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Abstract In this paper, using the Brouwer topological degree, the authors prove an
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1 Introduction

It has been well recognized that variational inequalities offer the right framework to consider

numerous applied problems in various areas such as economics and engineering. Throughout

this paper, we consider R
n equipped with the usual euclidean scalar product 〈 · , · 〉. We start

by considering a variational inequality VI(Λ, ϕ), that is, the problem of finding x ∈ R
n such

that

〈Λ(x), v − x〉 + ϕ(v) − ϕ(x) ≥ 0, ∀ v ∈ R
n.

In this formulation, Λ : R
n → R

n is a continuous map, ϕ : R
n → R is a convex function. When

the operator Λ under consideration is coercive, existence results for the problem VI(Λ, ϕ) are

well known in the setting of reflexive Banach spaces. This study was initiated by G. Stampacchia

in the 60’s, and we refer to the contributions of J. L. Lions [15], Brézis [4] and Kinderlehrer

and Stampacchia [12] for various results and references therein.

In the first part of this paper, we develop an original approach essentially based on the

use of the Brouwer topological degree to prove results related to the existence of a solution to

problem VI(Λ, ϕ).

Then, we study a first order evolution variational inequality, that is, a differential inclusion

of the form: find a T -periodic function u ∈ C0([0, T ]; Rn) such that

du

dt
(t) + F (u(t)) − f(t) ∈ −∂ϕ(u(t)), a.e. t ∈ [0, T ],



where F : R
n → R

n is a continuous map, ϕ : R
n → R is a convex function, f ∈ C0([0, +∞[; Rn)

is such that df
dt

∈ L1
loc(0, +∞; Rn), T > 0 is a prescribed period and ∂ϕ is the convex sub-

differential operator. This problem is studied by means of a continuation method. It is well

known that the Brouwer topological degree plays a fundamental role in the theory of ordinary

differential equations (ODE). M. A. Krasnosel’skii [13, 14] and H. Amann [3], developed a

continuation method to compute this Brouwer topological degree associated to some gradient

mapping (called the method of guiding function). This approach was useful for the study of the

existence of periodic solutions for ODE’s. Roughly speaking, if on some balls of R
n the Brouwer

topological degree of the Poincaré translation operator (see e.g. [17]) associated to the ODE

is different from zero, then the problem has at least one periodic solution (for more details,

references and possible extensions to the Leray-Schauder degree, we refer to the monograph of

J. Mawhin [17]). With the emergence of many engineering disciplines and due to the lack of

smoothness in many applications, it is not surprising that these classical mathematical tools

require natural extensions (for both analytical and numerical methods) to the class of unilateral

dynamical systems. It is well known that the mathematical formulation of unilateral dynamical

systems involves inequality constraints and hence contains natural non-smoothness. In me-

chanical systems, this non-smoothness could have its origin in the environment of the system

studied (e.g. case of contact) in the dry friction, or in the discontinuous control term. Recently,

new analytical tools have been developed for the study of unilateral evolution problems (see

e.g. [1, 2, 7–9] and the references therein).

The study of periodic solutions of evolution variational inequalities is also important. The

Krasnol’skii’s original approach for ODE, has known some extensions in order to obtain contin-

uation methods for differential inclusions (see [10] and the references therein for more details).

In Section 4, we will be concerned with the existence of a T -periodic solution u ∈ C0([0, T ];

R
n) such that

du

dt
∈ L∞(0, T ; Rn),

u is right-differentiable on [0, T ),

u(0) = u(T ),〈du

dt
(t) + F (u(t)) − f(t), v − u(t)

〉
+ ϕ(v) − ϕ(u(t)) ≥ 0, ∀ v ∈ R

n, a.e., t ∈ [0, T ]. (1.1)

In this formulation, F : R
n → R

n is a continuous map, ϕ : R
n → R is a convex function,

f ∈ C0([0, +∞[; Rn) is such that df
dt

∈ L1
loc(0, +∞; Rn) and T > 0 is a prescribed period.

We prove (see Corollary 5.1) that if F and ϕ satisfy some growth condition (see (5.17)),

then problem (1.1) has at least one periodic solution.

This approach is also used to obtain the existence of a T -periodic solution of a second order

dynamical system of the form:

Mq̈(t) + Cq̇(t) + Kq(t) − F (t) ∈ −H1∂Φ(HT
1 q̇(t)), (1.2)

where q ∈ R
m is the vector of generalized coordinate, Φ : R

l → R is a convex function,

M ∈ R
m×m is a symmetric and positive definite matrix, C ∈ R

m×m, K ∈ R
m×m are given

matrices and H1 ∈ R
m×l is a given matrix whose coefficients are determined by the directions



of friction forces. The function F ∈ C0([0, +∞); Rm) is such that dF
dt

∈ L1
loc([0, +∞); Rm). The

term H1∂Φ(HT
1 ·) is used to modelise the convex unilateral contact induced by friction forces.

The paper is organized as follows: Section 2 contains some background materials on prop-

erties of the Brouwer topological degree and the concept of resolvent operator associated to a

subdifferential operator. In Section 3, using an equivalent fixed point formulation as well as the

Brouwer topological degree, we give some existence results for finite variational inequalities. In

Section 4, we introduce the Poincaré operator associated to problem (1.1). Section 5 is devoted

to the existence of a periodic solution of problem (1.1). In Section 6, we show that our approach

could be applied to a special second order problem (1.2).

2 Brouwer Topological Degree and the Resolvent Operator Pλ,ϕ

It is well known that the degree theory is one of the most powerful tool in nonlinear analysis

for the study of zeros of a continuous operator. Let Ω ⊂ R
n be an open and bounded subset

with boundary ∂Ω and f ∈ C1(Ω; Rn) ∩ C0(Ω, Rn). The Jacobian matrix of f at x ∈ Ω is

defined by f ′(x) = (∂xi
fj(x))1≤i,j≤n and the Jacobian determinant of f at x ∈ Ω is defined by

Jf (x) = det(f ′(x)).

We set

Af (Ω) = {x ∈ Ω : Jf (x) = 0}.

Observe that if f−1(0) ∩ Af (Ω) = ∅ and 0 �∈ f(∂Ω), then the set f−1(0) is finite. The

quantity
∑

x∈f−1(0)

sign (Jf (x)) is therefore defined and is called the Brouwer topological degree

of f with respect to Ω and 0 and is denoted by deg(f,Ω, 0). More generally, if f ∈ C0(Ω; Rn)

and 0 �∈ f(∂Ω), then the Brouwer topological degree of f with respect to Ω and 0, denoted by

deg(f,Ω, 0), is well defined (see [16] for more details).

In the sequel, we use standard notations. We denote by 〈 · , · 〉 the scalar product on R
n and

by ‖ · ‖ the associated norm. For r > 0, we set Br := {x ∈ R
n : ‖x‖ < r}, and respectively

Br = {x ∈ R
n : ‖x‖ ≤ r}, for the open (respectively closed) unit ball with radius r > 0. We use

the notation ∂Br to denote the boundary Br\
◦
Br of Br, that is, {x ∈ R

n : ‖x‖ = r}.
If f : Br → R

n is continuous and 0 /∈ f(∂Br), then the Brouwer topological degree of f with

respect to Br and 0 is well-defined (see e.g. [16]) and denoted by deg(f, Br, 0).

