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Introduction

Critical flux is a concept that appeared in the mid 1990's [START_REF] Bacchin | Formation et résistance au transfert d'un dépôt de colloïdes sur une membrane d'ultrafiltration[END_REF][START_REF] Bacchin | Model for colloidal fouling of membranes[END_REF][START_REF] Field | Critical flux concept for microfiltration fouling[END_REF][START_REF] Howell | Sub-critical flux operation of microfiltration[END_REF] to describe the lowest flux for which fouling appears on a membrane. Since then, it has been generally accepted that critical flux represents the permeate flux below which no fouling occurs. However, such a sharp transition is not often observed in practice and discrepancies between the concept and experiments are observed. Even experimental works carried out with well characterized suspensions and membranes often exemplify this discrepancy [START_REF] Espinasse | On an experimental method to measure critical flux in ultrafiltration[END_REF][START_REF] Kwon | Influence of particle size and surface charge on critical flux of crossflow microfiltration[END_REF] and this is further presented in the experimental section of this paper. To take this into account, the concept of critical flux has sometimes evolved by distinguishing a weak form of critical flux from the original strong form of critical flux [START_REF] Wu | Critical flux measurement for model colloids[END_REF]. The weak form of critical flux is based on the subtle difference between slow fouling conditions (inducing permeability smaller than that obtained with a clean membrane filtering pure water) and faster fouling (inducing a deviation from the initial linearity of the J vs TMP curve). The weak form of critical flux thus shows its ability to describe experiments with numerous fluids from model fluids to complex ones [START_REF] Wu | Critical flux measurement for model colloids[END_REF].

However, this weak form of critical flux loses the original significance of the previous concept of critical flux and has no direct theoretical grounding.

The main thesis of this paper is to examine if Distributions (around a mean value) of Critical Flux (where critical refers to the strong form of the concept) could be an explanation for behaviour observed during membrane fouling (and the associated weak form of critical flux) and if it could be used as a new tool to interpret filtration data.

In previous studies, the utility of accounting for the distribution of membrane or suspension properties in fouling modelling has already been shown. Yoon et al. [START_REF] Yoon | Three-dimensional simulation of the deposition of multidispersed charged particles and prediction of resulting flux during cross-flow microfiltration[END_REF] reported that when developing a full model accounting for the main transport phenomena, fouling is very sensitive to particle size: the integration of a distribution in particle size can lead to very different fouling simulations. Furthermore, Bowen et al. [START_REF] Bowen | Dynamic cross-flow ultrafiltration of colloids: a deposition probability cake filtration approach[END_REF] used a probability distribution function for deposition related to hydrodynamic conditions that they link to randomly distributed protrusion height to describe membrane roughness. This distribution improved the prediction of a Wigner-Seitz cell based model accounting for multi-body inter-particle interactions. In a recent paper [START_REF] Bacchin | A possible link between critical and limiting flux by consideration of a critical deposit formation along a membrane[END_REF], one of us showed that the growth of the boundary layer thickness along a membrane due to hydrodynamic layer development (a form of hydrodynamic conditions distribution) leads to a distribution in local critical flux resulting in a more realistic variation in permeate flux with TMP.

In a first part of the paper, the model for a deposit formation under a Distribution of Critical Flux (DCF) is developed and the effect of a standard deviation around a mean critical flux is investigated. Experimental data of cross flow ultrafiltration of latex suspensions for different hydrodynamic conditions are interpreted through the DCF model leading to the conclusion that experimental results could be explained by a distribution in critical flux. A comparison of critical flux parameters with experimental determination of critical flux via the pressure step method is further presented. Lastly, the possible origin for critical flux distribution and consequences of the DCF model are discussed. This paper finally gives an explanation for the discrepancy between the "hard theory" of critical flux and "real world" membrane applications.

Model for Distribution of Critical Flux (DCF)

The model is based on a normal distribution of critical flux (DCF) around a mean value (this distribution is justified in section 4.1.). On the other hand, we considered an initial flux (before any fouling), j 0 , constant along the membrane. Parameter, j 0 is the pure water flux through a clean membrane and is proportional to the applied TMP (Trans-Membrane Pressure) ; j 0 is used on the x axis of certain figures to describe the effect of altering the applied TMP. It should be noted at this point that considering a distribution of j crit with a constant j 0 in fact has the same consequence as considering one value of critical flux and a distribution of j 0 (which could be due to local heterogeneity of membrane porosity as discussed in 4.1.4).

