using our approach and an implicit method. We also present
results on irregular meshes with varying mass and spring co-
efficients.

This paper is organised as follows: an overview of previ-

1

ous work is presented in section 2. Section 3 describes the
problem of force propagation. We then present our filtering
proposal in section 4 and frequency analysis is made in sec-
tion 5. Section 6 discusses the computation of our stabil-
ity criterion. Time comparisons of explicit filtered/unfiltered
and implicit schemes are made in section 7. Finally, conclu-
sions and future work are discussed in section 8.

2. Previous work

Computing animations when dealing with mass-spring
structures rely on the important choice of the numerical
method. An overview of integration schemes applied to com-
puter graphics can be found in [VMT01, HES03]. Stability
and accuracy are the two main criteria for choosing an in-
tegration method. As denoted in [NMK∗05], in the field of
physically based animations, stability is often much more
important than accuracy. We chose to focus on stability.

The two families of integration methods, i.e. explicit and
implicit, can be divided into two categories: multisteps and
unisteps methods. Multisteps methods make use of two
or more previous output values to compute the next one.
They are not well suited for animations since previous val-
ues are no longer consistent in the case of user interac-
tions or collisions. Most methods used in computer graphics
are then unistep models (notably excepting BDF2 -implicit
multistep- see [HE01, CK02]).

[BW98] showed the power of implicit modelling for cloth
simulation (although similar schemes were already used for
deformable models in [Fle87, TF88]). Since then, improve-
ments of this stable model focused mostly on computational
optimisations. To accelerate the computation of the linear
system’s solution, [VT00] proposed to exploit matrix spar-
sity by using a matrix-free data structure. [MDDB01] sug-
gested to decompose forces into linear and non-linear terms
and then to precompute the linear system’s inverse matrix,
in order to achieve real-time performance. [CK02] pointed
out another source of instability: buckling. Applied to cloth
animation, the authors proposed a model simulating this phe-
nomenon which shows stable animations and nice buckling
effects. Since then, buckling instability and realistic wrinkles
has been a major focus [VMT06, TWS06].

Looking at the explicit category, forward Euler has been
used to reproduce the motion of snakes and worms in
[Mil88]. Runge-Kutta models (of order 2 or more) make use
of intermediate step values, which leads to better accuracy
and stability. The Verlet integration method is probably the
most used explicit method in the field of computer graph-
ics (see [BFA02,KANB03]). The use of central differencing
makes this model more stable while preserving the simplic-
ity of forward Euler. Recently, emphasis is given to a mix
of the two categories, IMplicit/EXplicit, i.e. IMEX. [TT94]
solved the linear system explicitly in space and implicitly
in time. [EEH00, BMF03] split forces into linear and non-
linear terms, respectively solved implicitly and explicitly.

The work described in [BA04] uses a criterion to determine
explicit instability. When detected, the system is solved im-
plicitly. To accelerate solving, the authors use graph decom-
position to subdivide the linear system’s matrix into smaller
matrices, resulting in a faster computation.

Artificial Damping has been analysed in [Kas95,
MDDB01]. Most models using explicit schemes make use of
incorrect spring damping. As denoted in [BA04], projected
damping is a correct model while incorrect spring damping
damps rigid body rotation. But because it is simple and often
deliver the desire effect, incorrect spring damping is gener-
ally used.

Despite the fact that emphasis is made on implicit/IMEX
approaches, explicit methods are still subject to active re-
search. [KANB03] explain their advantages for film produc-
tion. The main drawback of explicit schemes is that stiff
problems lead to instabilities. [Shi05] proposed to linearize
the forces in order to stabilise explicit methods. The force
matrix is evaluated a few times per frame at regular inter-
vals or when the system diverges. Even though this method
shows competitive results, it is unclear how the divergence is
detected. With the same interest to enlarge the stability do-
main, we propose a frequency analysis of cloth animations
computed by explicit and implicit schemes and conclude that
high frequencies of motion lead to explicit instability. To
postpone this instability, we add artificial damping, i.e. a low
pass filter, as in the implicit (stable) scheme. Thus instabil-
ity is postponed and detected because high frequencies are
removed. Experiments highlighted that examples having im-
portant eigenvalues (106) computed explicitly (filtered) and
implicitly revealed similar computational times. Obviously,
for really high stiffness (109), implicit solving is much faster,
since filtering is not the only source of the problem.

