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This paper discusses the distribution of critical flux (DCF) in cross flow filtration. These 

distributions are described here by a normal function with a mean critical flux and its 

standard deviation. The DCF model allows the description, through an analytical 

relationship, of the variation in steady state permeate flux with trans-membrane pressure. 

Both strong and weak forms of critical flux, which can be observed on a membrane operating 

in cross-flow mode, are depicted. A simple graphical method to determine the mean critical 

flux and its standard deviation from experimental results is derived from the theoretical 

model. The theoretical trends are compared to experimental data and show good agreement 

for cross flow filtration of latex and BSA suspensions. The distribution function parameters 

obtained by fitting the DCF model to experiments are compared to critical flux measured via 

a pressure step method. We thus propose a tool to analyse filtration results and to determine 

new global parameters for critical conditions (mean value and its standard deviation), which 

appears to be a good way to account for fouling complexity. 
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1. Introduction 

Critical flux is a concept that appeared in the mid 1990’s [1-4] to describe the lowest flux 

for which fouling appears on a membrane. Since then, it has been generally accepted that 

critical flux represents the permeate flux below which no fouling occurs.  

However, such a sharp transition is not often observed in practice and discrepancies 

between the concept and experiments are observed. Even experimental works carried out with 

well characterized suspensions and membranes often exemplify this discrepancy [5,6] and this 

is further presented in the experimental section of this paper. To take this into account, the 

concept of critical flux has sometimes evolved by distinguishing a weak form of critical flux 

from the original strong form of critical flux [7]. The weak form of critical flux is based on 

the subtle difference between slow fouling conditions (inducing permeability smaller than that 

obtained with a clean membrane filtering pure water) and faster fouling (inducing a deviation 

from the initial linearity of the J vs TMP curve). The weak form of critical flux thus shows its 

ability to describe experiments with numerous fluids from model fluids to complex ones [7]. 

However, this weak form of critical flux loses the original significance of the previous 

concept of critical flux and has no direct theoretical grounding.  

The main thesis of this paper is to examine if Distributions (around a mean value) of 

Critical Flux (where critical refers to the strong form of the concept) could be an explanation 

for behaviour observed during membrane fouling (and the associated weak form of critical 

flux) and if it could be used as a new tool to interpret filtration data.  

In previous studies, the utility of accounting for the distribution of membrane or 

suspension properties in fouling modelling has already been shown. Yoon et al. [8] reported 

that when developing a full model accounting for the main transport phenomena, fouling is 

very sensitive to particle size: the integration of a distribution in particle size can lead to very 

different fouling simulations. Furthermore, Bowen et al. [9] used a probability distribution 



function for deposition related to hydrodynamic conditions that they link to randomly 

distributed protrusion height to describe membrane roughness. This distribution improved the 

prediction of a Wigner-Seitz cell based model accounting for multi-body inter-particle 

interactions.  In a recent paper [10], one of us showed that the growth of the boundary layer 

thickness along a membrane due to hydrodynamic layer development (a form of 

hydrodynamic conditions distribution) leads to a distribution in local critical flux resulting in 

a more realistic variation in permeate flux with TMP. 

In a first part of the paper, the model for a deposit formation under a Distribution of 

Critical Flux (DCF) is developed and the effect of a standard deviation around a mean critical 

flux is investigated. Experimental data of cross flow ultrafiltration of latex suspensions for 

different hydrodynamic conditions are interpreted through the DCF model leading to the 

conclusion that experimental results could be explained by a distribution in critical flux. A 

comparison of critical flux parameters with experimental determination of critical flux via the 

pressure step method is further presented. Lastly, the possible origin for critical flux 

distribution and consequences of the DCF model are discussed. This paper finally gives an 

explanation for the discrepancy between the “hard theory” of critical flux and “real world” 

membrane applications. 

2. Model for Distribution of Critical Flux (DCF) 

The model is based on a normal distribution of critical flux (DCF) around a mean value 

(this distribution is justified in section 4.1.). On the other hand, we considered an initial flux 

(before any fouling), j0, constant along the membrane. Parameter, j0  is the pure water flux 

through a clean membrane and is proportional to the applied TMP (Trans-Membrane 

Pressure) ; j0 is used on the x axis of certain figures to describe the effect of altering the 

applied TMP. It should be noted at this point that considering a distribution of jcrit with a 



constant j0 in fact has the same consequence as considering one value of critical flux and a 

distribution of j0 (which could be due to local heterogeneity of membrane porosity as 

discussed in 4.1.4). 

2.1. Distribution of critical flux 

A normal (or Gaussian) distribution is characterised by the probability density function - 

pdf(j)-, or by the cumulative distribution function -cdf(j)- as presented in Fig. 1 and defined 

by the following equations : 
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The probability density function (pdf) is the density of probability such that the probability of 

the critical flux of being in the interval [a, b] is given by the integral of this function between 

a and b. The pdf function can then give the probability of having a critical flux between two 

values. The cumulative distribution function (cdf) is then the probability that the critical flux, 

jcrit, is less than or equal to a given flux value j.  