Distribution of critical flux

A normal (or Gaussian) distribution is characterised by the probability density functionpdf(j)-, or by the cumulative distribution function -cdf(j)-as presented in Fig. 1 and defined by the following equations :
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The probability density function (pdf) is the density of probability such that the probability of the critical flux of being in the interval [a, b] is given by the integral of this function between a and b. The pdf function can then give the probability of having a critical flux between two values. The cumulative distribution function (cdf) is then the probability that the critical flux, j crit , is less than or equal to a given flux value j.

Consequences on fouling conditions

Various fouling regimes can be expected when a run has been started with an initial flux, j 0 , if a distribution in critical flux exists. The cdf function calculated for the initial flux j 0 gives the probability of having a critical flux below or above it. Three different situations and their associated probabilities can be determined as shown in Fig. 2:

• no fouling (nf) if the critical flux is larger than the initial flux (j crit >j 0 ). The probability for such a situation to occur is p nf =1-cdf(j 0 ).

• critical fouling (cf) if the critical flux is smaller than the initial flux but larger than zero (0<j crit <j 0 ). The probability of this situation is p cf =cdf(j 0 )-cdf(0).

• unlimited fouling (uf) if the critical flux is smaller than zero (j crit <0). The probability of this situation is p uf =cdf(0).

To each of these situations is associated a permeate flux at steady state. In no fouling (nf) conditions, the permeate flux is given by the water flux, j nf =j 0 . In contrast, for unlimited fouling (uf) conditions, one considers absence of stationary permeate flux and then a permeate flux nil in the steady state, j uf =0, which could correspond to a membrane zone where fouling is continuously increasing (a steady state is not reached) or to complete pore blockage. In the intermediate fouling conditions where the critical flux is between zero and the pure water flux 0<j crit <j 0 , fouling is limited by the critical flux (cf) value: it is here assumed that if the water flux overcomes the critical flux then a deposit forms until the flux again reaches the critical value. The resulting permeate flux associated with this event is a "mean" critical flux corresponding to the value of the various possible values of critical flux weighted by their relative probabilities. This "mean" critical flux for these conditions (0<j crit <j 0 ) is written with the classical function for the expected value E(j crit /0<j crit <j 0 ) which is mathematically defined later in Eq. ( 5). The permeate flux associated with the event (cf) is then equal to the critical flux expected, j cf =E(j crit /0<j crit <j 0 ). These three possible fouling conditions control the global permeate flux on the membrane (the sum of their probabilities is equal to one).

Consequences on the global permeate flux

The resulting global permeate flux, j, through the membrane can be estimated as the sum of the flux of each of the possible situations defined above, weighted by its probability:
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Using the probability and the permeate flux as discussed in 2.2. leads to:
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The expected value for the critical flux E(j crit /0<j crit <j 0 ) which represents the "mean" value of critical flux (in m/s) when the critical flux is positive and lower that the water flux, is defined as the integral of each possible value of the critical flux, j crit , multiplied by its probability, pdf(j crit ), divided by the total probability for this event :
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One can demonstrate (full calculation in appendix) using the previous definition of the probability distribution that:

( ) ( ) ) 0 ( ) ( ) 0 ( ) ( ) 0 ( ) ( ) 0 / ( 0 0 2 0 0 cdf j cdf pdf j pdf cdf j cdf j j j j E crit crit crit - - - - = < < σ (6)
The permeate flux is then linked through Eqs. ( 4) and ( 6) to the value of the water flux and to the parameters of the critical flux distribution (the mean critical flux, crit j , and its standard deviation, σ) as follows :
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This relationship can be used to describe the reduction in flux induced by the fouling under distributed critical conditions. Such a relationship can be easily calculated with a classical spreadsheet program, if the pdf or cdf function is predefined*. Fig. 3 shows the variation in fouling resistance as a function of the water flux (which could also be linked to the TMP) simulated for the distribution previously presented in Fig. 1.

Different fouling behaviours can be described with such a model according the value of the standard deviation. For a low value of standard deviation (σ=5), the model depicts a sharp transition between a Darcy behaviour and a pressure-independent regime (strong form of critical flux) with an associated sharp change in cake resistance above the mean value of critical flux. In contrast, for higher values of standard deviation (σ=10 and 20), a more gradual transition is observed (weaker form of critical flux). .

Graphic method to determine distribution parameters

Eq. [START_REF] Wu | Critical flux measurement for model colloids[END_REF], which models the permeate flux, has some particular features shown in Fig. 4 and5. For small water flux, the limit of Eq. ( 7) is:
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The slope of the curve "permeate flux versus water flux" tends to 1-cdf(0) which corresponds to the probability of having a non-nil flux. This can be translated into an initial cake resistance directly linked to the value of cdf(0) as follows :
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Such a relationship can be used to determine the initial resistance observable in Fig. 3b from the value of cdf(0) presented in Fig. 1b.