3. The Force Problem

This section shows the force propagation problem encoun-
tered by explicit ODEs when applied to mass-spring systems
(see also [Kas95,MDDB01]). Figure 1 illustrates the 1D case
for a rope.

Figure 1: A 1D case of a mass-spring system.

A set of evenly spaced particles {m0, . . . ,m4}, with the
same mass m are interconnected by springs with stiffness
km > 0. At time t0 no forces are acting on particles, springs
are at their rest lengths, i.e. the system is in a static equi-
librium. In the case of a small stiffness km, if a force acts
over m0 and pulls it to the left, then m0 should move freely
without strongly affecting the whole structure. But if km is
big, then the entire structure should move instantly, due to
the propagation of forces.

2

3.1. ODE System

Particle-based mechanics can be formulated as a differential
equation system of the form:

Mẍ = f (x, ẋ) (1)

where x, ẋ, ẍ represent respectively the position, velocity and
acceleration vectors, of size 3n (working in 3D space), n
being the number of particles, f is the force vector and M
is a diagonal mass matrix of size 3n× 3n, i.e. diag(M) =
m1,m1,m1,m2,m2,m2, Defining v = ẋ, equation 1 is
rewritten as:

d
dt

(
x
v

)
=
(

v
M−1 f (x,v)

)
(2)

Next section analyses the behaviour of explicit and implicit
integration formulations applied to equation 2.

3.2. Explicit Integration and Problem

Forward Euler formula is of the form:(
xt+∆t

vt+∆t

)
=
(

xt

vt

)
+∆t

(
vt

M−1 f (xt ,vt)

)
(3)

Knowing initial conditions equation 3 can be solved itera-
tively. Spring forces act only on the two end connected par-
ticles. One can see that vt (the simple extension of forward
Euler known as forward-backward (FB) Euler uses vt+∆t) is
used to update xt+∆t , not xt . Consequently a displacement of
particle m0 will affect particle m1 after 2 iterations. Forces
acting on m0 are consequently propagated to m4 after 8 it-
erations. The resulting effect is that particles have a cer-
tain freedom of motion, without immediately affecting the
whole structure, leading to local variations. In the real world,
propagation of forces is instantaneous. This is not the case
with forward Euler, unless computing 2(n− 1)2 iterations
per step (which makes it impractical). This drawback of ex-
plicit schemes can be solved using an implicit method.

3.3. The Implicit Explanation

The most known implicit integration scheme is to be consid-
ered as backward Euler, and is expressed as follows:(

xt+∆t

vt+∆t

)
=
(

xt

vt

)
+∆t

(
vt+∆t

M−1 f (xt+∆t ,vt+∆t)

)
(4)

In this case f (xt+∆t ,vt+∆t) has to be approximated using lin-
earization for example (see [BW98]). It is important to note
that the second row of equation 4 can be rewritten into the
following linear system:

Av = b (5)

where A is a the effective system matrix, usually sparse,
symmetric and positive definite (or transformed to be), v,b
are respectively the velocity and effective load vectors. Dif-
ferent methods for solving linear systems can be found in the

literature [PTVF92]. Just to name a few, the Cholesky fac-
torisation and the conjugate gradient are the most used algo-
rithms in computer animation, with a large preference for the
last one thanks to its speed. Considering the Cholesky fac-
torisation, the A matrix is decomposed into two triangular
matrices, a lower one L and its transpose LT (see [PTVF92]
for details):

A = LLT (6)
If we consider the example shown in figure 1 then A and

L have the following shape:

A =

a0,0 a1,0 0

a1,0 a1,1

. . .

. . .
. . .

. . .

. . . a3,3 a3,4
0 a4,3 a4,4

L =

l0,0 0
l1,0 l1,1

l2,1

. . .