Let us now recall some properties of the topological degree that we will use later.

P1 If 0 /∈ f(∂Br) and deg(f, Br , 0) �= 0, then there exists x ∈ Br such that f(x) = 0.

P2 Let ϕ : [0, 1] × Br → R
n; (λ, x) → ϕ(λ, x) be continuous such that, for each λ ∈ [0, 1],

one has 0 /∈ ϕ(λ, ∂Br), then the map λ → deg(ϕ(λ, · ), Br , 0) is constant on [0, 1].

P3 Let us denote by idRn the identity mapping on R
n. We have

deg(idRn , Br, 0) = 1.



P4 If 0 /∈ f(∂Br) and α > 0, then

deg(αf, Br , 0) = deg(f, Br, 0),

deg(−αf, Br, 0) = (−1)ndeg(f, Br, 0).

P5 If 0 /∈ f(∂Br) and f is odd on Br (i.e., f(−x) = −f(x), ∀x ∈ Br), then deg(f, Br, 0)

is odd.

P6 Let f(x) = Ax − b, with A ∈ R
n×n a nonsingular matrix and b ∈ R

n. Then

deg(f, A−1b+Br, 0) = sign(det A) = ±1.

Let V ∈ C1(Rn; R) and suppose that there exists r0 > 0 such that for every r ≥ r0,

0 /∈ ∇V (∂Br). Then deg(∇V, Br, 0) is constant for r ≥ r0 and one defines the index of V at

infinity “ind(V,∞)” by

ind(V,∞) := deg(∇V, Br , 0), ∀ r ≥ r0.

Let ϕ : R
n → R be a convex mapping. It is well known that

(a) ϕ is continuous on R
n;

(b) For all x ∈ R
n, the convex subdifferential of ϕ at x is a nonempty compact and convex

subset of R
n and defined by

∂ϕ(x) = {w ∈ R
n : ϕ(v) − ϕ(x) ≥ 〈w, v − u〉, ∀ v ∈ R

n};

(c) For all x ∈ R
n, the directional derivative of ϕ at x ∈ R

n in the direction ξ ∈ R
n, i.e.,

ϕ′(x; ξ) = lim
α↓0

ϕ(x + αξ) − ϕ(x)

α

exists (see e.g. [11, p. 164]).

Since the subdifferential operator ∂ϕ associated to ϕ, is maximal monotone (see [5]), the

operator (I + λ∂ϕ)−1 denoted by Pλ,ϕ is a contraction everywhere defined on R
n, that is,

‖Pλ,ϕ(x) − Pλ,ϕ(y)‖ ≤ ‖x − y‖, ∀x, y ∈ R
n.

This operator Pλ,ϕ is called the resolvent of order λ > 0 associated to ∂ϕ and for simplicity, we

denote it by Pϕ instead of P1,ϕ when the parameter λ = 1.

Let Λ : R
n → R

n be a continuous mapping and consider the inequality problem: Find

x ∈ R
n such that

〈Λ(x), v − x〉 + ϕ(v) − ϕ(x) ≥ 0, ∀ v ∈ R
n. (2.1)

Clearly problem (2.1) is equivalent to the nonlinear equation: Find x ∈ R
n such that

x − Pϕ(x − Λ(x)) = 0. (2.2)

In view of property P1 recalled earlier, it is important to compute the degree of the operator

idRn − Pϕ ◦ (idRn − Λ).



Remark 2.1 If x is a solution of problem (2.1), then

〈Λ(x), ξ〉 + ϕ′(x; ξ) ≥ 0, ∀ ξ ∈ R
n.

Indeed, let x be a solution of (2.1). Let ξ ∈ R
n and α > 0 be given. Setting v = x+αξ in (2.1),

we get

〈Λ(x), αξ〉 + ϕ(x + αξ) − ϕ(x) ≥ 0.

Thus, for all α > 0, we have

〈Λ(x), ξ〉 +
ϕ(x + αξ) − ϕ(x)

α
≥ 0.

Taking the limit as α ↓ 0 we obtain

〈Λ(x), ξ〉 + ϕ′(x; ξ) ≥ 0.

Example 2.1 Let ϕ : R → R be the function defined by

ϕ(x) = |x|, ∀x ∈ R.

We have

∂ϕ(x) =

⎧⎪⎨
⎪⎩

1, if x > 0,

[−1, 1], if x = 0,

−1, if x < 0,

and

Pϕ(x) = (I + ∂ϕ)−1(x) =

⎧⎪⎨
⎪⎩

x − 1, if x ≥ 1,

0, if x ∈ [−1, 1],

x + 1, if x ≤ −1.

∂ϕ(x)

Pϕ

I − Pϕ ◦ (I − Λ)

(I + ∂ϕ)

�
�

�

�
�

�

�
�

��

�
�
�

�
�

�
�

�
�

��

�
�
�

Figure 1 Example 2.1



Setting Λ(x) = 2x, we get

x − Pϕ(x − Λ(x)) =

⎧⎪⎨
⎪⎩

x, if |x| ≤ 1,

2x − 1, if x ≥ 1,

2x + 1, if x ≤ −1.

We see that the operator idR − Pϕ ◦ (idR − Λ) has a unique zero on R.

Proposition 2.1 Let L > 0 be given and assume that the mapping G : [0, L] × R
n → R

n

defined by (λ, y) �→ G(λ, y) is continuous on [0, L] × R
n. Then, the mapping

(λ, y) �→ Pλ,ϕ(G(λ, y))

is continuous on [0, L]× R
n.

Proof Let {yn} ⊂ R
n and {λn} ⊂ [0, L] be given sequences converging respectively to

y∗ ∈ R
n and λn → λ∗ ∈ R as n → +∞. We claim that the sequence {Pλn,ϕ(G(λn, yn))}

tends to Pλ∗,ϕ(G(λ∗, y∗)) as n → +∞. Indeed, setting xn := Pλn,ϕ(G(λn, yn)) and x∗ :=

Pλ∗,ϕ(G(λ∗, y∗)), we have

〈xn − G(λn, yn), v − xn〉 + λnϕ(v) − λnϕ(xn) ≥ 0, ∀ v ∈ R
n, (2.3)

〈x∗ − G(λ∗, y∗), v − x∗〉 + λ∗ϕ(v) − λ∗ϕ(x∗) ≥ 0, ∀ v ∈ R
n. (2.4)

Let us first check that the sequence {xn} is bounded. Indeed, suppose on the contrary that the

sequence {‖xn‖} is unbounded. Setting v := 0 in (2.3), we obtain

−〈xn − G(λn, yn), xn〉 + λn[ϕ(0) − ϕ(xn)] ≥ 0,

and thus

‖xn‖2 ≤ ‖G(λn, yn)‖‖xn‖ + λn[ϕ(0) − ϕ(xn)].

It results that for n large enough, ‖xn‖ �= 0 and

1 ≤ ‖G(λn, yn)‖
‖xn‖ +

λn

‖xn‖2
[ϕ(0) − ϕ(xn)]. (2.5)

As for n large enough, 1
‖xn‖ ∈ (0, 1], we use the convexity of ϕ to obtain

ϕ
( xn

‖xn‖
)
≤ 1

‖xn‖ϕ(xn) +
(
1 − 1

‖xn‖
)
ϕ(0).

Thus
ϕ(0) − ϕ(xn)

‖xn‖ ≤ ϕ(0) − ϕ
( xn

‖xn‖
)
.

