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A model is proposed to describe the cross flow filtration of colloidal particles 

and molecules. This two-dimensional model depicts both concentration 

polarization and gel or cake formation in a tubular filtration device. A 

description of transport phenomena in a concentrated colloidal suspension is 

the core of the model. Surface and hydrodynamic interactions are used to 

predict the variation of the osmotic pressure and diffusion coefficient with the 

volume fraction of the suspension. The mathematical development leads to an 

analytical equation used for calculating the stationary permeate flux from 

integral calculations. The two-dimensional concentration profile along the 

membrane, together with the corresponding permeate flux is obtained. This 

paper illustrates how mass transfer equations coupled with a realistic 

description of the fluid can describe both concentration polarization and gel or 



P. BACCHIN Page 2 12/23/2007 

cake formation. The paper includes a discussion on the differences between 

limiting and critical fluxes, and between particles and macromolecular cross 

flow filtrations. 
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INTRODUCTION 

Cross-flow ultrafiltration is now used in a wide range of industrial applications (in the food 

industry, biotechnology, the pharmaceutical industry, water and waste-water treatment). The 

nominal molecular-weight cut-off of ultrafiltration membranes (1 kDa - 300 kDa) makes them 

appropriate for processing colloidal suspensions (particles or macromolecules whose size is less 

than 1 μm). Such a process is mainly limited by the accumulation of matter on the filter that 

includes concentration polarization and membrane fouling (formation of a gel layer or a deposit). 

With this in mind, the study of membrane fouling by colloidal dispersions is of considerable 

interest for developing the process. Here modeling opens up the possibility of better 

understanding mechanisms that reduce process efficiency, of optimizing the way the filtration 

should be operated and of creating expert systems for the design of membrane modules and 

membrane plants processing colloidal suspensions. 

The complexity of colloidal matter comes from the presence of surface interaction between 

the suspended materials. Over the past two decades, experimental observations have revealed the 

role that colloidal interactions can play in the filtration of colloidal suspensions (Cohen & 

Probstein, 1986; McDonogh, Fane & Fell, 1989). Fifteen years ago the existing models were 

incapable of quantitatively predicting permeate flux and of qualitatively representing the effect 

of a suspension's physico-chemical properties, such as ionic strength or pH, on the permeate 

flux. What was described by Cohen & Probstein (1986) as "a colloid flux paradox" has recently 

been underlined by the experimental finding of a critical flux for colloids. This critical 
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phenomenon demonstrates the specificity of the filtration of colloidal suspensions and raises 

interest for modeling in this area: just a small variation in operating conditions (particle size or 

surface charge, pH, ionic strength, concentration, pressure, cross flow velocity, permeation rate, 

…) induces important changes in the working point and so in the way the process has to be 

operated. As detailed in the next section, various models accounting for colloidal interaction 

have been recently developed to describe colloid filtration. However, the model for a limiting 

phenomenon in ultrafiltration is often selected according to the application (concentration 

polarization and gel layer for macromolecules, deposit for particles) and the models differ in 

their theoretical treatment. But colloidal suspensions often exhibit the behavior both of particles 

and of macromolecules, thus leading to a delicate choice as to the way modeling should be 

developed. Furthermore, detailed analysis of the effect of colloidal interaction on filtration is 

often carried out in a one-dimensional system (i.e. normal to the membrane surface), whereas the 

design of membrane modules and the definition of appropriate operating conditions has to take 

account of the development of the mass-transfer boundary layer. For the filtration of colloidal 

suspensions, this cannot be done using the standard calculation based on purely diffusive 

mechanisms, as was pointed out by Jönsson & Jönsson (1996). However these authors suggested 

using an experimental technique to determine the boundary layer thickness; we shall show below 

how this thickness can be estimated from a two-dimensional model. 

In the present work, we have investigated the possibility of introducing particle-particle 

colloidal interactions into a two dimensional analysis of transport phenomena along the length of 

a filtration device. This allows the specificity of colloid filtration to be accounted for. Also, a 

phase transition, related to the balance between dispersive and attractive forces, accounts for the 

passage from the liquid state to the gelled phase. By integrating such phenomena into the 

description of membrane fouling, the model can depict mechanisms of concentration 

polarization, gel formation and particle deposition, within a single approach. Important 
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suggestions as to the way filtration should be operated when processing colloidal suspensions are 

underlined.  

BACKGROUND 

Solute accumulation is the antagonistic phenomenon of the filtration process and as such can 

only be partially reduced (for example by changing the hydrodynamics) but never totally 

eliminated. Solute accumulation is a self-regulating phenomenon as it causes a drop in permeate 

flux, thus inducing a simultaneous decrease in the accumulation rate and so on. Consequently, 

when operating at a fixed trans-membrane pressure difference (TMP) and feed concentration, 

surface fouling leads to a stationary or quasi-stationary permeate flux. This implies that two 

kinds of transfer are involved in fouling: 

• solvent transfer (permeate flux) through the fouling layer, when present, and through the 

membrane,  

• solute transfer (mass flux) to the membrane or to the fouling layer (if fouling has already 

occurred). 