. . . l3,3
0 l4,3 l4,4

We obtain the solution v by using a classical forward
(equation 7) and backward (equation 8) substitution:

Ly = b (7)

LTv = y (8)

Analysis of this computation will help us to understand how
an implicit method propagate forces. Considering equation
7 applied to our example, the first component is trivially
y0 = b0/l0,0. Other components are calculated with the re-
currence yi =

(
bi− yi−1li,i−1

)
/li,i. As denoted in [Kas95],

the case where li,i−1 = 1/a and li,i = (a−1)/a is a represen-
tative behaviour away from the boundaries. The recurrence
can then be rewritten into:

yi = λbi +(1−λ)yi−1 (9)

where λ = a(a−1)−1. Equation 9 is a simple recursive filter.
The output yi is a blend between the previous output yi−1
and the current input bi. In fact this is a low-pass filtering of
smoothing size determined by λ. If neighbour particles in the
range of λ have similar force variations, which is typically
the case when using small time steps, then filtering will have
almost no effect. On the contrary, filtering takes all of its
meaning when forces show different behaviours.

Low-pass filtering occurs when solving implicit formu-
lation. In other words, particles propagate forces to their
neighbours, and during one time step all the neighbours in
the range of λ take into account this propagation. The larger
the time step is, the more important the smoothing range will
be and consequently the low-pass filtering. If the time step is
small, then filtering is not operating and no artificial damp-
ing is added.

4. Explicit Application Proposal

In section 3.3 we have explained how implicit approaches
apply low-pass filtering to force. This way, local variations
i.e. high frequencies, are attenuated, and hence stability is

3

improved. As a solution to force propagation, we propose to
diffuse velocity at each time step to particles’ neighbours.
Even though force filtering has a stronger physical mean-
ing, we obtained similar results when filtering force or veloc-
ity. This is not surprising since velocity is computed directly
from force. Filtering velocity allows the model’s integration
to be used as a post-processing unit without modifying the
existing numerical scheme which can then be seen as a black
box.

4.1. Our Filtering/Damping Proposition

Equation 9 shows an exponential filter generated by implicit
solving. Since our goal is to represent the same behaviour,
we applied an identical filtering. Indeed, other filters may be
used. We experimented a Gaussian one, and observed simi-
lar results (larger time steps of the same proportion, motion
damping is visually comparable). Exponential filter is de-
fined by:

β(d) = λe−λ|d| (10)

where d is the algebraic distance between two particles. We
can observe in figure 2 that λ is responsible for filtering ad-
justment. Hence one can use adaptive filtering through the
variation of λ. Attention should be given to very low-pass
filtering (λ < 1), which leads to undesirable effects: motion
is then too much damped. In this case current particle’s ve-
locity has almost as much influence as the particle’s neigh-
bours velocities, so there are no more local variations and
there only remains a global motion, i.e. the whole structure
is moving. Considering the velocity of the ith particle vt+∆t

i ,

Figure 2: Exponential filter.

the new filtered velocity is computed as follows:

vt+∆t
i f iltered

= ∑
j

β
t+∆t
j vt+∆t

j

where β
t+∆t
j correspond to the filter value of neighbouring

particle j (see equation 10). Here we consider that particle
i is a neighbour of itself. We point out that β

t+∆t
j is time

dependent and has to be normalised. Also, the exchange be-
tween two particles is not symmetric, and can produce un-
desirable effects. Thus we propose the following alternative
which worked well with our examples:

vt+∆t
i f iltered

= ∑
j

β
t+∆t
j

vt+∆t
j + vt+∆t

i

2

Our algorithm is quite similar to the one proposed in
[MDDB01]. Nevertheless, there are notable differences.
Meyer et al. aim implicit optimisation by precomputing the
inverse of a modified linear system’s matrix A and using it
as a force filtering. We do not have the same goal. We aim
explicit stabilisation by defining a generic filter for explicit
schemes in order to reduce the time step. To do so, we anal-
yse implicit solving and extract the generated filter. More-
over, we present a frequency analysis.