From (2.5), we get

1 ≤ ‖G(λn, yn)‖
‖xn‖ + λn

[ϕ(0) − ϕ( xn

‖xn‖ )

‖xn‖
]
. (2.6)

The sequence { xn

‖xn‖} remains in the compact set ∂B1 and from the continuity of ϕ, we derive

that the sequence {ϕ( xn

‖xn‖ )} is bounded in R. Hence

lim
n→+∞

ϕ
(

xn

‖xn‖
)

‖xn‖ = 0.



Taking now the limit as n → +∞ in (2.6), we obtain the contradiction 1 ≤ 0. The sequence

{xn} is thus bounded.

Setting v := x∗ in (2.3) and v := xn in (2.4), we obtain the relations

〈xn − G(λn, yn), xn − x∗〉 − λnϕ(x∗) + λnϕ(xn) ≤ 0, (2.7)

−〈x∗ − G(λ∗, y∗), xn − x∗〉 − λ∗ϕ(xn) + λ∗ϕ(x∗) ≤ 0. (2.8)

Thus

‖xn − x∗‖2 ≤ ‖G(λn, yn) − G(λ∗, y∗)‖‖xn − x∗‖
+ (λn − λ∗)ϕ(x∗) + (λ∗ − λn)ϕ(xn). (2.9)

Using the continuity of ϕ and the boundeness of {xn}, we get that the sequence {ϕ(xn)}n is

bounded in R. Moreover ‖G(λn, yn) − G(λ∗, y∗)‖ → 0 and (λn − λ∗) → 0 in R as n → +∞.

Relation (2.9) yields that xn → x∗ in R
n as n → +∞. Hence the operator (λ, y) �→ Pλ,ϕ(G(λ, y))

is continuous, which completes the proof.

Proposition 2.2 Suppose that Λ : R
n → R

n is continuous and ϕ : R
n → R is a convex

function. If there exists a continuous mapping H : R
n → R

n and r > 0 such that

〈Λ(x), H(x)〉 + ϕ′(x; H(x)) < 0, ∀x ∈ ∂Br, (2.10)

then

deg(H, Br, 0) = (−1)ndeg(idRn − Pϕ(idRn − Λ), Br, 0).

Proof Let h : [0, 1] × Br → R
n; (λ, y) �→ h(λ, y) := y − Pλ,ϕ(y − λΛ(y) + (1 − λ)H(y)).

Proposition 2.1 ensures that h is continuous. Let us now check that h(λ, x) �= 0, ∀x ∈ ∂Br.

Indeed, suppose on the contrary that there exists x ∈ ∂Br and λ ∈ [0, 1] such that h(λ, x) = 0,

that is

x = Pλ,ϕ(x − λΛ(x) + (1 − λ)H(x)).

We first remark that λ �= 0. Indeed, if we suppose, on the contrary, that λ = 0, then x =

P0(x + H(x)) = x + H(x). This yields H(x) = 0 which contradicts assumption (2.10).

Thus λ > 0 and

〈λΛ(x) − (1 − λ)H(x), v − x〉 + λϕ(v) − λϕ(x) ≥ 0, ∀ v ∈ R
n.

It results that (see Remark 2.1)

〈λΛ(x) − (1 − λ)H(x), ξ〉 + λϕ′(x; ξ) ≥ 0, ∀ ξ ∈ R
n.

Setting ξ := H(x), we obtain

λ[〈Λ(x), H(x)〉 + ϕ′(x; H(x))] ≥ (1 − λ)‖H(x)‖2 ≥ 0,

which contradicts assumption (2.10).



Therefore,

deg(idRn − Pϕ(idRn − Λ), Br, 0) = deg(h(1, · ), Br, 0) = deg(h(0, · ), Br, 0)

= deg(idRn − P0(idRn + H), Br, 0)

= deg(−H, Br, 0) = (−1)ndeg(H, Br, 0),

which completes the proof.

3 Some Existence Results for Finite Variational Inequalities

As a direct consequence of Proposition 2.2, we have the following existence results for finite

dimensional variational inequalities.

Theorem 3.1 Suppose that

(1) Λ : R
n → R

n is a continuous operator;

(2) ϕ : R
n → R is a convex function;

(3) there exists r > 0 such that

〈Λ(x), x〉 − ϕ′(x;−x) > 0, ∀x ∈ ∂Br.

Then there exists x ∈ Br such that

〈Λ(x), v − x〉 + ϕ(v) − ϕ(x) ≥ 0, ∀ v ∈ R
n.

Proof Just apply Proposition 2.2 with H := −idRn . Indeed, here we have

〈Λ(x), H(x)〉 + ϕ′(x; H(x)) = −〈Λ(x), x〉 + ϕ′(x;−x).

Theorem 3.2 Suppose that

(1) Λ : R
n → R

n is continuous;

(2) ϕ : R
n → R is convex and Lipschitz continuous with Lipschitz constant K > 0, i.e.,

| ϕ(x) − ϕ(y) |≤ K‖x − y‖, ∀x, y ∈ R
n;

(3) there exists r > 0 such that

‖Λ(x)‖ > K, ∀x ∈ ∂Br and deg(Λ, Br, 0) �= 0.

Then there exists x ∈ Br such that

〈Λ(x), v − x〉 + ϕ(v) − ϕ(x) ≥ 0, ∀ v ∈ R
n.

Proof Just apply Proposition 2.2 with H := −Λ. Indeed, we have

〈Λ(x), H(x)〉 + ϕ′(x; H(x)) = −‖Λ(x)‖2 + ϕ′(x;−Λ(x))

≤ −‖Λ(x)‖2 + K‖Λ(x)‖ = ‖Λ(x)‖(K − ‖Λ(x)‖).

Therefore

〈Λ(x), H(x)〉 + ϕ′(x; H(x)) < 0, ∀x ∈ ∂Br.



Proposition 2.2 ensures that

deg(idRn − Pϕ(idRn − Λ), Br, 0) = (−1)ndeg(H, Br , 0) = deg(Λ, Br, 0) �= 0.

Hence, there exists x ∈ Br such that x = Pϕ(x − Λ(x)). The conclusion follows.

Theorem 3.3 Suppose that

(1) Λ : R
n → R

n is continuous and that there exists r > 0 such that

〈Λx, x〉 > 0, ∀x ∈ ∂Br and deg(idRn + Λ, Br, 0) �= 0;

(2) ϕ : R
n → R is a convex function satisfying

ϕ′(x;−x − Λx) ≤ 0, ∀x ∈ ∂Br.

Then there exists x ∈ Br such that

〈Λ(x), v − x〉 + ϕ(v) − ϕ(x) ≥ 0, ∀ v ∈ R
n.

Proof Just take H := −idRn − Λ in Proposition 2.2. Indeed, we have

〈Λ(x), H(x)〉 + ϕ′(x; H(x)) = −‖Λ(x)‖2 − 〈Λ(x), x〉 + ϕ′(x;−x − Λ(x)) < 0, ∀x ∈ ∂Br.

According to Proposition 2.2, we have

deg(idRn − Pϕ(idRn − Λ), Br, 0) = (−1)ndeg(H, Br, 0) = deg(idRn + Λ, Br, 0) �= 0.

Hence, there exists x ∈ Br such that x = Pϕ(x − Λ(x)). The conclusion follows.