2.2. Consequences on fouling conditions 

Various fouling regimes can be expected when a run has been started with an initial flux, 

j0, if a distribution in critical flux exists. The cdf function calculated for the initial flux j0 gives 

the probability of having a critical flux below or above it. Three different situations and their 

associated probabilities can be determined as shown in Fig. 2: 

• no fouling (nf) if the critical flux is larger than the initial flux (jcrit>j0). The probability 

for such a situation to occur is pnf=1-cdf(j0). 



• critical fouling (cf) if the critical flux is smaller than the initial flux but larger than 

zero (0<jcrit<j0). The probability of this situation is pcf=cdf(j0)-cdf(0). 

• unlimited fouling (uf) if the critical flux is smaller than zero (jcrit<0). The probability 

of this situation is puf=cdf(0). 

To each of these situations is associated a permeate flux at steady state. In no fouling (nf) 

conditions, the permeate flux is given by the water flux, jnf=j0. In contrast, for unlimited 

fouling (uf) conditions, one considers absence of stationary permeate flux and then a permeate 

flux nil in the steady state, juf=0, which could correspond to a membrane zone where fouling 

is continuously increasing (a steady state is not reached) or to complete pore blockage. In the 

intermediate fouling conditions where the critical flux is between zero and the pure water flux 

0<jcrit<j0, fouling is limited by the critical flux (cf) value: it is here assumed that if the water 

flux overcomes the critical flux then a deposit forms until the flux again reaches the critical 

value. The resulting permeate flux associated with this event is a “mean” critical flux 

corresponding to the value of the various possible values of critical flux weighted by their 

relative probabilities. This “mean” critical flux for these conditions (0<jcrit<j0) is written with 

the classical function for the expected value E(jcrit/0<jcrit<j0) which is mathematically defined 

later in  Eq. (5). The permeate flux associated with the event (cf) is then equal to the critical 

flux expected, jcf=E(jcrit/0<jcrit<j0). These three possible fouling conditions control the global 

permeate flux on the membrane (the sum of their probabilities is equal to one).  

2.3. Consequences on the global permeate flux 

The resulting global permeate flux, j, through the membrane can be estimated as the sum 

of the flux of each of the possible situations defined above, weighted by its probability: 

 ufufcfcfnfnf jpjpjpj ... ++=  (3) 

Using the probability and the permeate flux as discussed in 2.2. leads to: 
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The expected value for the critical flux E(jcrit/0<jcrit<j0) which represents the “mean” value of 

critical flux (in m/s) when the critical flux is positive and lower that the water flux, is defined 

as the integral of each possible value of the critical flux, jcrit, multiplied by its probability, 

pdf(jcrit), divided by the total probability for this event : 
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One can demonstrate (full calculation in appendix) using the previous definition of the 

probability distribution that: 
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The permeate flux is then linked through Eqs. (4) and (6) to the value of the water flux and to 

the parameters of the critical flux distribution (the mean critical flux, critj , and its standard 

deviation, σ) as follows : 
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This relationship can be used to describe the reduction in flux induced by the fouling under 

distributed critical conditions. Such a relationship can be easily calculated with a classical 

spreadsheet program, if the pdf or cdf function is predefined*.  

Fig. 3 shows the variation in fouling resistance as a function of the water flux (which 

could also be linked to the TMP) simulated for the distribution previously presented in Fig. 1. 

Different fouling behaviours can be described with such a model according the value of the 

standard deviation. For a low value of standard deviation (σ=5), the model depicts a sharp 

transition between a Darcy behaviour and a pressure-independent regime (strong form of 

critical flux) with an associated sharp change in cake resistance above the mean value of 



critical flux.  In contrast, for higher values of standard deviation (σ=10 and 20), a more 

gradual transition is observed (weaker form of critical flux). .  

2.4. Graphic method to determine distribution parameters 

Eq. (7), which models the permeate flux, has some particular features shown in Fig. 4 and 

5. For small water flux, the limit of Eq. (7) is: 

 
0 0 0lim  = (1- 0 ) j j j cdf( )→  (8) 

The slope of the curve “permeate flux versus water flux” tends to 1-cdf(0) which corresponds 

to the probability of having a non-nil flux. This can be translated into an initial cake resistance 

directly linked to the value of cdf(0) as follows : 

 
0 0

1lim 1 1(0)

c
j

m

R
R cdf

→ =
−

 (9) 

Such a relationship can be used to determine the initial resistance observable in Fig. 3b from 

the value of cdf(0) presented in Fig. 1b.  

In contrast, for greater water flux, the limit of Eq. (7) is: 
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This relationship shows that when the probability of having reached critical flux tends to one, 

the flux tends to a limiting value, jlim. 