4.2. Structure

We applied filtering on different mass-spring structures, i.e.
clothes (we used the model proposed in [CK02]) and three
dimensional objects with varying material properties such as
the fish model presented in [TT94].

4.3. Implementation Discussion

Implementation of our method is straightforward for ex-
isting ODE solvers. Filtering operates as a post-processing
unit. Our approach has proved to be working with all tested
explicit methods: forward Euler, FB Euler, Verlet scheme
and Runge-Kutta 4 (RK4). In our example we simulated
fluid friction force, spring stiff force as in [TT94]. Filter-
ing can be applied on a mass-spring structure with damping
forces, although not necessary. In this case we recommend
the projected damping model. We point out that our filtering
schemes eliminates high frequencies, which occur in the in-
plane (along the spring) and also in the out-plane. Projected
damping attenuates spring oscillations in the in-plane, thus a
double damping is done in the in-plane. This is not a prob-
lem since spring oscillations are often undesired.

5. Filtering Analysis

In this section we analyse the frequencies of motion gener-
ated by an explicit, an implicit and a filtered explicit scheme.
We expect animations computed by a low damped explicit
method to be fulfilled of details, since it allows local varia-
tions, while motion computed by implicit or filtered explicit
methods is supposed to be damped. We made the follow-
ing experiment: a 2D cloth mesh nailed at two corners is
falling under gravity force during 5 seconds (see bottom fig-
ure 4(d)). Three simulations are being tested with respec-
tively the following numerical methods: FB Euler, backward
Euler and filtered FB Euler. Figure 3 shows our 2D to 1D
transformation on a close-up pattern of the mesh (which is
repeated on a plane). To analyse changes in velocities we
will represent velocity field in RGB space instead of 3D
world space.

Figure 4 shows velocity evolution throughout the exper-
iment of the animation (no adaptive time stepping is used,
all coefficients for the mass-spring structure are identical for
all three simulations). Horizontal axis represents time with

4

Figure 3: At each time step, velocities are stored in one di-
mension vector for evolution analysis.

Figure 4: Evolution of cloth particles’ velocities computed
by (a) FB Euler method (b) backward Euler (see [BW98])
(c) FB Euler using our proposed filter (filtered FB Euler)
(d) screenshots illustrate the 3D cloth experiment at corre-
sponding times with the top images.

a time step of 0.01s. We can clearly see that similar areas
of same colours exist in all three pictures, and occurring al-
most at the same time. But one can distinguish disturbance
on top image (a), which is computed by FB Euler. They are
due to local variations, i.e. high frequencies. As expected,
the middle picture (b), solved by backward Euler, contains
few perturbations, since they are automatically filtered. We
solved the linear system using Cholesky decomposition and
the conjugate gradient method. Both computations generated
filtering. The shape of the bottom image (c), obtained using
filtered FB Euler, is visually similar to the middle picture,
i.e. the artificial damping is reproduced.

To visualise the frequency range, we performed a 2D
Fourier transform on the whole rectangular mesh velocities
(with the same cloth experiment). A screenshot of the result-
ing animations is shown in figure 5. Looking at the bottom
row of figure 5, i.e. the frequency domain, the centre value
(white pixel) corresponds to very low frequencies. The far-
ther we go from the centre, the higher the frequencies are.
Again, the predicted behaviours are illustrated: explicit FB
Euler computation (left) contains higher frequencies than the
two others. Lower frequencies (closer to the centre) are seen

Figure 5: Top row: 2D cloth structure projected as an image.
Bottom row: their corresponding frequency domain. From
left to right: forward, backward and filtered forward Euler.

with the implicit scheme (middle). Almost identical results
are achieved by filtering FB Euler scheme (right).