In contrast, for greater water flux, the limit of Eq. ( 7) is:
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This relationship shows that when the probability of having reached critical flux tends to one, the flux tends to a limiting value, j lim .

Furthermore, as can be observed in Fig. 3 and derived from Eq. ( 7), there is a common point for a family of curves with different critical fluxes and standard deviations, which corresponds to the coordinates [2 crit j ; crit j ] in Fig. 3a and [2 crit j ; 1] in Fig. 3b.

Also the value of the permeate flux taken for a water flux equals the mean critical flux is : [START_REF] Espinasse | Approche théorique et expérimentale de la filtration tangentielle de colloïdes : flux critique et colmatage[END_REF] The value of the permeate flux at this point is directly related to the limiting flux and to the value of the standard deviation.
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These mathematical properties of Eq. ( 7) make possible a graphic determination of parameters for critical flux distribution from experimental data of permeate flux versus water flux (or TMP) as shown in Fig. 4. The mean critical flux, crit j , is given by the y value at the intersection between the "flux vs pressure" curve and the line with a slope which is half that of the initial membrane permeability (point [2 crit j crit j ] in Fig. 4). Now, the difference between the limiting flux and the flux vs pressure curve at an abscissa crit j allows the value of the standard deviation to be determined according to Eq. ( 11) (points and in Fig. 4).

This method based on the DCF model can be used to determine the mean critical flux and standard deviation from the steady state flux versus pressure plot, if limiting flux is experimentally reachable and if the initial pure water permeability has been measured.

Comparison of the DCF model to experimental results

The DCF model is here applied to describe filtration of latex suspensions. Parameters for critical flux distribution are deduced from experiment according to the procedure described in 2.4 and are further compared to experimentally obtained critical flux values.

Material and methods

Filtration experiments were run according to a procedure based on controlled alternating increasing and decreasing pressure steps with the measurements of the steady state flux [START_REF] Espinasse | On an experimental method to measure critical flux in ultrafiltration[END_REF][START_REF] Espinasse | Approche théorique et expérimentale de la filtration tangentielle de colloïdes : flux critique et colmatage[END_REF]. The steady state flux, automatically detected by the experimental system, has always been measured after filtration periods longer than 30 minutes. It allows determination of both the classical "steady state" permeate flux versus transmembrane pressure" curve and the fouling reversibility at each step. Such experiments have been performed with latex suspensions (stabilized by charged polyelectrolytes) with a particle size of 106 nm in diameter. Such suspensions have been achieved by dilution in distilled water with a constant latex concentration of 0.7 g/L (which is equivalent to a volume fraction of 5.10 -4 ) both without salt added and with addition of various amounts of KCl. When KCl is added (at 10 -3 and 10 -2 M), the total electrolyte concentration is always well below the critical coagulation concentration, c.c.c., which has been experimentally determined at between 0.1 and 0.3 M in KCl (by observation of settling in a glass cylinder). The addition of salt to some extent controls the repulsive interactions between particles without having inter-particle coagulation in the dilute suspension. The membrane used for these filtrations was M2 Carbosep (Orelis, France) with a molecular weight cut-off of 15 kDaltons. Different cross flow velocities have been used between 0.3 and 1.3 m/s corresponding to Reynolds numbers of 1800 and 7800 respectively. Full results and details on filtration rig and protocols are detailed in [START_REF] Espinasse | On an experimental method to measure critical flux in ultrafiltration[END_REF] and [START_REF] Espinasse | Approche théorique et expérimentale de la filtration tangentielle de colloïdes : flux critique et colmatage[END_REF].

Experimental filtration results

In Fig. 5 is plotted the increase in steady state permeate flux versus transmembrane pressure (with no salt added) for various cross-flow velocities. These experiments show an expected increase in permeate flux when increasing cross-flow velocity. But, no easy and unequivocal observation is possible for the strong critical fluxes in these figures (steady permeate flux versus TMP) as there is no sharp transition from the Darcy regime to the pressure independent regime. Determining a weak critical flux by determining the point for which there is a deviation from linearity [START_REF] Field | Critical flux concept for microfiltration fouling[END_REF] could be very subjective.

In order to have an accurate critical flux measurement, each steady state flux measurement has been followed by a decrease in applied pressure in order to determine the reversibility [START_REF] Espinasse | On an experimental method to measure critical flux in ultrafiltration[END_REF].