Furthermore, as can be observed in Fig. 3 and derived from Eq. (7), there is a common point 

for a family of curves with different critical fluxes and standard deviations, which 

corresponds to the coordinates [2 critj ;   critj ] in Fig. 3a and [2 critj ;  1] in Fig. 3b. 

Also the value of the permeate flux taken for a water flux equals the mean critical flux is : 
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The value of the permeate flux at this point is directly related to the limiting flux and to the 

value of the standard deviation.  

These mathematical properties of Eq. (7) make possible a graphic determination of 

parameters for critical flux distribution from experimental data of permeate flux versus water 

flux (or TMP) as shown in Fig. 4. The mean critical flux, critj , is given by the y value at the 

intersection between the “flux vs pressure” curve and the line with a slope which is half that 

of the initial membrane permeability (point  [2 critj    critj ] in Fig. 4). Now, the difference 

between the limiting flux and the flux vs pressure curve at an abscissa critj  allows the value 

of the standard deviation to be determined according to Eq. (11) (points  and  in Fig. 4).  

This method based on the DCF model can be used to determine the mean critical flux and 

standard deviation from the steady state flux versus pressure plot, if limiting flux is 

experimentally reachable and if the initial pure water permeability has been measured. 

3. Comparison of the DCF model to experimental results 

The DCF model is here applied to describe filtration of latex suspensions. Parameters for 

critical flux distribution are deduced from experiment according to the procedure described in 

2.4 and are further compared to experimentally obtained critical flux values.  

3.1. Material and methods 

Filtration experiments were run according to a procedure based on controlled alternating 

increasing and decreasing pressure steps with the measurements of the steady state flux 

[5,11]. The steady state flux, automatically detected by the experimental system, has always 

been measured after filtration periods longer than 30 minutes. It allows determination of both 

the classical “steady state” permeate flux versus transmembrane pressure” curve and the 

fouling reversibility at each step. Such experiments have been performed with latex 



suspensions (stabilized by charged polyelectrolytes) with a particle size of 106 nm in 

diameter. Such suspensions have been achieved by dilution in distilled water with a constant 

latex concentration of 0.7 g/L (which is equivalent to a volume fraction of 5.10-4) both 

without salt added and with addition of various amounts of KCl. When KCl is added (at 10-3 

and 10-2 M), the total electrolyte concentration is always well below the critical coagulation 

concentration, c.c.c., which has been experimentally determined at between 0.1 and 0.3 M in 

KCl (by observation of settling in a glass cylinder). The addition of salt to some extent 

controls the repulsive interactions between particles without having inter-particle coagulation 

in the dilute suspension. The membrane used for these filtrations was M2 Carbosep (Orelis, 

France) with a molecular weight cut-off of 15 kDaltons. Different cross flow velocities have 

been used between 0.3 and 1.3 m/s corresponding to Reynolds numbers of 1800 and 7800 

respectively. Full results and details on filtration rig and protocols are detailed in [5] and [11].  

3.2. Experimental filtration results 

In Fig. 5 is plotted the increase in steady state permeate flux versus transmembrane 

pressure (with no salt added) for various cross-flow velocities. These experiments show an 

expected increase in permeate flux when increasing cross-flow velocity. But, no easy and 

unequivocal observation is possible for the strong critical fluxes in these figures (steady 

permeate flux versus TMP) as there is no sharp transition from the Darcy regime to the 

pressure independent regime. Determining a weak critical flux by determining the point for 

which there is a deviation from linearity [3] could be very subjective.  

In order to have an accurate critical flux measurement, each steady state flux measurement 

has been followed by a decrease in applied pressure in order to determine the reversibility [5]. 

This procedure allows a rigorous determination of the critical flux above which irreversible 

fouling occurs. Table 1 summarizes the results for critical flux obtained with this pressure 



step method [11]. These results show an increase in critical flux with the cross-flow velocity 

and a decrease in critical flux when adding salt. These experiments underline the importance 

of surface interactions on the critical flux; the critical flux is higher when repulsive surface 

interactions (stability) are larger as shown in [2]. The critical flux concept which has been 

theoretically explained by the presence of colloidal surface interactions [2] therefore seems 

suited to the description of such a system.  

3.3. Filtration interpretation through the DCF model 

The DCF model has been applied to the experiments shown in Fig. 5. The graphic method 

detailed in section 2.4 can be used to determine the distribution parameters as plotted in Fig. 