6. Stability Criterion

To determine the time step limit when adding artificial
damping, we will use an eigenvalue analysis. For forward
Euler, FB Euler and the Verlet scheme, maximum time step
can be computed as follows:

∆tmax =
2√
k0

(11)

where k0 denotes maximum eigenvalue computed from the
stiffness matrix (see [HES03,Shi05]). A simple but efficient
method for maximum eigenvalue computing is the power
method. We modified this algorithm for our needs: we in-
tegrated filtering (see algorithm 1). Figure 6 shows the time
step size related to a scalar λ. If λ is high (i.e. >10), the filter
has almost no effect. On the contrary if λ is small (i.e. ≤ 1),
the low pass filtering is very effective.

Similarly to implicit solving, the larger the time step is,
the more important the filtering will be. When λ = 1, time
step is doubled. This leads to an almost twice faster compu-
tation than when using unfiltered methods. Since time step is
doubled, k0 is consequently divided by 4 (see equation 11).
If spring and mass coefficients are not modified throughout
the animation (usually the case), then k0 is of the same or-
der of magnitude. This is consequently true for time steps.
In fact this algorithm is executed once and for all, as a pre-
computation and require a few iterations for convergence.

7. Results

For all of our experiments, our test platform was an AMD
2800+ running Linux.

5

Figure 6: Time step size is determined by the filtering coef-
ficient λ.

Algorithm 1 Modified Power Method.
Require: vector pos, lambda

1: v initial guess (random)
2: for k = 1,2,3, . . . until convergence do
3: v← A · v
4: α← max(v)
5: v← v/α

6: v← f ilter(pos,v,λ)
7: end for
8: return α

7.1. Filter Analysis Discussion

Some of our examples worked well with a twice bigger time
step which reduces by almost 50% time computations. But
some examples did not because the force propagation is not
the only source of instability. We point out that filtering at-
tenuates velocity, particularly when numerical instability is
detected: if a particle’s velocity goes unstable, then it can be
stabilised according to its neighbours’ velocities (depending
on the instability). If all neighbours’ velocities go unstable,
then filtering cannot attenuate velocities anymore, and the
system is hence unstable. This is a typical case of stiff sys-
tems. All of our examples accepted a 1.25 larger time step.
Using such a time step value without filtering leads to nu-
merical instability. It is thus stable when filtering is applied.
Since filtering is in O(n) (the number of neighbours is con-
stant and is usually much smaller than the number of parti-
cles n), we experienced a 20% faster computation time (for
a 25% larger time step, which means that filtering has a 5%
cost).

7.2. Time Comparisons

To illustrate our model’s efficiency, we tested the variation
of the following parameters (with the experiment shown in

figure 7 for a 10 seconds animation): k0 and particle num-
ber (since all numerical methods are proportional to these
two parameters). We tested explicit methods (FB Euler, RK4
and Verlet methods), an implicit one, backward Euler as
in [BW98] and the IMEX method proposed in [EEH00]. We
used the matrix-free data structure (see [VT00]) for both
implicit and IMEX methods, in order to set up fair com-
parisons. We used a fixed time step (0.01s) for both the
IMEX and the implicit scheme. For explicit methods, we
precomputed the maximum time step (although ≤ 0.01) us-
ing equation 11 for FB Euler and Verlet method and used
for RK4 a maximum step size determined by

√
8.75/

√
k0

(see [Shi05]). We disabled collision detection for fair com-
parisons, since collisions are handled differently when us-
ing explicit or implicit methods. Top figure 8 shows time
comparisons when increasing the number of particles (with
k0 = 106).

Results show a time acceleration of about 20% when fil-
tering explicit methods (using a 1.25 larger time step size).
The Verlet scheme is not shown for clarity but is subject to
an equivalent speed up. We can see that the filtered FB Euler
curve (see the top of figure 8) is very close to the backward
Euler one. It is important to note that the conjugate gradi-
ent algorithm (where most of implicit solving time is spent)
highly depends on the convergence criteria (error threshold
ε and maximum number of iterations). In our case we used a
relatively big ε = 0.01 (stable though), but when decreasing
it, implicit solving takes more time for this same eigenvalue
(filtered FB Euler solving is then faster).

The bottom figure 8 shows time comparison when in-
creasing k0 (due to stiffness). Implicit and IMEX methods
become significantly more efficient when k0 > 106, although
with such stiffness, animations show a solid-like behaviour.
In this case, explicit methods are to be prohibited.