Corollary 3.1 Let f ∈ R
n be given. Suppose that

(1) A ∈ R
n×n is a real nonsingular matrix;

(2) ϕ : R
n → R is convex and Lipschitz continuous with Lipschitz constant K > 0.

Then there exists x ∈ R
n such that

〈Ax − f, v − x〉 + ϕ(v) − ϕ(x) ≥ 0, ∀ v ∈ R
n.

Proof The result is a consequence of Theorem 3.2 with Λ defined by

Λ(x) = Ax − f, ∀x ∈ R
n.

The matrix A is nonsingular and thus there exists c > 0 such that ‖Ax‖ ≥ c‖x‖, ∀x ∈ R
n. Let

us choose

r > max
{K + ‖f‖

c
, ‖A−1f‖

}
.

We see that if ‖x‖ = r, then

‖Λ(x)‖ ≥ ‖Ax‖ − ‖f‖ ≥ c‖x‖ − ‖f‖ > K.

On the other hand, we remark that

h(λ, x) := Ax − λf �= 0, ∀λ ∈ [0, 1], x ∈ ∂Br.



Indeed, suppose on the contrary that there exists λ ∈ [0, 1] and x ∈ ∂Br such that Ax = λf .

Then

‖x‖ = λ‖A−1f‖ ≤ ‖A−1f‖,
and we obtain the contradiction r ≤ ‖A−1f‖. Thus

deg(A. − f, Br, 0) = deg(h(1, · ), Br, 0) = deg(h(0, · ), Br, 0) = deg(A., Br , 0) = sign (det A) �= 0,

which completes the proof.

4 The Poincaré Operator

Let us first recall some general existence and uniqueness results (see e.g. [18]).

Theorem 4.1 Let ϕ : R
n → R be a convex function. Let F : R

n → R
n be a continuous

operator such that for some ω ∈ R, F + ωI is monotone, i.e.,

〈F (x) − F (y), x − y〉 ≥ −ω‖x − y‖2, ∀x, y ∈ R
n.

Suppose that f : [0, +∞) → R
n satisfies

f ∈ C0([0, +∞); Rn),
df

dt
∈ L1

loc(0, +∞; Rn).

Let u0 ∈ R
n and 0 < T < +∞ be given. There exists a unique u ∈ C0([0, T ]; Rn) such that

du

dt
∈ L∞(0, T ; Rn); (4.1)

u is right-differentiable on [0, T ); (4.2)

u(0) = u0; (4.3)〈du

dt
(t) + F (u(t)) − f(t), v − u(t)

〉
+ ϕ(v) − ϕ(u(t)) ≥ 0, ∀ v ∈ R

n, a.e., t ∈ [0, T ]. (4.4)

Remark 4.1 Suppose that F : R
n → R

n is of the type

F (x) = Ax + Ψ′(x) + F1(x), ∀x ∈ R
n,

where A ∈ R
n×n is a real matrix, Ψ ∈ C1(Rn; R) is convex and F1 is Lipschitz continuous, i.e.,

‖F1(x) − F1(y)‖ ≤ k‖x − y‖, ∀x, y ∈ R
n

for some constant k > 0. Then F is continuous and F + ωI is monotone provided that

ω ≥ sup
‖x‖=1

〈−Ax, x〉 + k.

We note that if F is k-Lipschitz, then F + kI is monotone.

Remark 4.2 (i) The variational inequality in (4.4) can also be written as the differential

inclusion
du

dt
(t) + F (u(t)) − f(t) ∈ −∂ϕ(u(t)), a.e., t ∈ [0, T ], (4.5)

(ii) Let u : [0, T ] → R be the unique solution of (4.1)–(4.4). Then〈du

dt
(t) + F (u(t)) − f(t), ξ

〉
+ ϕ′(u(t); ξ) ≥ 0, ∀ ξ ∈ R

n, a.e., t ∈ [0, T ].



Let T > 0 be given. Theorem 4.1 enables us to define the one parameter family {S(t) : 0 ≤
t ≤ T } of operators from R

n into R
n, as follows:

∀ y ∈ R
n, S(t)y = u(t), (4.6)

u being the unique solution on [0, T ] of the evolution problem (4.1)–(4.4). Note that

∀ y ∈ R
n, S(0)y = y.

Lemma 4.1 (See e.g. [18]) Let T > 0 be given and let a, b ∈ L1(0, T ; R) with b(t) ≥ 0 a.e.,

t ∈ [0, T ]. Let the absolutely continuous function w : [0, T ] → R+ satisfy

(1 − α)
dw

dt
(t) ≤ a(t)w(t) + b(t)wα(t), a.e., t ∈ [0, T ],

where 0 ≤ α < 1. Then

w1−α(t) ≤ w1−α(0)e
�

t

0
a(s)ds +

∫ t

0

e
�

t

s
a(q)dqb(s)ds, ∀ t ∈ [0, T ].

Theorem 4.2 Suppose that the assumptions of Theorem 4.1 hold. Then

‖S(t)y − S(t)z‖ ≤ eωt‖y − z‖, ∀ y, z ∈ R
n, t ∈ [0, T ].

Proof Let y, z ∈ R
n be given. We have

−
〈 d

dt
S(t)y + F (S(t)y) − f(t), S(t)z − S(t)y

〉
− ϕ(S(t)z) + ϕ(S(t)y) ≤ 0, a.e., t ∈ [0, T ],

〈 d

dt
S(t)z + F (S(t)z) − f(t), S(t)z − S(t)y

〉
− ϕ(S(t)y) + ϕ(S(t)z) ≤ 0, a.e., t ∈ [0, T ].

It results that for almost every t ∈ [0, T ] we have

〈 d

dt
(S(t)z − S(t)y), S(t)z − S(t)y

〉
≤ ω‖S(t)z − S(t)y‖−〈[F + ωI](S(t)z) − [F + ωI](S(t)y), S(t)z − S(t)y〉.2

Since by assumption, F + ωI is monotone, it results that

d

dt
‖S(t)z − S(t)y‖2 ≤ 2ω‖S(t)z − S(t)y‖2, a.e., t ∈ [0, T ]. (4.7)

Using Lemma 4.1 with w( · ) := ‖S( · )z − S( · )y‖2, a( · ) := 2ω, b( · ) = 0, α = 0, we get

‖S(t)z − S(t)y‖2 ≤ ‖z − y‖2e2ωt, ∀ t ∈ [0, T ].

The conclusion follows.

Let us now consider the Poincaré operator S(T ) : R
n → R

n given by y �→ S(T )y. Theorem

4.2 ensures that S(T ) is Lipschitz continuous, i.e.,

‖S(T )y − S(T )z‖ ≤ eωT ‖y − z‖, ∀ y, z ∈ R
n.



Remark 4.3 ( i ) Note that if F is continuous and monotone, then Theorem 4.2 holds with

ω = 0. In this case, the Poincaré operator S(T ) is nonexpansive, i.e.,

‖S(T )y − S(T )z‖ ≤ ‖y − z‖, ∀ y, z ∈ R
n.

(ii) If F is continuous and strongly monotone, i.e., there exists α > 0 such that

〈F (x) − F (y), x − y〉 ≥ α‖x − y‖2, ∀x, y ∈ R
n,

then Theorem 4.2 holds with ω = −α < 0 and the Poincaré operator S(T ) is a contraction.