This procedure allows a rigorous determination of the critical flux above which irreversible fouling occurs. Table 1 summarizes the results for critical flux obtained with this pressure step method [START_REF] Espinasse | Approche théorique et expérimentale de la filtration tangentielle de colloïdes : flux critique et colmatage[END_REF]. These results show an increase in critical flux with the cross-flow velocity and a decrease in critical flux when adding salt. These experiments underline the importance of surface interactions on the critical flux; the critical flux is higher when repulsive surface interactions (stability) are larger as shown in [START_REF] Bacchin | Model for colloidal fouling of membranes[END_REF]. The critical flux concept which has been theoretically explained by the presence of colloidal surface interactions [START_REF] Bacchin | Model for colloidal fouling of membranes[END_REF] therefore seems suited to the description of such a system.

Filtration interpretation through the DCF model

The DCF model has been applied to the experiments shown in Fig. 5. The graphic method detailed in section 2.4 can be used to determine the distribution parameters as plotted in Fig. 2. We can note that graphical and numerical methods give similar results. The agreement between models and experiments is very good when considering both the permeate flux (Fig. 5) and the deposit resistance variations as seen in Fig. 6. The distributions in critical flux involved in the fitting are plotted in Fig. 7 for the three different cross-flow velocities. When increasing the crossflow velocity, one notes an increase in the mean value of critical flux and a distribution which becomes larger. The mean critical flux is multiplied by 2.5 when the cross flow is increased by a factor 3.3 and the standard deviation follows a similar trend.

An explanation for the large distribution in critical flux used for modelling could come, in this paper, from a distribution in the membrane permeability as presented in the photograph (Fig. 8) showing that the deposit thickness is inversely correlated to membrane skin thickness.

Variations in local permeability could then be a possible physical cause for the distribution of critical flux. However, distribution in size or charge of latex particles could also lead to a distribution in stability: the latex suspension exhibited a size distribution centred on 118 nm with a standard deviation of 20 nm when the size analysis (Zetasizer 4, Malvern Inst., UK)

was run monomodally (Gaussian distribution). More generally when using the DCF model, numerous sources of distributions can be proposed and some of them are discussed in section 4.1.

Comparison of DCF parameters and experimental critical flux

Mean critical flux (Table 2) determined with the DCF model can be compared to results obtained from the experimental determination of critical flux as presented in section 3.2 (Table 1). A direct comparison (Fig. Bearing this in mind, one can seek a link between the experimental critical flux and the mean value, crit j , and its standard deviation, σ. A rather good agreement is found (Fig. 9b) between the experimental critical flux and the value of the mean critical flux minus half the standard deviation, 2 crit j σ -. This last value corresponds to a cumulative distribution function, Eq. ( 2), with a value of 0.3. This could mean that critical flux is experimentally detected when the probability of having a permeate flux larger than the critical flux (i.e. the probability of reaching critical flux) is larger than 0.3. This is illustrated in Fig. 10 where the value of the experimental critical flux (vertical line) is compared to the cumulative distribution function obtained by DCF model (Fig. 7). Again it can be seen that the pressure stepping method detects a value which corresponds to the probability of reaching the critical flux of around 0.25 and 0.3. This means that most probably, fouling has already started over some areas of the membrane when we can detect it. This is probably due to the sensitivity of the flux measurements, which measure the average flux over the whole membrane surface, and cannot then detect minute changes in local flux, due to the first irreversible fouling: In line with this remark, the larger the membrane surface, the more difficult the true critical flux will be to determine. On the other hand, the larger the membrane area of the test equipment the more realistic the measured critical flux will be. However, as discussed later on, some of the reasons that the critical conditions are distributed around a mean value arise from hydrodynamics and from membrane geometries: these parameters, whose exact influence on the distribution is not yet clear, cannot be controlled in such a way that a lab test cell and an industrial plant give the same value for the distribution in critical condition. Hence, there is a risk of significant differences in the extent of fouling between lab tests and real life operation.

If confirmed by further experiments, distribution parameters for fouling conditions could then be linked to the effective critical flux in terms of accumulation reversibility. However, the relationship could be different for other suspensions or membrane properties.

Discussions and perspectives

Previous results underline the importance of accounting for the distribution of critical flux (DCF) to interpret filtration results even with a suspension being a priori homogeneous in properties. The ability of a mean critical flux and the relative standard deviation to interpret filtration results and the possibility to link these parameters to the experimental critical flux suggests an interesting use of this model for membrane fouling characterisation and data extrapolation. In this section, we investigate the possible origin of DCF. The link between the DCF model with other existing concepts and theories is briefly discussed.