We applied our method to the fish structure (see figure 9),
and as for the cloth experiments, bigger time steps and faster
computations were in the same proportion. The simulations
computed with the three methods, i.e. explicit, implicit and
filtered explicit are visually similar.

8. Conclusions

Explicit methods exhibit interesting properties, such as sim-
plicity and accuracy. Unfortunately they are unstable and re-
quire small time steps. For stiff systems, this leads to high
computational times. We showed how implicit schemes gen-
erate low-pass filtering of forces, and thus avoiding some
instabilities. Taking advantage of this, we applied a similar
filtering to explicit schemes. Frequency analysis and results
show that time steps can be increased from 25% to 200%,
and consequently computational times are decreased from
20% to almost 50%. The drawback is that, as in the implicit
case, artificial damping is added and hence animations look
smoother (depending on the filter value). For practical exam-

6

Figure 7: Animation of a fallen drape. Every two images: a textured mesh and its corresponding velocity coloured mesh.

Figure 8: Top: Computational times compared to the par-
ticle number for k0 = 106. Bottom: Explicit methods have
competitive computation times until eigenvalue reaches 106.

ples (k0 ≤ 106) our method shows competitive results com-
pared to an implicit solving. But explicit methods dealing
with higher stiffness are much slower. To face this problem,
we look forward to apply implicit stabilisation procedures
to explicit methods, such as the linearization. We also plan
to improve filtering by using more powerful filters, such as
the Kalman filter, recently used in similar work [GM06]. A
Von Neumann analysis could also be used to quantify fre-
quencies and to keep only the desired ones. For better time
performance, it could be possible to run our filtering algo-
rithm on the GPU.

Figure 9: Screenshot of our method applied to fish anima-
tion.

References

[BA04] BOXERMAN E., ASCHER U.: Decomposing
cloth. In SCA ’04: Proceedings of the 2004 ACM SIG-
GRAPH/Eurographics symposium on Computer anima-
tion (New York, NY, USA, 2004), ACM Press, pp. 153–
161.

[BFA02] BRIDSON R., FEDKIW R., ANDERSON J.: Ro-
bust treatment of collisions, contact and friction for cloth
animation. In SIGGRAPH ’02: Proceedings of the 29th
annual conference on Computer graphics and interac-
tive techniques (New York, NY, USA, 2002), ACM Press,
pp. 594–603.

[BMF03] BRIDSON R., MARINO S., FEDKIW R.: Sim-
ulation of clothing with folds and wrinkles. In SCA ’03:
Proceedings of the 2003 ACM SIGGRAPH/Eurographics
Symposium on Computer animation (Aire-la-Ville,
Switzerland, 2003), Eurographics Association, pp. 28–
36.

[BW98] BARAFF D., WITKIN A.: Large steps in cloth
simulation. In SIGGRAPH ’98: Proceedings of the 25th
annual conference on Computer graphics and interac-
tive techniques (New York, NY, USA, 1998), ACM Press,
pp. 43–54.

[CK02] CHOI K.-J., KO H.-S.: Stable but responsive
cloth. In SIGGRAPH ’02: Proceedings of the 29th annual

7

conference on Computer graphics and interactive tech-
niques (New York, NY, USA, 2002), ACM Press, pp. 604–
611.

[EEH00] EBERHARDT B., ETZMUSS O., HAUTH M.:
Implicit-explicit schemes for fast animation with particle
systems. In Eurographics Computer Animation and Sim-
ulation Workshop 2000 (2000).

[Fle87] FLEISHER D. T. . J. P. . A. B. . K.: Elastically de-
formable models. Computer Graphics 21, 4 (July 1987),
205–214.

[GM06] GROTE M. J., MAJDA A. J.: Stable time filtering
of strongly unstable spatially extended systems. Proceed-
ings of the National Academy of Sciences of the United
States of America 103, 20 (2006), 7548–7553.