5b. The intercept with the membrane half-permeability line (dashed line) gives the value of 

mean critical flux at around 2.4 10-5 m/s. The value of 
2
σ

π
 can then be determined as 6.5 10-

6 m/s which then gives a standard deviation for the distribution, σ, of 1.6 10-5 m/s. With the 

same model, experimental results have been used to find the mean critical flux and the 

standard deviation by a classical least square method. Parameters resulting from this 

numerical optimisation applied to each experiment are presented in Table 2. We can note that 

graphical and numerical methods give similar results. The agreement between models and 

experiments is very good when considering both the permeate flux (Fig. 5) and the deposit 

resistance variations as seen in Fig. 6. The distributions in critical flux involved in the fitting 

are plotted in Fig. 7 for the three different cross-flow velocities. When increasing the cross-

flow velocity, one notes an increase in the mean value of critical flux and a distribution which 

becomes larger. The mean critical flux is multiplied by 2.5 when the cross flow is increased 

by a factor 3.3 and the standard deviation follows a similar trend. 

An explanation for the large distribution in critical flux used for modelling could come, in 

this paper, from a distribution in the membrane permeability as presented in the photograph 



(Fig. 8) showing that the deposit thickness is inversely correlated to membrane skin thickness. 

Variations in local permeability could then be a possible physical cause for the distribution of 

critical flux. However, distribution in size or charge of latex particles could also lead to a 

distribution in stability: the latex suspension exhibited a size distribution centred on 118 nm 

with a standard deviation of 20 nm when the size analysis (Zetasizer 4, Malvern Inst., UK) 

was run monomodally (Gaussian distribution). More generally when using the DCF model, 

numerous sources of distributions can be proposed and some of them are discussed in section 

4.1. 

3.4. Comparison of DCF parameters and experimental critical flux 

Mean critical flux (Table 2) determined with the DCF model can be compared to results 

obtained from the experimental determination of critical flux as presented in section 3.2 

(Table 1). A direct comparison (Fig. 9 a)) of experimental critical flux and mean critical flux 

shows that the experimental critical flux is always lower than the mean critical flux. This gap 

could be explained by considering that the mean value of critical flux in the distribution 

corresponds to a probability of ½ for reaching critical flux. It could be thought that the 

experimental detection of critical flux occurs for a probability lower than ½ then 

corresponding to values of permeate flux lower than the mean value of distributed critical 

flux. 

Bearing this in mind, one can seek a link between the experimental critical flux and the 

mean value, critj , and its standard deviation, σ. A rather good agreement is found (Fig. 9b) 

between the experimental critical flux and the value of the mean critical flux minus half the 

standard deviation, 
2critj σ

− . This last value corresponds to a cumulative distribution 

function, Eq. (2), with a value of 0.3. This could mean that critical flux is experimentally 

detected when the probability of having a permeate flux larger than the critical flux (i.e. the 



probability of reaching critical flux) is larger than 0.3. This is illustrated in Fig. 10 where the 

value of the experimental critical flux (vertical line) is compared to the cumulative 

distribution function obtained by DCF model (Fig. 7). Again it can be seen that the pressure 

stepping method detects a value which corresponds to the probability of reaching the critical 

flux of around 0.25 and 0.3. This means that most probably, fouling has already started over 

some areas of the membrane when we can detect it. This is probably due to the sensitivity of 

the flux measurements, which measure the average flux over the whole membrane surface, 

and cannot then detect minute changes in local flux, due to the first irreversible fouling: In 

line with this remark, the larger the membrane surface, the more difficult the true critical flux 

will be to determine. On the other hand, the larger the membrane area of the test equipment 

the more realistic the measured critical flux will be. However, as discussed later on, some of 

the reasons that the critical conditions are distributed around a mean value arise from 

hydrodynamics and from membrane geometries: these parameters, whose exact influence on 

the distribution is not yet clear, cannot be controlled in such a way that a lab test cell and an 

industrial plant give the same value for the distribution in critical condition. Hence, there is a 

risk of significant differences in the extent of fouling between lab tests and real life operation. 

If confirmed by further experiments, distribution parameters for fouling conditions could 

then be linked to the effective critical flux in terms of accumulation reversibility. However, 

the relationship could be different for other suspensions or membrane properties. 

4. Discussions and perspectives 

Previous results underline the importance of accounting for the distribution of critical 

flux (DCF) to interpret filtration results even with a suspension being a priori homogeneous 

in properties. The ability of a mean critical flux and the relative standard deviation to interpret 

filtration results and the possibility to link these parameters to the experimental critical flux 



suggests an interesting use of this model for membrane fouling characterisation and data 

extrapolation. In this section, we investigate the possible origin of DCF. The link between the 

DCF model with other existing concepts and theories is briefly discussed. 

4.1. Physical basis for Distribution of Critical Flux (DCF) 

 First, physical causes for the DCF are examined to discuss the theoretical meaning of 

the model. DCF due to tangential hydrodynamics through the development of the boundary 

layer has already been investigated [10] and is not included in this section.  

The existence of a critical flux (which represents a critical fouling condition in cross-flow 

filtration) can be shown from modelling based on very different kinds of approaches: 

• a mass balance with classical convective and diffusive terms to which is added a term 

for surface interaction between a colloid and the surface [2] 

• a force balance (mechanical) on a particle near the membrane surface [12] which 

integrates a force induced by multi-body surface interaction.  