Physical basis for Distribution of Critical Flux (DCF)

First, physical causes for the DCF are examined to discuss the theoretical meaning of the model. DCF due to tangential hydrodynamics through the development of the boundary layer has already been investigated [START_REF] Bacchin | A possible link between critical and limiting flux by consideration of a critical deposit formation along a membrane[END_REF] and is not included in this section.

The existence of a critical flux (which represents a critical fouling condition in cross-flow filtration) can be shown from modelling based on very different kinds of approaches:

• a mass balance with classical convective and diffusive terms to which is added a term for surface interaction between a colloid and the surface [START_REF] Bacchin | Model for colloidal fouling of membranes[END_REF] • a force balance (mechanical) on a particle near the membrane surface [START_REF] Harmant | Coagulation of colloids retained by porous wall[END_REF] which integrates a force induced by multi-body surface interaction.

• a mass balance with a diffusive term based on an osmotic pressure for suspensions with a critical volume fraction (thermodynamic approach) [START_REF] Bacchin | A unifying model for concentration polarization, gel-layer formation and particle deposition in cross-flow membrane filtration of colloidal suspensions[END_REF] to describe the aggregation phenomena.

From these approaches, the critical flux can then be similarly seen as the consequence of:

• a critical volume fraction of particles (in a thermodynamic approach) resulting from a mass balance between convection and dispersive mass flux and leading to mass "condensation"

• a critical force acting on the particles (in a mechanistic approach) leading to their aggregation (repulsive interaction between particles overcome by permeation) on the membrane.

Generally, the critical condition for fouling can always be reduced to a balance between the convective drag force on the particle (link to the initial flux, j 0 ), F drag and the dispersive forces F disp. as follows :
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When dealing with critical flux, one can think that a distribution of both drag force (or relative particle/solvent velocity) and dispersive force (or critical velocity) can occur near the membrane surface. The distribution of drag force can be the result of:

• a distribution in relative particle/ solvent velocity near the surface due to multi-body hydrodynamic or colloidal interactions.

• a distribution in solvent velocity (local permeate flux) along the membrane surface because of heterogeneity in pore shape or size or in membrane skin thickness.

The possible causes for distribution in these different parameters (investigated in next section) are sketched in Fig. 11.

Distribution in particle/fluid velocity

Particle velocity distributions caused by multi-body hydrodynamic interactions have been studied by numerical simulation [START_REF] Climent | Numerical simulations of random suspensions at finite Reynolds numbers[END_REF][START_REF] Savage | The stress tensor in a granular flow at high shear rates[END_REF]. As an example, the fluctuation of velocity around a mean value during settling of a concentrated suspension follows a Gaussian distribution [START_REF] Climent | Numerical simulations of random suspensions at finite Reynolds numbers[END_REF].

The fluctuation can then be considered as a "diffusion-like" motion even if the causes for the distribution are purely hydrodynamic in nature. By analogy with settling (particles moving in an immobile fluid), this kind of distribution can also take place in a filtration process under the form of a distribution in relative particle/fluid velocity of (and then drag force on) a particle immobilised near a membrane surface and dragged along in the permeate flow. One can think that shear induced diffusion, colloidal interaction induced diffusion or lateral migration could lead to distributions in particle velocity in the same way. In the domain of granular flow (as for example in powder flow) where a large number of small particles are arranged in a random way, particle velocity fluctuation was defined by Savage and Jeffrey in 1981 [START_REF] Savage | The stress tensor in a granular flow at high shear rates[END_REF] by the term "granular temperature" which quantifies the random motion of particles around the mean velocity. The intensity of distribution used later in this paper could then be linked to the concept of granular temperature and then associated to the dense phase kinetic theory used for the description of the granular flow of particles.

Distribution in permeate velocity

Distributions in solvent velocity can also be responsible for distribution in the radial drag force applied to a particle near the membrane surface. It can be the consequence of heterogeneity of the porous wall. These kinds of heterogeneity have naturally been assumed to be at the origin of a weak form of critical flux [START_REF] Field | Critical flux concept for microfiltration fouling[END_REF][START_REF] Wu | Critical flux measurement for model colloids[END_REF]. As an example, Fig. 8 

Summary

As underlined in the previous section, accounting for distribution of critical flux seems to be physically justified. These distributions could be described from different possible physical causes due to multi-body (hydrodynamic or colloidal) interactions and heterogeneous membrane properties. Distributions can act both on the drag force and on the critical dispersive force which are the two terms of the balance describing critical flux in Eq. ( 12). However, it seems mathematically equivalent to consider these distributions applied either on the first or on the second member of the force balance for critical flux :
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i.e. with distributions on the drag force <f' drag > or on the dispersive force <f' disp >. The theoretical model previously developed in this paper considers distributions on the dispersive force i.e. distribution in critical flux. However, this term of distribution in critical flux accounts more generally for distributions in critical conditions (both fluctuation terms in Eq. ( 13)) and thus always represents the multiple source of heterogeneity and the complexity of the system. Using a normal (or Gaussian) distribution to represent the distribution of critical flux is justified: this kind of distribution is able to describe diffusive phenomena (based on stochastic process) as well as distribution velocity induced by hydrodynamic interactions [START_REF] Climent | Numerical simulations of random suspensions at finite Reynolds numbers[END_REF].