[HE01] HAUTH M., ETZMUSS O.: A high performance
solver for the animation of deformable objects using ad-
vanced numerical methods. In Proc. Eurographics 2001
(2001), Chalmers A., Rhyne T.-M., (Eds.), vol. 20(3) of
Computer Graphics Forum, pp. 319–328.

[HES03] HAUTH M., ETZMUSS O., STRASSER W.:
Analysis of numerical methods for the simulation of de-
formable models. The Visual Computer 19, 7-8 (2003),
581–600.

[KANB03] KAC̆IĆ-ALESIĆ Z., NORDENSTAM M.,
BULLOCK D.: A practical dynamics system. In SCA ’03:
Proceedings of the 2003 ACM SIGGRAPH/Eurographics
symposium on Computer animation (Aire-la-Ville,
Switzerland, 2003), Eurographics Association, pp. 7–16.

[Kas95] KASS M.: An introduction to physically based
modeling, chapter introduction to continuum dynamics
for computer graphics. In SIGGRAPH Course Notes
(1995).

[MDDB01] MEYER M., DEBUNNE G., DESBRUN M.,
BARR A. H.: Interactive animation of cloth-like objects
in virtual reality. Journal of Visualization and Computer
Animation 12, 1 (2001), 1–12.

[Mil88] MILLER G. S. P.: The motion dynamics of snakes
and worms. In SIGGRAPH ’88: Proceedings of the 15th
annual conference on Computer graphics and interac-
tive techniques (New York, NY, USA, 1988), ACM Press,
pp. 169–173.

[NMK∗05] NEALEN A., MÜLLER M., KEISER R., BOX-
ERMANN E., CARLSON M.: Physically based deformable
models in computer graphics. In Proceedings of Euro-
graphics 2005 (2005), pp. 91–94.

[PTVF92] PRESS W. H., TEUKOLSKY S. A., VETTER-
LING W. T., FLANNERY B. P.: Numerical Recipes in C:
The Art of Scientific Computing. Cambridge University
Press, New York, NY, USA, 1992.

[Shi05] SHINYA M.: Theories for mass-spring simulation
in computer graphics: Stability, costs and improvements.
IEICE - Trans. Inf. Syst. E88-D, 4 (2005), 767–774.

[TF88] TERZOPOULOS D., FLEISCHER K.: Modeling in-
elastic deformation: viscolelasticity, plasticity, fracture. In
SIGGRAPH ’88: Proceedings of the 15th annual confer-
ence on Computer graphics and interactive techniques
(New York, NY, USA, 1988), ACM Press, pp. 269–278.

[TT94] TU X., TERZOPOULOS D.: Artificial fishes:
physics, locomotion, perception, behavior. In SIGGRAPH
’94: Proceedings of the 21st annual conference on Com-
puter graphics and interactive techniques (New York, NY,
USA, 1994), ACM Press, pp. 43–50.

[TWS06] THOMASZEWSKI B., WACKER M., STRASSER

W.: A consistent bending model for cloth sim-
ulation with corotational subdivision finite elements.
In SCA ’06: Proceedings of the 2006 ACM SIG-
GRAPH/Eurographics symposium on Computer anima-
tion (Aire-la-Ville, Switzerland, 2006), Eurographics As-
sociation, pp. 107–116.

[VMT01] VOLINO P., MAGNENAT-THALMANN N.:
Comparing efficiency of integration methods for cloth
simulation. In Computer Graphics International (2001),
pp. 265–274.

[VMT06] VOLINO P., MAGNENAT-THALMANN N.:
Simple linear bending stiffness in particle systems.
In SCA ’06: Proceedings of the 2006 ACM SIG-
GRAPH/Eurographics symposium on Computer anima-
tion (Aire-la-Ville, Switzerland, 2006), Eurographics
Association, pp. 101–105.

[VT00] VOLINO P., THALMANN N. M.: Implementing
fast cloth simulation with collision response. In CGI ’00:
Proceedings of the International Conference on Computer
Graphics (Washington, DC, USA, 2000), IEEE Computer
Society, p. 257.

8