• a mass balance with a diffusive term based on an osmotic pressure for suspensions 

with a critical volume fraction (thermodynamic approach) [13] to describe the 

aggregation phenomena. 

From these approaches, the critical flux can then be similarly seen as the consequence of: 

• a critical volume fraction of particles (in a thermodynamic approach) resulting from a 

mass balance between convection and dispersive mass flux and leading to mass 

“condensation” 

• a critical force acting on the particles (in a mechanistic approach) leading to their 

aggregation (repulsive interaction between particles overcome by permeation) on the 

membrane.  



Generally, the critical condition for fouling can always be reduced to a balance between the 

convective drag force on the particle (link to the initial flux, j0), Fdrag and the dispersive forces 

Fdisp. as follows : 

0 drag disp      F F         no deposit formation critj j< ⇒ < ⇒  (12) 

When dealing with critical flux, one can think that a distribution of both drag force (or 

relative particle/solvent velocity) and dispersive force (or critical velocity) can occur near the 

membrane surface. The distribution of drag force can be the result of: 

• a distribution in relative particle/ solvent velocity near the surface due to multi-body 

hydrodynamic or colloidal interactions.  

• a distribution in solvent velocity (local permeate flux) along the membrane surface 

because of heterogeneity in pore shape or size or in membrane skin thickness.  

The possible causes for distribution in these different parameters (investigated in next section) 

are sketched in Fig. 11. 

4.1.1. Distribution in particle/fluid velocity 

Particle velocity distributions caused by multi-body hydrodynamic interactions have been 

studied by numerical simulation [14-15]. As an example, the fluctuation of velocity around a 

mean value during settling of a concentrated suspension follows a Gaussian distribution [14]. 

The fluctuation can then be considered as a “diffusion-like” motion even if the causes for the 

distribution are purely hydrodynamic in nature. By analogy with settling (particles moving in 

an immobile fluid), this kind of distribution can also take place in a filtration process under 

the form of a distribution in relative particle/fluid velocity of (and then drag force on) a 

particle immobilised near a membrane surface and dragged along in the permeate flow. One 

can think that shear induced diffusion, colloidal interaction induced diffusion or lateral 

migration could lead to distributions in particle velocity in the same way. In the domain of 



granular flow (as for example in powder flow) where a large number of small particles are 

arranged in a random way, particle velocity fluctuation was defined by Savage and Jeffrey in 

1981 [15] by the term "granular temperature" which quantifies the random motion of particles 

around the mean velocity. The intensity of distribution used later in this paper could then be 

linked to the concept of granular temperature and then associated to the dense phase kinetic 

theory used for the description of the granular flow of particles. 

4.1.2. Distribution in permeate velocity 

Distributions in solvent velocity can also be responsible for distribution in the radial drag 

force applied to a particle near the membrane surface. It can be the consequence of 

heterogeneity of the porous wall. These kinds of heterogeneity have naturally been assumed 

to be at the origin of a weak form of critical flux [3,7]. As an example, Fig. 8 presents the 

scanning electron microscope image of a membrane after a latex filtration experiment. Strong 

changes can be seen in the thickness of the membrane skin (white zone in Fig. 8) which 

exactly matches a decrease in deposit layer thickness. Areas of membrane surface with high 

permeability are preferential zones for deposit formation because the local flux is higher: the 

critical flux may be locally overcome. A porosity heterogeneity inducing important local 

changes in permeate flux could also lead to the occurrence of the first irreversibility for the  

same mean permeate flux. In a recent publication, Ognier et al. [16] propose a local change in 

water flux due to blockage of the first surface pores which induces an increase in flux through 

the pores that remain open when operating at constant flux. This kind of phenomenon due to 

simultaneous mechanisms of pore blocking and cake formation lead to both spatial and 

temporal distributions of solvent velocity and then to meet locally the critical conditions for a 

deposit to form  near the membrane surface. 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TH9-49WMXYH-1&_coverDate=12%2F10%2F2003&_alid=167471582&_rdoc=1&_fmt=&_orig=search&_qd=1&_cdi=5277&_sort=d&view=c&_acct=C000028798&_version=1&_urlVersion=0&_userid=2493652&md5=2d4bbf3e490d3a20ee588ee712ba1bf0#bib10#bib10


4.1.3. Distribution in critical dispersive velocity (or flux) 
Distributions of dispersive critical velocity (or flux) can also occur because of a 

distribution in surface interaction between the particle and the membrane surface. Local 

changes in surface charge, in particle size or in roughness can lead to different dispersive 

forces. As an example, the latex particles used in this work exhibit a size distribution centred 

on 118 nm with a standard deviation of 20 nm when size analysis (Zetasizer 4, Malvern Inst., 

UK) is run in monomodally (Gaussian distribution). This dispersion in size can lead to a 

distribution in drag forces for a given local flux. Critical flux being closely linked to particle 

stability [2], the particle size distribution can also be responsible for part of the distribution in 

critical flux observed. The distribution of these properties in a fluid can then lead to a 

distribution in critical flux.  