DCF, critical flux and limiting flux

The results presented in this paper show that distributions in critical flux around a mean critical flux value can explain the occurrence of gradual fouling hence giving an explanation for the weak form of critical flux. The weak critical flux may then be considered as the consequence of a distribution in strong critical flux. Furthermore, as presented in section 3.4., it seems possible to link the experimental critical flux, J crit , to the parameters of the critical flux distribution, crit j and σ ; where σ is the standard deviation which relates the gap to the strong critical flux concept. If σ=0, the strong form of critical flux applies. When σ increases, critical flux becomes less strong and the weak form is a more suitable concept to describe the critical fouling behaviour (as can be seen in Fig. 3). The weak "experimental" critical flux is then preceded by a low fouling zone which is theoretically explained via the DCF model as corresponding to the fouling of areas where the critical flux is much lower than its mean value (existence of zones easier to foul). Furthermore, the weak form of critical flux has been defined [START_REF] Field | Critical flux concept for microfiltration fouling[END_REF] as the flux for which a deviation from a linear slope of flux-pressure profile (which can be different from the pure water flux line) occurs. It can be seen that when accounting for the distribution of critical flux around a mean value, one obtains an initial linear variation in "flux vs pressure" differing slightly from that of the water slope. The DCF model then shows its ability to interpret experiments for which the weak form of critical flux was initially developed. Studies using the DCF model to interpret weak-form critical flux data have to be continued before any general conclusions can be drawn as to the impact of critical flux distribution on critical fouling behaviour.

Furthermore, within this model, the limiting flux is defined as the permeate flux for which the probability of having reached critical flux is equal to one: there is no probability to have the membrane working in sub-critical conditions (i.e. without multilayer deposit). When the initial flux of a run is above the critical flux, the final permeate flux at steady state is assumed to be equal to the critical value. The limiting flux is then linked to an integral of the critical flux distribution giving an expected value of critical flux on the membrane surface. At limiting flux, the overall membrane surface can then be considered as covered by a multilayer deposit, which increases in thickness as soon as the pressure is increased.

DFC and phase transition

The critical flux behaviour can be related to a phase transition for the matter accumulated at the membrane surface from a dispersed phase (when mass is accumulated in a concentration polarisation layer) to a condensed (solid or aggregated) phase (when deposit takes place).Critical flux is then defined as process operating conditions leading to the creation on the membrane of an irreversible deposit. From this definition, the term critical finds its physical meaning: i.e. being linked to an irreversible phase transition.

Recent studies in other fields show that phase transitions are not really critical, i.e.

with a very sharp change. Spinodal decomposition [START_REF] Anderson | Insights into phase transition kinetics from colloid science[END_REF] which leads to an unstable phase is always preceded by a metastable phase (linked to bimodal decomposition). In polymer phase separation, experimental methods provide evidence of microphase separation caused by chemical polydispersity of the copolymers [START_REF] Konak | Phase separation in bulk statistical copolymers of styrene and poly(methyl methacrylate)[END_REF]. In crystallisation, results "suggest prenucleation density fluctuations, leading to a metastable phase, play an integral role in all three classes of crystallisation" [START_REF] Heeley | Are metastable, precrystallisation, density-fluctuations a universal phenomena?[END_REF]. The use of a distribution in critical flux could be a way to account for the existence of a metastable phase preceding the spinodal decomposition when considering the phase transition leading to the formation of a colloidal deposit on a membrane interface;

Application of DCF model to the gel theory

Formation of a gel layer could be considered as one of these phase transitions. This analogy has been underlined by a model [START_REF] Bacchin | A unifying model for concentration polarization, gel-layer formation and particle deposition in cross-flow membrane filtration of colloidal suspensions[END_REF] for the description of gel and deposit formation from the concentration polarisation where critical flux defines both these transitions. The DCF model developed in this paper could then describe the formation of a gel with heterogeneous properties. As a first confirmation of this assumption, the DCF model has been applied to the description of bovine serum albumin (BSA) ultrafiltration [START_REF] Meireles | Influence de la structure poreuse sur le transfert de solvant et de soluté en ultrafiltration[END_REF]. Prior to these ultrafiltration experiments, the membrane was fouled using the BSA solution, in such a way that adsorption during the UF run could be ignored. In the same way as when considering latex filtration, the curve of steady state flux versus TMP can be fully depicted (Fig. 12) by the distribution parameters with, by analogy, a mean critical flux for gel, crit J , and its standard deviation (Table 3).