According to (4.6), the unique solution of the problem (4.1)–(4.4) satisfies, in addition, the

periodicity condition

u(0) = u(T )

if and only if y is a fixed point of S(T ), that is,

S(T )y = y.

Thus the problem of the existence of a periodic solution for the evolution problem (4.1)–(4.2),

(4.4) reduces to the existence of a fixed point for S(T ).

5 Periodic Solutions

Definition 5.1 Let Ω ⊂ R
n be a given subset of R

n. We say that V ∈ C1(Rn; R) is a

guiding function for (4.5) on Ω provided that

〈F (x) − f(t),∇V (x)〉 + ϕ′(x;∇V (x)) < 0, ∀x ∈ Ω, t ∈ [0, T ]. (5.1)

Remark 5.1 ( i ) Suppose that there exists a guiding function V ∈ C1(Rn; R) for (4.5) on

∂Br (r > 0), i.e.,

〈F (x) − f(t),∇V (x)〉 + ϕ′(x;∇V (x)) < 0, ∀x ∈ ∂Br, t ∈ [0, T ].

Then for any τ ∈ [0, T ], we have

deg(∇V, Br , 0) = (−1)ndeg(idRn − Pϕ(idRn − F + f(τ)), Br , 0). (5.2)

Relation in (5.2) is a consequence of Proposition 2.2.

(ii) Suppose that there exists a guiding function V ∈ C1(Rn; R) for (4.5) on

ΩR := {x ∈ R
n : ‖x‖ ≥ R}, R > 0.

Then for r ≥ R and any τ ∈ [0, T ], we have

ind(V,∞) = (−1)ndeg(idRn − Pϕ(idRn − F + f(τ)), Br , 0).



Proposition 5.1 Suppose that there exists R > 0 such that

〈F (x) − f(t),∇V (x)〉 < 0, ∀x ∈ R
n, ‖x‖ ≥ R, t ∈ [0, T ]. (5.3)

Then for r ≥ R and any τ ∈ [0, T ], we have

ind(V,∞) = deg(f(τ) − F, Br, 0).

Proof Let r ≥ R be given and let h : [0, 1]×Br → R
n be the mapping defined by (λ, y) �→

h(λ, y) := λ∇V (y) + (1 − λ)(f(0) − F (y)). We claim that h(λ, y) �= 0, ∀ y ∈ ∂Br, λ ∈ [0, 1].

Indeed, suppose by contradiction that

λ∇V (y) + (1 − λ)(f(τ) − F (y)) = 0

for some y ∈ ∂Br and λ ∈ [0, 1]. Then

λ〈∇V (y), f(τ) − F (y)〉 = −(1 − λ)‖f(τ) − F (y)‖2. (5.4)

If λ = 0, relation (5.4) implies that f(τ)−F (y) = 0, and since y ∈ ∂Br and r ≥ R, we derive from

relation (5.3) a contradiction. Hence, λ �= 0 and relation (5.4) yields 〈∇V (y), f(τ)− F (y)〉 < 0

and a contradiction to (5.3). Thus,

deg(∇V, Br , 0) = deg(h(1, · ), Br, 0) = deg(h(0, · ), Br, 0) = deg(f(τ) − F, Br , 0).

Theorem 5.1 Suppose that f ∈ C0([0, +∞); Rn) and df
dt

∈ L1
loc(0, +∞; Rn). Let ϕ : R

n →
R be a convex function. Let F : R

n → R
n be a mapping satisfying the conditions of Theorem

4.1. Suppose that there exist constants c1 > 0, c2 > 0, c3 > 0, C1 ≥ 0, C2 ≥ 0 and a function

W ∈ C1(Rn; R) such that

c1‖x‖2 ≤ W (x) ≤ c3‖x‖2, ∀x ∈ R
n, (5.5)

c2‖∇W (x)‖2 ≤ W (x), ∀x ∈ R
n, (5.6)

〈F (x),∇W (x)〉 + ϕ′(x;∇W (x)) ≤ C1‖∇W (x)‖2 + C2‖∇W (x)‖, ∀x ∈ R
n. (5.7)

Let T > 0 be given. Assume that there exists a (guiding) function V ∈ C1(Rn; R) and R > 0

such that

〈F (x) − f(t),∇V (x)〉 + ϕ′(x;∇V (x)) < 0, ∀x ∈ R
n, ‖x‖ ≥ R, t ∈ [0, T ]. (5.8)

Then there exists r0 > R such that for any τ ∈ [0, T ], we have

deg(idRn − S(T )( · ), Br, 0) = deg(idRn − Pϕ(idRn − F + f(τ)), Br , 0)

= (−1)nind(V,∞), ∀ r ≥ r0.

Proof Let us first remark that without any loss of generality, we may assume that C1 > 0.

We set

r0 := R

√
c3√
c1

e
C1

2c2
T +

√
c2C2√
c1C1

(e
C1

2c2
T − 1) +

1

2
√

c1c2

∫ T

0

‖f(s)‖e
C1

2c2
sds.



(1) We claim that if y ∈ R
n, ‖y‖ = r with r ≥ r0, then

‖S(t)y‖ ≥ R, ∀ t ∈ [0, T ].

Suppose by contradiction that there exists t∗ ∈ [0, T ] such that ‖S(t∗)y‖ < R. We know that

u( · ) ≡ S( · )y satisfies (4.5), i.e.,

du

dt
(t) + F (u(t)) − f(t) ∈ −∂ϕ(u(t)), a.e., t ∈ [0, T ], (5.9)

and thus

du

dt
(t∗ − t) + F (u(t∗ − t)) − f(t∗ − t) ∈ −∂ϕ(u(t∗ − t)), a.e., t ∈ [0, t∗]. (5.10)

Setting

Y (t) = u(t∗ − t), t ∈ [0, t∗],

we derive

−dY

dt
(t) + F (Y (t)) − f(t∗ − t) ∈ −∂ϕ(Y (t)), a.e., t ∈ [0, t∗]. (5.11)

Thus, for every v ∈ R
n and almost every t ∈ [0, t∗], we have

ϕ(v) − ϕ(Y (t)) +
〈
− dY

dt
(t), v − Y (t)

〉
≥ 〈−F (Y (t)) + f(t∗ − t), v − Y (t)〉.

Hence 〈dY

dt
(t), ξ

〉
≤ 〈F (Y (t)) − f(t∗ − t), ξ〉 + ϕ′(Y (t); ξ), ∀ ξ ∈ R

n, a.e., t ∈ [0, t∗].

Set v = ∇W (Y (t)) to obtain

〈dY

dt
(t),∇W (Y (t))

〉
≤ 〈F (Y (t)) − f(t∗ − t),∇W (Y (t))〉 + ϕ′(Y (t);∇W (Y (t)))

≤ C1‖∇W (Y (t))‖2 + C2‖∇W (Y (t))‖ + ‖f(t∗ − t)‖‖∇W (Y (t))‖
≤ C1

c2
W (Y (t)) +

C2√
c2

√
W (Y (t)) +

1√
c2
‖f(t∗ − t)‖

√
W (Y (t)) , a.e., t ∈ [0, t∗].

Thus

1

2

d

dt
W (Y (t))≤ C1

2c2
W (Y (t)) +

C2

2
√

c2

√
W (Y (t)) +

1

2
√

c2
‖f(t∗ − t)‖

√
W (Y (t)), a.e., t ∈ [0, t∗].