4.1.4. Summary 
As underlined in the previous section, accounting for distribution of critical flux seems to be 

physically justified. These distributions could be described from different possible physical 

causes due to multi-body (hydrodynamic or colloidal) interactions and heterogeneous 

membrane properties. Distributions can act both on the drag force and on the critical 

dispersive force which are the two terms of the balance describing critical flux in Eq. (12). 

However, it seems mathematically equivalent to consider these distributions applied either on 

the first or on the second member of the force balance for critical flux : 

' '
ag       dr drag disp drag disp dispF f F F F f+ = ⇔ = +  (13) 

i.e. with distributions on the drag force <f’drag> or on the dispersive force <f’disp>. The 

theoretical model previously developed in this paper considers distributions on the dispersive 

force i.e. distribution in critical flux. However, this term of distribution in critical flux 

accounts more generally for distributions in critical conditions (both fluctuation terms in Eq. 

(13)) and thus always represents the multiple source of heterogeneity and the complexity of 

the system. Using a normal (or Gaussian) distribution to represent the distribution of critical 



flux is justified: this kind of distribution is able to describe diffusive phenomena (based on 

stochastic process) as well as distribution velocity induced by hydrodynamic interactions [14]. 

4.2. DCF, critical flux and limiting flux 

The results presented in this paper show that distributions in critical flux around a 

mean critical flux value can explain the occurrence of gradual fouling hence giving an 

explanation for the weak form of critical flux. The weak critical flux may then be 

considered as the consequence of a distribution in strong critical flux. Furthermore, as 

presented in section 3.4., it seems possible to link the experimental critical flux, Jcrit, to the 

parameters of the critical flux distribution, critj and σ ; where σ is the standard deviation 

which relates the gap to the strong critical flux concept. If σ=0, the strong form of critical 

flux applies. When σ increases, critical flux becomes less strong and the weak form is a more 

suitable concept to describe the critical fouling behaviour (as can be seen in Fig. 3). The weak 

“experimental” critical flux is then preceded by a low fouling zone which is theoretically 

explained via the DCF model as corresponding to the fouling of areas where the critical flux 

is much lower than its mean value (existence of zones easier to foul). Furthermore, the weak 

form of critical flux has been defined [3] as the flux for which a deviation from a linear slope 

of flux-pressure profile (which can be different from the pure water flux line) occurs. It can be 

seen that when accounting for the distribution of critical flux around a mean value, one 

obtains an initial linear variation in “flux vs pressure” differing slightly from that of the water 

slope. The DCF model then shows its ability to interpret experiments for which the weak form 

of critical flux was initially developed. Studies using the DCF model to interpret weak-form 

critical flux data have to be continued before any general conclusions can be drawn as to the 

impact of critical flux distribution on critical fouling behaviour. 



Furthermore, within this model, the limiting flux is defined as the permeate flux for 

which the probability of having reached critical flux is equal to one: there is no probability to 

have the membrane working in sub-critical conditions (i.e. without multilayer deposit). When 

the initial flux of a run is above the critical flux, the final permeate flux at steady state is 

assumed to be equal to the critical value. The limiting flux is then linked to an integral of the 

critical flux distribution giving an expected value of critical flux on the membrane surface. At 

limiting flux, the overall membrane surface can then be considered as covered by a multilayer 

deposit, which increases in thickness as soon as the pressure is increased.  

4.3. DFC and phase transition 

The critical flux behaviour can be related to a phase transition for the matter accumulated 

at the membrane surface from a dispersed phase (when mass is accumulated in a 

concentration polarisation layer) to a condensed (solid or aggregated) phase (when deposit 

takes place).Critical flux is then defined as process operating conditions leading to the 

creation on the membrane of an irreversible deposit. From this definition, the term critical 

finds its physical meaning: i.e. being linked to an irreversible phase transition. 