DCF and fouling complexity

Fouling is a very complex problem. Its complexity is mainly due to the fouling phenomena themselves which deal with high concentration suspensions at a membrane interface which have heterogeneous properties (leading to hydrodynamics -filtration and cross flow velocity-and transfer -mass accumulation and retention -with a highly non ideal behaviour). When examining the possible source for critical flux distributions in section 4.1, it could be wondered if a "direct" model of such complexities is still possible. Using a global distribution covering all sources of complexity could then be a fair and more realistic way to describe fouling. The use of a Gaussian seems well suited to fouling mechanisms where dispersive forces act as diffusion-like motion in this first approach. Furthermore, in this paper we only account for distributions of critical flux and their consequences on steady state filtration. One could think, in a same way, accounting for distributions of critical flux over time to describe transient phenomena in filtration as the permeate flux drift (Pseudo steady state).

Conclusions

The *Spreadsheet program files are available on request.

Appendix

Full calculation of the excepted value of critical flux defined by Eq. ( 5) in the text is based on the following relationship. The integration of the product of the probability density function with the flux can be written in two terms as:
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The first term of the preceding equation can be related to the standard deviation as follows:

)) 0 ( ) ( ( ). ).( ( 0 2 0 0 pdf j pdf dj j j j pdf j crit - - = - ∫ σ (15) 
Eq. ( 5) for excepted value can then be rewritten in Eq. ( 6) by using Eqs. ( 14) and ( 15) and the definition of the cumulative distribution function in Eq. (2). • Probability, cdf(j 0 )-cdf(0), for fouling limited by critical flux (cf) with a permeate flux given by the expected value of critical flux in Eq.5.

Nomenclature [à quoi correspondent majuscules ou pas majuscules ??]

• Probability, 1-cdf(j 0 ), for no fouling (nf) and a permeate flux being the water flux. Fluctuations in drag force due to solvent velocity because of -porosity heterogeneity [START_REF] Howell | Sub-critical flux operation of microfiltration[END_REF][START_REF] Kwon | Influence of particle size and surface charge on critical flux of crossflow microfiltration[END_REF] -pre-fouling phenomena [START_REF] Ognier | Membrane bioreactor fouling in sub-critical filtration conditions: a local critical flux concept[END_REF] Fluctuations in drag force due to relative particle/solvent velocity because of multi-body hydrodynamic interaction [16] Fluctuations in dispersiv because of distribution of membrane and particle pr 

  5b. The intercept with the membrane half-permeability line (dashed line) gives the value of mean critical flux at around 2.4 10 -5 m/s. The value of 2 σ π can then be determined as 6.5 10 - 6 m/s which then gives a standard deviation for the distribution, σ, of 1.6 10 -5 m/s. With the same model, experimental results have been used to find the mean critical flux and the standard deviation by a classical least square method. Parameters resulting from this numerical optimisation applied to each experiment are presented in Table

  9 a)) of experimental critical flux and mean critical flux shows that the experimental critical flux is always lower than the mean critical flux. This gap could be explained by considering that the mean value of critical flux in the distribution corresponds to a probability of ½ for reaching critical flux. It could be thought that the experimental detection of critical flux occurs for a probability lower than ½ then corresponding to values of permeate flux lower than the mean value of distributed critical flux.

  presents the scanning electron microscope image of a membrane after a latex filtration experiment. Strong changes can be seen in the thickness of the membrane skin (white zone in Fig. 8) which exactly matches a decrease in deposit layer thickness. Areas of membrane surface with high permeability are preferential zones for deposit formation because the local flux is higher: the critical flux may be locally overcome. A porosity heterogeneity inducing important local changes in permeate flux could also lead to the occurrence of the first irreversibility for the same mean permeate flux. In a recent publication, Ognier et al. [16] propose a local change in water flux due to blockage of the first surface pores which induces an increase in flux through the pores that remain open when operating at constant flux. This kind of phenomenon due to simultaneous mechanisms of pore blocking and cake formation lead to both spatial and temporal distributions of solvent velocity and then to meet locally the critical conditions for a deposit to form near the membrane surface.4.1.3. Distribution in critical dispersive velocity (or flux) Distributions of dispersive critical velocity (or flux) can also occur because of a distribution in surface interaction between the particle and the membrane surface. Local changes in surface charge, in particle size or in roughness can lead to different dispersive forces. As an example, the latex particles used in this work exhibit a size distribution centred on 118 nm with a standard deviation of 20 nm when size analysis (Zetasizer 4, Malvern Inst., UK) is run in monomodally (Gaussian distribution). This dispersion in size can lead to a distribution in drag forces for a given local flux. Critical flux being closely linked to particle stability [2], the particle size distribution can also be responsible for part of the distribution in critical flux observed. The distribution of these properties in a fluid can then lead to a distribution in critical flux.