Using Lemma 4.1 with w( · ) := W (Y ( · )), a( · ) := C1

2c2

, b( · ) := 1
2
√

c2

(C2 + ‖f(t∗ − · )‖) and

α := 1
2 , we obtain for every t ∈ [0, t∗],

√
W (Y (t)) ≤

√
W (Y (0)) e

C1

2c2
t
+

∫ t

0

C2

2
√

c2
e

C1

2c2
(t−s)

ds +

∫ t

0

1

2
√

c2
‖f(t∗ − s)‖e

C1

2c2
(t−s)

ds.

Thus, for every t ∈ [0, t∗],

‖Y (t)‖ ≤ 1√
c1

(√
c3 ‖Y (0)‖e

C1

2c2
t +

∫ t

0

C2

2
√

c2
e

C1

2c2
(t−s)ds +

∫ t

0

1

2
√

c2
‖f(t∗ − s)‖e

C1

2c2
(t−s)ds

)
.



Since Y (t∗) = u(0) = S(0)y = y and Y (0) = u(t∗) = S(t∗)y, we get

‖y‖ ≤ 1√
c1

(√
c3 ‖S(t∗)y‖e

C1

2c2
t∗

+

∫ t∗

0

C2

2
√

c2
e

C1

2c2
(t∗−s)

ds +

∫ t∗

0

1

2
√

c2
‖f(t∗ − s)‖e

C1

2c2
(t∗−s)

ds
)

< R

√
c3√
c1

e
C1

2c2
T +

√
c2C2√
c1C1

(e
C1

2c2
T − 1) +

1

2
√

c1c2

∫ T

0

‖f(s)‖e
C1

2c2
sds = r0.

Hence, ‖y‖ < r0, a contradiction.

Let r ≥ r0 be given.

(2) We claim that there exists ε > 0 and T ∗ ∈ (0, T ] such that

〈F (x)−f(t),∇V (y)〉+ϕ′(x;∇V (y)) < 0, ∀x ∈ R
n, y ∈ R

n, ‖y‖ = r, ‖x−y‖ ≤ ε, t ∈ [0, T ∗].

Indeed, recalling that the mapping (z, ξ) �→ ϕ′(z; ξ) is upper semicontinuous (see e.g. [11]), we

note that the mapping (t, x, y) �→ 〈F (x)− f(t),∇V (y)〉+ϕ′(x;∇V (y)) is upper semicontinuous

on [0, T ]× R
n × R

n, and if y ∈ R
n, ‖y‖ = r ≥ r0 ≥ R, then (by condition (5.8))

〈F (y) − f(0),∇V (y)〉 + ϕ′(y;∇V (y)) < 0.

Thus, for t > 0 close to 0, say t ≤ T ∗, and x closed to y, say ‖x − y‖ ≤ ε, ε > 0 small enough,

we have

〈F (x) − f(0),∇V (y)〉 + ϕ′(x;∇V (y)) < 0.

(3) We claim that there exists T ∈ (0, T ∗] such that

‖S(t)y − y‖ ≤ ε, ∀ y ∈ ∂Br, ∀ t ∈ [0, T ].

Indeed, by contradiction suppose that there exists sequences {tn} and {yn} with tn ∈ [0, T∗

n
]

(n ∈ N, n ≥ 1), ‖yn‖ = r and such that ‖S(tn)yn − yn‖ > ε. Taking a subsequence, y, if

necessary, we may assume that tn → 0+ and yn → y∗ ∈ ∂Br. On the other hand, we have

‖S(tn)yn − yn‖ = ‖S(tn)yn − S(tn)y∗ + S(tn)y∗ − yn‖
≤ ‖S(tn)yn − S(tn)y∗‖ + ‖S(tn)y∗ − yn‖.

Then, using Theorem 4.2, we obtain

‖S(tn)yn − yn‖ ≤
√

e2wtn ‖yn − y∗‖ + ‖S(tn)y∗ − yn‖.

Using the continuity of the map t �→ S(t)y, we see that ‖S(tn)yn − yn‖ → 0, a contradiction.

(4) Let HT : [0, 1] × Cr → R
n; (λ, y) → HT (λ, y) := y − (1 − λ)∇V (y) − S(λT )y. We

claim that the homotopy HT is such that 0 �= HT (λ, y), ∀ y ∈ ∂Br, λ ∈ [0, 1]. By contradiction,

suppose that there exists y ∈ R
n, ‖y‖ = r and λ ∈ [0, 1] such that

y − (1 − λ)∇V (y) − S(λT )y = 0.

Then

S(λT )y − y = −(1 − λ)∇V (y)



and thus

〈S(λT )y − y,∇V (y)〉 = −(1 − λ)‖∇V (y)‖2 ≤ 0. (5.12)

On the other hand, we know that〈 d

dt
S(t)y, v − S(t)y

〉
+ ϕ(v) − ϕ(S(t)y) ≥ 〈−F (S(t)y) + f(t), v − S(t)y〉,

∀ v ∈ R
n, a.e., t ∈ [0, T ]. (5.13)

Thus〈 d

dt
S(t)y,∇V (y)

〉
+ ϕ′(S(t)y;∇V (y)) ≥ 〈−F (S(t)y) + f(t),∇V (y)〉, a.e., t ∈ [0, T ].

Therefore

〈 ∫ λT

0

d

ds
S(s)yds,∇V (y)

〉
≥

∫ λT

0

〈−F (S(s)y) + f(s),∇V (y)〉 − ϕ′(S(s)y;∇V (y)) ds.

Part (1) of this proof ensures that ‖S(t)y‖ ≥ R, ∀ t ∈ [0, λT ] ⊂ [0, T ]. Part (3) of this proof

guarantees that ‖S(t)y−y‖ ≤ ε, ∀ t ∈ [0, λT ] ⊂ [0, T ]. Then using part (2) of this proof, we may

assert that the map s �→ 〈F (S(s)y)− f(s),∇V (y)〉+ϕ′(S(s)y;∇V (y)) is upper semicontinuous

and strictly negative on [0, λT ]. Thus

∫ λT

0

〈−F (S(s)y) + f(s),∇V (y)〉 − ϕ′(S(s)y;∇V (y))ds > 0

and we obtain

〈S(λT )y − y,∇V (y)〉 =
〈∫ λT

0

d

ds
S(s)yds,∇V (y)

〉
> 0.

This contradicts relation (5.12).

(5) Thanks to part (4) of this proof, we may use the invariance by homotopy property of

the topological degree and observe that

deg(idRn − S(T )., Br , 0) = deg(HT (1, · ), Br, 0) = deg(HT (0, · ), Br, 0)

= deg(−∇V, Br, 0) = (−1)ndeg(∇V, Br, 0).

(6) Let H : [0, 1] × Br → R
n; (λ, y) → H(λ, y) := y − S((1 − λ)T + λT )y. We claim that

H(λ, y) �= 0, ∀ y ∈ ∂Br, λ ∈ [0, 1]. By contradiction, suppose that there exists y ∈ R
n, ‖y‖ = r

and λ ∈ [0, 1] such that y = S((1 − λ)T + λT )y. Let us set h := (1 − λ)T + λT . We have

y = S(h)y.