Recent studies in other fields show that phase transitions are not really critical, i.e. 

with a very sharp change. Spinodal decomposition [19] which leads to an unstable phase is 

always preceded by a metastable phase (linked to bimodal decomposition). In polymer phase 

separation, experimental methods provide evidence of microphase separation caused by 

chemical polydispersity of the copolymers [20]. In crystallisation, results “suggest pre-

nucleation density fluctuations, leading to a metastable phase, play an integral role in all three 

classes of crystallisation” [21]. The use of a distribution in critical flux could be a way to 

account for the existence of a metastable phase preceding the spinodal decomposition when 

considering the phase transition leading to the formation of a colloidal deposit on a membrane 

interface; 



4.4. Application of DCF model to the gel theory 

Formation of a gel layer could be considered as one of these phase transitions. This 

analogy has been underlined by a model [13] for the description of gel and deposit formation 

from the concentration polarisation where critical flux defines both these transitions. The 

DCF model developed in this paper could then describe the formation of a gel with 

heterogeneous properties. As a first confirmation of this assumption, the DCF model has been 

applied to the description of bovine serum albumin (BSA) ultrafiltration [22]. Prior to these 

ultrafiltration experiments, the membrane was fouled using the BSA solution, in such a way 

that adsorption during the UF run could be ignored. In the same way as when considering 

latex filtration, the curve of steady state flux versus TMP can be fully depicted (Fig. 12) by 

the distribution parameters with, by analogy, a mean critical flux for gel, critJ , and its 

standard deviation (Table 3).  

4.5. DCF and fouling complexity 

Fouling is a very complex problem. Its complexity is mainly due to the fouling 

phenomena themselves which deal with high concentration suspensions at a membrane 

interface which have heterogeneous properties (leading to hydrodynamics -filtration and cross 

flow velocity- and transfer – mass accumulation and retention -with a highly non ideal 

behaviour). When examining the possible source for critical flux distributions in section 4.1, it 

could be wondered if a “direct” model of such complexities is still possible. Using a global 

distribution covering all sources of complexity could then be a fair and more realistic way to 

describe fouling. The use of a Gaussian seems well suited to fouling mechanisms where 

dispersive forces act as diffusion-like motion in this first approach. Furthermore, in this paper 

we only account for distributions of critical flux and their consequences on steady state 

filtration. One could think, in a same way, accounting for distributions of critical flux over 



time to describe transient phenomena in filtration as the permeate flux drift (Pseudo steady 

state).  

5. Conclusions 

The consideration of fouling complexity (integrating multiple sources of 

polydispersity or heterogeneity) allows a very good description of flux-pressure profiles for 

various colloidal suspensions when fouling is controlled by superficial mechanisms. The 

permeate flux and its variation with TMP are linked to a distribution function, that can be 

easily programmed on a spreadsheet. A graphic method is also proposed to determine the 

function parameters (mean critical flux and standard deviation) from the plot of permeate flux 

versus trans-membrane pressure.  

Considering critical flux distribution allows strong and weak forms of critical flux to 

be described, then giving a physical interpretation of the often observed weak form, as the 

consequence on global filtration flux of a distribution in strong form of critical flux. When 

challenged to experimental results of cross-flow filtration for latexes or BSA suspensions, the 

model shows its ability to fully describe experiments with only the two distribution 

parameters. Furthermore, the experimental critical flux obtained with alternating positive and 

negative pressure steps seems correlated to the mean critical flux and the standard deviation. 

Possible explanations for the critical flux distribution in these experiments are supported by a 

distribution in membrane properties observed on a scanning electron migrograph.  

The DCF (distributions of critical flux) model accounting for a distribution in critical 

flux can be useful to interpret cross-flow filtration experiments, to investigate the effect of 

suspension properties or membrane materials on fouling and to extrapolate filtration data. The 

distribution parameters which are the standard deviation and the mean value of critical flux 

could become a way to depict the effect of critical flux in a “real world” system.  



*Spreadsheet program files are available on request. 

6. Appendix 

Full calculation of the excepted value of critical flux defined by Eq. (5) in the text is based on 

the following relationship. The integration of the product of the probability density function 

with the flux can be written in two terms as: 

 ))0()(().).((.).( 0
00

00

cdfjcdfjdjjjjpdfdjjjpdf crit

j

crit

j

−+−= ∫∫  (14) 

The first term of the preceding equation can be related to the standard deviation as follows: 

 ))0()(().).(( 0
2
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0
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j
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Eq. (5) for excepted value can then be rewritten in Eq. (6) by using Eqs. (14) and (15) and the 

definition of the cumulative distribution function in Eq. (2).  
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8. Nomenclature [à quoi correspondent majuscules ou pas 
majuscules ??] 

cdf cumulative distribution function 
D Diffusion coefficient m2.s 
E function for the excepted value m.s-1 
j  permeate flux (from modelling) m.s-1 
J  permeate flux (from experiment) m.s-1 
k Mass transfer coefficient m.s-1 
L Membrane length m 
p Probability 
pdf probability density function m-1.s 
R Hydraulic resistance  m-1 
TMP Trans-membrane pressure Pa 
z Axial length along the membrane m 
 
Greek letters 
δ Boundary layer thickness m 
σ Standard deviation m.s-1 
 
Subscripts 
0 Water  
c Cake 
crit Critical 

http://wos10.isiknowledge.com/CIW.cgi?SID=QJicRwrg-HUAAHLGKlE&Func=Abstract&doc=7/10
http://wos10.isiknowledge.com/CIW.cgi?SID=QJicRwrg-HUAAHLGKlE&Func=Abstract&doc=7/10


lim Limiting 
m Membrane 
nf no fouling conditions 
cf fouling conditions limited by critical flux 
ul unlimited fouling conditions 
 