  consideration of fouling complexity (integrating multiple sources of polydispersity or heterogeneity) allows a very good description of flux-pressure profiles for various colloidal suspensions when fouling is controlled by superficial mechanisms. The permeate flux and its variation with TMP are linked to a distribution function, that can be easily programmed on a spreadsheet. A graphic method is also proposed to determine the function parameters (mean critical flux and standard deviation) from the plot of permeate flux versus trans-membrane pressure. Considering critical flux distribution allows strong and weak forms of critical flux to be described, then giving a physical interpretation of the often observed weak form, as the consequence on global filtration flux of a distribution in strong form of critical flux. When challenged to experimental results of cross-flow filtration for latexes or BSA suspensions, the model shows its ability to fully describe experiments with only the two distribution parameters. Furthermore, the experimental critical flux obtained with alternating positive and negative pressure steps seems correlated to the mean critical flux and the standard deviation. Possible explanations for the critical flux distribution in these experiments are supported by a distribution in membrane properties observed on a scanning electron migrograph. The DCF (distributions of critical flux) model accounting for a distribution in critical flux can be useful to interpret cross-flow filtration experiments, to investigate the effect of suspension properties or membrane materials on fouling and to extrapolate filtration data. The distribution parameters which are the standard deviation and the mean value of critical flux could become a way to depict the effect of critical flux in a "real world" system.

Figure 1 .Figure 2 .

 12 Figure 1. Normal distribution of critical flux characterised through the probability density function, pdf, and the respective cumulative distribution function, cdf, for the same mean critical flux crit j of 20.10 -6 m/s and three standard deviations σ of 5, 10 and 20. 10 -6 m/s.

1 Figure 3 .

 13 Figure 3. Permeate flux a) and deposit hydraulic resistance b) versus water flux. Graphs are plotted for different standard deviations, σ, for a mean critical flux, crit J , of 20.10 -6 m/s corresponding to distributions in Fig. 1.
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 456 Figure 4. Graphical method to determine parameters of the distribution in critical flux (mean value, crit J , and standard deviation, σ) from experimental results (in dashed line) of permeate flux versus water flux.
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 78910 Figure 7. Normal distribution for critical flux used for the fitting of experimental data presented in Fig. 5 and 6 with the DCF model. Mean critical flux and standard deviations are given in Table2.

Figure 11 .

 11 Figure 11. Various possible origins for fluctuations in the drag force and dispersive force balance on a particle near a membrane surface.

Figure 12 .

 12 Figure 12. Application of FCFC model to BSA filtration[START_REF] Meireles | Influence de la structure poreuse sur le transfert de solvant et de soluté en ultrafiltration[END_REF]. DCF model (line) allows a very good description of flux-pressure profile (symbols) for various hydrodynamic conditions.

Table 1 .

 1 Critical flux values (*10 -6 m/s) experimentally determined with an alternative increasing and decreasing pressure step for different cross-flow velocities, u, and ionic strength, I, resulting from KCl addition[16].

			.3	0.6	0.8	1.0	1.3	
	No salt added		8.9	13	-	19.3	-	
	I=10 -3 M Ι=10 -2 Μ		8.6 -	10.1 8.4	14 -	-14.4	-18.1	
	u (m/s)			0.3	0.6	0.8	1.0	1.3
	No salt added	J	crit	13.6	23.3	-	34.1	-
		σ	8.21	15.4	-	22.4	-
	I=10 -3 M	J	crit	10	15	19	-	-
		σ	5.1	11.6	9.7	-	-
	Ι=10 -2 Μ	crit σ J	--	12.7 13.5	--	18.8 8.3	26 13.5

Table 2 .

 2 Value of mean critical flux, crit J , and its standard deviation, σ, (*10 -6 m/s) used to fit latex filtration experiments with DCF model.

	Re	500	1000	2000
	J	crit	2.7	4.0	6.0
	σ	4.5	4.8	3.7

Table 3 .

 3 Value of mean critical flux, crit J , and its standard deviation, σ, (*10 -6 m/s) used to fit BSA filtration experiments with DCF model.