Thus

V (y) = V (S(h)y). (5.14)

On the other hand,〈 d

dt
S(t)y, v − S(t)y

〉
+ ϕ(v) − ϕ(S(t)y) ≥ 〈−F (S(t)y) + f(t), v − S(t)y〉,

∀ v ∈ R
n, a.e., t ∈ [0, T ]. (5.15)



Thus〈 d

dt
S(t)y,∇V (S(t)y)

〉
+ ϕ′(S(t)y;∇V (S(t)y)) ≥ 〈−F (S(t)y) + f(t),∇V (S(t)y)〉,

a.e., t ∈ [0, T ]. (5.16)

Part (1) of this proof ensures that ‖S(t)y‖ ≥ R, ∀ t ∈ [0, T ]. The map s �→ 〈F (S(s)y) −
f(s),∇V (S(s)y)〉 + ϕ′(S(s)y;∇V (S(s)y)) is upper semicontinuous and (by condition (5.8))

strictly negative on [0, T ]. Thus, using (5.16), we obtain

V (S(h)y) − V (y) =

∫ h

0

d

ds
V (S(s)y)ds =

∫ h

0

〈 d

ds
S(s)y,∇V (S(s)y)

〉

≥
∫ h

0

〈−F (S(s)y) + f(s),∇V (S(s)y)〉 − ϕ′(S(s)y;∇V (S(s)y))ds > 0.

This contradicts (5.14).

(7) Thanks to part (6) of this proof, we may use the invariance by homotopy property of

the topological degree and see that

deg(idRn − S(T )., Br, 0) = deg(H(0, · ), Br, 0) = deg(H(1, · ), Br, 0) = deg(idRn − S(T )., Br, 0).

In conclusion, for all r ≥ r0, we have

deg(idRn − S(T )., Br, 0) = deg(idRn − S(T )., Br, 0),

deg(idRn − S(T )., Br, 0) = (−1)ndeg(∇V, Br, 0).

Thus

deg(idRn − S(T )., Br, 0) = (−1)nind(V,∞).

Finally, for any τ ∈ [0, T ], we have also (see Proposition 2.2 and Remark 5.1)

(−1)nind(V,∞) = deg(idRn − Pϕ(idRn − F + f(τ)), Br , 0).

Corollary 5.1 Suppose that f ∈ C0([0, +∞); Rn) and df
dt

∈ L1
loc(0, +∞; Rn). Let ϕ : R

n →
R be a convex function. Let F : R

n → R
n be a mapping satisfying the conditions of Theorem

4.1. Suppose in addition that there exist constants C1 ≥ 0, C2 ≥ 0 such that

〈F (x), x〉 + ϕ′(x; x) ≤ C1‖x‖2 + C2‖x‖, ∀x ∈ R
n. (5.17)

Let T > 0 be given. Assume that there exists V ∈ C1(Rn; R) and R > 0 such that

〈F (x) − f(t),∇V (x)〉 + ϕ′(x;∇V (x)) < 0, ∀x ∈ R
n, ‖x‖ ≥ R, t ∈ [0, T ], (5.18)

and

ind(V,∞) �= 0.

Then there exists at least one u ∈ C0([0, T ]; Rn) such that du
dt

∈ L∞(0, T ; Rn),

u(0) = u(T ), (5.19)〈du

dt
(t) + F (u(t)) − f(t), v − u(t)

〉
+ ϕ(v) − ϕ(u(t)) ≥ 0, ∀ v ∈ R

n, a.e., t ∈ [0, T ]. (5.20)



Proof We may apply Theorem 5.1 with W (x) = 1
2‖x‖2. It results that for r > 0 large

enough, we have deg(idRn −S(T )., Br, 0) �= 0 and the existence of a fixed point for the Poincaré

operator follows from the existence property of the topological degree.

Corollary 5.2 Suppose that f ∈ C0([0, +∞); Rn) and df
dt

∈ L1
loc(0, +∞; Rn). Let ϕ : R

n →
R be a convex and Lipschitz continuous function. Let F : R

n → R
n be a mapping satisfying the

conditions of Theorem 4.1. Suppose in addition that there exists Φ ∈ C1(Rn; R) such that

ind(Φ,∞) �= 0,

F (x) = ∇Φ(x), ∀x ∈ R
n,

and

c1‖x‖2 ≤ c2‖∇Φ(x)‖2 ≤ Φ(x) ≤ c3‖x‖2, ∀x ∈ R
n

for some constants c1 > 0, c2 > 0 and c3 > 0.

Let T > 0 be given. There exists at least one u ∈ C0([0, T ]; Rn) such that du
dt

∈ L∞(0, T ; Rn),

u(0) = u(T ), (5.21)〈du

dt
(t) + F (u(t)) − f(t), v − u(t)

〉
+ ϕ(v) − ϕ(u(t)) ≥ 0, ∀ v ∈ R

n, a.e., t ∈ [0, T ]. (5.22)

Proof We may apply Theorem 5.1 with W = Φ and V = −Φ. Indeed, let K > 0 denote

the Lipschitz constant of ϕ. We have

〈F (x), W (x)〉+ϕ′(x; W (x)) = ‖∇Φ(x)‖2 +ϕ′(x;∇Φ(x)) ≤ ‖∇Φ(x)‖2 +K‖∇Φ(x)‖, ∀x ∈ R
n.

Moreover, let C := K + max
t∈[0,T ]

‖f(t)‖ and R > C
c1

√
c3

c2

. We have

〈F (x) − f(t), V (x)〉 + ϕ′(x; V (x))

= −‖∇Φ(x)‖2 + 〈f(t),∇Φ(x)〉 + ϕ′(x;−∇Φ(x))

≤ −‖∇Φ(x)‖2 + C‖∇Φ(x)‖ ≤ −c1‖x‖2 + C

√
c3

c2
‖x‖

≤ ‖x‖
(
C

√
c3

c2
− c1‖x‖

)
< 0, ∀x ∈ R

n, ‖x‖ ≥ R, t ∈ [0, T ].

Corollary 5.3 Suppose that f ∈ C0([0, +∞); Rn) and df
dt

∈ L1
loc(0, +∞; Rn). Let ϕ : R

n →
R be a convex and Lipschitz continuous function and let T > 0 be given. Let A ∈ R

n×n be a

real matrix and denote by σ(A) the set of eigenvalues of A. If

Re(λ) > 0, ∀λ ∈ σ(A),

then there exists at least one u ∈ C0([0, T ]; Rn) such that du
dt

∈ L∞(0, T ; Rn),

u(0) = u(T ), (5.23)〈du

dt
(t) + Au(t) − f(t), v − u(t)

〉
+ ϕ(v) − ϕ(u(t)) ≥ 0, ∀ v ∈ R

n, a.e., t ∈ [0, T ]. (5.24)



Proof Our assumption Re(σ(A)) ⊂]0, +∞[ together with Lyapunov’s Theorem ensures the

existence of a positive definite matrix G such that

GA + AT G = I.

Let us now define V ∈ C1(Rn; R) by

V (x) := −1

2
〈(G + GT )x, x〉, ∀x ∈ R

n.

Then

∇V (x) = −(G + GT )x,

〈Ax,∇V (x)〉 = −〈Ax, Gx〉 − 〈Ax, GT x〉 = −〈x, AT Gx〉 − 〈GAx, x〉 = −‖x‖2.