 
 
 
 



 
 
Parfois c'est 10-6 et parfois 10-6, il faudrait 10-6 partout. 
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Figure 1. Normal distribution of critical flux characterised through the probability density function, pdf, and the respective cumulative 
distribution function, cdf, for the  same mean critical flux critj  of 20.10-6 m/s and three standard deviations σ of 5, 10 and 20. 10-6 m/s. 
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Figure 2. Probability scale for fouling conditions and associated permeate flux: 

• Probability, cdf(0), for unlimited fouling (uf) and permeate flux nil. 
• Probability, cdf(j0)-cdf(0), for fouling limited by critical flux (cf) with a permeate flux given by the expected value of critical flux in Eq.5. 
• Probability, 1-cdf(j0), for no fouling (nf) and a permeate flux being the water flux. 
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Figure 3. Permeate flux a) and deposit hydraulic resistance b) versus water flux. Graphs are plotted for different standard deviations, σ, for a 
mean critical flux, critJ , of 20.10-6 m/s corresponding to distributions in Fig. 1. 
 
 

0

5

10

15

20

25

0 10 20 30 40 50 60 70 80

j0 (10-6 m/s)

j (
10

-6
 m

/s
)

s = 20

s = 10

s = 5

σ
σ
σ

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50 60 70 80

j0 (10-6 m/s)

R c
/R

m

s = 20

s = 10

s = 5

σ
σ
σ



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Graphical method to determine parameters of the distribution in critical flux (mean 
value, critJ , and standard deviation, σ) from experimental results (in dashed line) of permeate 
flux versus water flux.  
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Figure 5. Permeate flux versus transmembrane pressure for three different cross-flow 
velocities (0.3, 0.6 and 1 m/s for a) b) and c) respectively). Symbols represent experimental 
value for latex filtration and bold line DCF model. The dashed line represents the membrane 
half-permeability. 
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Figure 6. Deposit hydraulic resistance versus transmembrane pressure. Symbols represent 
experimental values for latex ultrafiltration and bold lines DCF model. 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. Normal distribution for critical flux used for the fitting of experimental data presented in Fig. 5 and 6 with the DCF model. Mean critical flux and 
standard deviations are given in Table 2.  
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Figure 8. SEM photograph of a membrane after fouling with a latex suspension. A thin membrane layer (white zone) corresponds to a thick deposit. The 
local heterogeneity in porosity can be at the origin of critical flux distributions. 
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Figure 9. Comparison of the experimental value of critical flux (by a pressure step 
method [5]) and a) the mean value of critical flux obtained by the modelling or b) the 
mean value minus half of the standard deviation. 
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Figure 10. Position of experimental critical flux (vertical lines) with regard to critical 
flux distribution deduced from DCF model application (Fig. 7). The experimental 
detection of the critical flux corresponds for this set of experiments to a probability of 
having reached the critical value of around 0.25-0.3 (field shading).  
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Figure 11. Various possible origins for fluctuations in the drag force and dispersive 
force balance on a particle near a membrane surface. 
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Figure 12. Application of FCFC model to BSA filtration [22]. DCF model (line) allows 
a very good description of flux- pressure profile (symbols) for various hydrodynamic 
conditions.  
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u (m/s) 0.3 0.6 0.8 1.0 1.3 

No salt added 8.9 13 - 19.3 - 
I=10-3 M 8.6 10.1 14 - - 
Ι=10−2 Μ - 8.4 - 14.4 18.1 
 
Table 1. Critical flux values (*10-6 m/s) experimentally determined with an alternative 
increasing and decreasing pressure step for different cross-flow velocities, u, and ionic 
strength, I, resulting from KCl addition [16]. 
 
 
 
 
 
u (m/s) 0.3 0.6 0.8 1.0 1.3 

critJ   13.6 23.3 - 34.1 - No salt added 
σ  8.21 15.4 - 22.4 - 

critJ   10 15 19 - - I=10-3 M 
σ  5.1 11.6 9.7 - - 

critJ   - 12.7 - 18.8 26 Ι=10−2 Μ 
σ  - 13.5 - 8.3 13.5 

 
 
 
Table 2. Value of mean critical flux, critJ , and its standard deviation, σ, (*10-6 m/s) 
used to fit latex filtration experiments with DCF model. 
 
 
 

Re 500 1000 2000 

critJ  2.7 4.0 6.0 

σ 4.5 4.8 3.7 

 
 
 
Table 3. Value of mean critical flux, critJ , and its standard deviation, σ, (*10-6 m/s) 
used to fit BSA filtration experiments with DCF model. 
 

 