If we set C =
(

max
s∈[0,T ]

‖f(s)‖+K
)
‖G+GT‖ and if K denotes the Lipschitz constant of ϕ, then

we have

〈Ax − f(t),∇V (x)〉 + ϕ′(x;∇V (x)) ≤ −‖x‖2 + C‖x‖, ∀x ∈ R
n, t ∈ [0, T ].

Thus, for R > 0 large enough, condition (5.18) is satisfied. It is also clear that condition (5.17)

holds (see Remark 5.2) and that all assumptions of Theorem 4.1 are satisfied. Moreover

ind(V,∞) = ind(G + GT ,∞) = sign det(G + GT ) �= 0,

since G + GT is positive definite and thus nonsingular.

The conclusion follows from Corollary 5.1.

Remark 5.2 Suppose that ϕ : R
n → R is Lipschitz continuous with Lipschitz constant K.

Then

( i ) If F has a linear growth, i.e., there exist c1 ≥ 0 and c2 ≥ 0 such that

‖F (x)‖ ≤ c1‖x‖ + c2, ∀x ∈ R
n,

then condition (5.17) of Corollary 5.1 holds with C1 = c1 and C2 = c2 + K.

(ii) If 〈F (x), x〉 ≤ 0, ∀x ∈ R
n, then condition (5.17) of Corollary 5.1 holds with C1 = 0

and C2 = K.

Example 5.1 Let F : R
n → R

n and ϕ : R
n → R defined by

F (x) = x and ϕ(x) = ‖x‖, x ∈ R
n.

We have

〈F (x), x〉 + ϕ′(x; x) ≤ ‖x‖2 + ‖x‖.
Hence Condition (5.17) of Corollary 5.1 is satisfied with C1 = C2 = 1.

Example 5.2 If we take F (x) = −x and ϕ(x) = ‖x‖, then

〈F (x), x〉 + ϕ′(x; x) ≤ −‖x‖2 + ‖x‖ ≤ ‖x‖.

Hence Condition (5.17) of Corollary 5.1 is satisfied with C1 = 0 and C2 = 1.



6 Second Order Periodic Dynamical System with Friction

Let us consider the following second order dynamical system with periodic conditions: For

(q0, q̇0) ∈ R
m ×R

m, we consider the problem P (q0, q̇0) of finding a function t �→ q(t) (t ∈ [0, T ])

with q ∈ C1([0, T ]; Rm), such that

d2q

dt2
∈ L∞(0, T ; Rm), (6.1)

dq

dt
is right-differentiable on [0, T ], (6.2)

q(0) = q(T ) and q̇(0) = q̇(T ), (6.3)

M
d2q

dt2
(t) + C

dq

dt
(t) + K(q(t)) − F (t) ∈ −H1∂Φ

(
HT

1

dq

dt
(t)

)
, a.e., t ∈ [0, T ]. (6.4)

In this problem Φ : R
l → R is a convex function, M ∈ R

m×m is a symmetric and positive definite

matrix, C ∈ R
m×m and K ∈ R

m×m are given matrices and H1 ∈ R
m×l is a given matrix whose

coefficients are related to the directions of friction forces. The function F ∈ C0([0, +∞); Rm)

is such that dF
dt

∈ L1
loc([0, +∞); Rm).

The second order dynamical system (6.4) is useful for the study of many problems in unilat-

eral mechanics. Indeed, the motion of various mechanical systems with frictional contact can be

studied within the framework of equation (6.4). For such problems m is the number of degrees

of freedom, M is the mass matrix, C is the viscous damping matrix and K is the stiffness

matrix. The vector q ∈ R
m is the vector of generalised coordinates. The term H1∂Φ(HT

1 · ) is

used to model the unilaterality of the contact induced by the friction forces.

Since the matrix M is symmetric and positive definite, then problem (6.4) is equivalent to

the first order variational inclusion:{
ẋ(t) + A(x(t)) − f(t) ∈ −∂ϕ(x(t)),

x(0) = x(T ),

where the vector x =
(
x1

x2

)
∈ R

n (n = 2m) and the matrix A ∈ R
n×n is defined by

A =

(
0m×m −Im×m

M− 1

2 KM− 1

2 M− 1

2 CM− 1

2

)
(6.5)

with

x(0) =

(
M− 1

2 q(0)

M− 1

2 q̇(0)

)
, x(T ) =

(
M− 1

2 q(T )

M− 1

2 q̇(T )

)
, (6.6)

f(t) =

(
0m×m

F (t)

)
(6.7)

and the convex function ϕ : R
n → R is defined by

ϕ(x) = (Φ ◦ HT
1 M− 1

2 )(x2). (6.8)

In this case, let us observe that the subdifferential of ϕ is given by

∂ϕ(x) =

(
0m×1

∂(Φ ◦ HT
1 M− 1

2 )(x2)

)
=

(
0m×1

M− 1

2 H1∂Φ(HT
1 M− 1

2 x2).

)
. (6.9)



It is clear that A is continuous and A + ωIn×n is monotone provided that ω ≥ sup
‖x‖=1

〈−Ax, x〉.
As a direct consequence of Corollary 5.3, we obtain an existence result for second order periodic

systems.

Theorem 6.1 If the function Φ is convex and Lipschitz continuous and Re(σ(A)) ⊂]0, +∞[,

then there exists at least one q ∈ C1(0, T ; Rn) such that d2q
dt2

∈ L∞(0, T ; Rn) satisfying (6.3)–

(6.4).

Remark 6.1 We note that the conclusions of Theorem 6.1 hold under the key assumption

that Φ is convex and Lipschitz continuous. Let us now give a counterexample when Φ is convex

but not Lipschitz. Let us take m = 1, Φ : R → R, x �→ Φ(x) = x2, M = C = K = H1 = 1 and

F (t) = −t, ∀ t ∈ [0, 1]. The differential inclusion (6.4) then reduces to⎧⎪⎪⎨
⎪⎪⎩

q̈(t) + 2q̇(t) + q(t) = t,

q(0) = q(1),

q̇(0) = q̇(1).

(6.10)

We let the reader check that problem (6.10) has no solutions.

Example 6.1 Let us take m = 1, Φ : R → R; x �→ Φ(x) = |x|. In this case, we have

∂Φ(x) = Sign(x),

where

Sign(x) :=

⎧⎪⎪⎨
⎪⎪⎩
−1, if x < 0,

[−1, +1], if x = 0,

+1, if x > 0.

We consider the following problem⎧⎪⎪⎨
⎪⎪⎩

mq̈(t) + cq̇(t) + kq(t) − F (t) ∈ −Sign(q̇(t)), t ∈ [0, T ],

q(0) = q(T ),

q̇(0) = q̇(T )

(6.11)

with F ∈ C0([0, +∞[; R) such that dF
dt

∈ L1
loc([0, +∞[; R). The matrix A in (6.5) is given by

A =

(
0 −1
k
m

c
m

)
.

We suppose that m, c, k > 0 and set Δ = c2

m2 − 4 k
m

. Then we have

σ(A) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{ c

2m
−

√
Δ

2
,

c

2m
+

√
Δ

2

}
, if c ≥ 2k

√
m,

{ c

2m
− i

√−Δ

2
,

c

2m
+ i

√−Δ

2

}
, if c < 2k

√
m.

We note that in both cases Re(σ(A)) ⊂]0, +∞[ and hence by Theorem 6.1, problem (6.11) has

at least a solution.
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