The solute transfer differs from the transfer directly induced by solvent convection because of 

the membrane's retention properties; this difference causes the solute accumulation. Physically, 

these two fluxes are intimately linked together and therefore have to be treated simultaneously in 

the theory: the solvent transfer is dependent on solute transfer as solute accumulation changes 

the osmotic pressure difference and, when relevant the hydraulic resistance of the fouling layer, 

while the mass transfer depends on solvent transfer as permeate flux is at the origin of mass flux. 

This study is restricted to surface solute accumulation, namely: concentration polarization, gel 

formation or particle deposition mechanisms. These phenomena are considered at steady state. 

Solvent transfer through the membrane and the fouling layer 

The starting point for describing solvent transfer in cake-filtration or osmotic-pressure models 
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is the initial driving force: the transmembrane pressure. The cake-filtration model assumes that a 

layer of deposited matter is formed on the membrane, so the frictional drag due to permeation 

through these immobile particles leads to an additional hydraulic resistance that corrects the 

original Darcy law. The osmotic-pressure model considers that as there is a great concentration 

difference between the two sides of the membrane, a thermodynamic force arises in opposition to 

the TMP; this is equal to the transmembrane osmotic pressure. Combining both mechanisms, for 

a given transmembrane pressure ΔP and a hydraulic resistance of the clean membrane Rm, the 

permeate flux Vw is given by: 

( )cm
w RR

PV
+
ΔΠ−Δ

=
μ

 (1) 

where the two unknown parameters are the hydraulic resistance of the cake Rc and the 

transmembrane osmotic pressure difference ΔΠ across the cake and the membrane whose 

determination can only come from an accurate description of mass transfer near the membrane.  

Mass transfer to the membrane  

The convection-diffusion equation is widely used to describe the stationary permeate flux 

during filtration of small-size solutes at low concentration. For a totally retentive membrane, 

solute flux to the membrane is zero at steady state: 

 0=
∂
φ∂

−φ−
z

DVw  (2) 

After integration across the mass-transfer boundary layer, assuming a constant diffusion 

coefficient, the following relationship is found between the permeate flux and the membrane-to-

bulk concentration ratio:  
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w

DV ln  (3) 

This equation links the wall volume fraction φw to the local permeate flux Vw. To explain the 
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limiting flux observed experimentally, Michaels (1968) assumed that the wall concentration 

cannot exceed a limiting concentration named the gel concentration, φg (φw is replaced by φg in 

Eq. 3). This approach was corroborated by experimental observation of deposits formed on the 

membrane surface and sometimes recovered after filtration. The value φg has to be determined 

from experimental data, but even if this "gel concentration" is considered to be known, this 

model for concentration polarization does not satisfactorily predict permeate flux for 

concentrated solutions and/or for interacting solutes, which colloidal suspensions are by 

definition.  

Some recent work (Bhattacharjee, Kim & Elimelech, 1999) includes the effects of 

concentrated and interacting solutes in the convection-diffusion equation (Eq. 2) via a structure 

factor for interacting particles. This model allows a realistic description of the behavior of 

concentrated solutions near a membrane, but does not include the transition from concentration 

polarization to gel or deposit formation. On the other hand, other authors (Benkhala, Ould-Ris, 

Jaffrin & Si-Hassen, 1995; Harmant & Aimar, 1996) give experimental evidence of a TMP 

beyond which an irreversible deposit is formed by a stable colloid. For given properties of the 

colloidal dispersion, the deposit appears at a particular permeation flux named the "critical" flux. 

Deposition is clearly a very important factor in membrane fouling. This critical flux has been 

shown (Bacchin, Aimar & Sanchez, 1995; Harmant & Aimar, 1996) to arise from a balance 

between the two types of forces acting on a suspended particle near the solid interface (the 

membrane or the cake): 

• the repulsive force due to surface interaction between the colloid and the solid interface 

driving the particle away from the surface,  

• the drag force due to permeate flux drawing the particle towards the surface.  

Below the critical flux, the drag force is weaker than the repulsive interaction and no fouling 

or phase change should occur; above this value, the drag is strong enough to lead to fouling. 
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Some recent publications (Bacchin, Aimar & Sanchez, 1995; Harmant & Aimar, 1996; Bowen & 

Jenner, 1995) stress the importance of colloidal interaction in determining the critical flux but 

also underline the need to account for the effect of concentration on transport properties. 

Now Petsev, Starov & Ivanov (1993) and Jönsson & Jönsson (1996) have suggested that the 

properties of concentrated colloidal dispersions can be described by an expression for the 

osmotic pressure that takes into account contributions from the entropic effect and colloidal 

interactions. These authors clearly show that with rising concentration the osmotic pressure 

theoretically passes through a maximum and that this maximum corresponds to a transition from 

a dispersed to a solid state. In the case of membrane filtration, this transition may be used in the 

description of deposit formation, but it has not yet been linked to a critical flux. The main 

assumption in the model developed by Jönsson & Jönsson (1996) is that flow occurs through a 

purely diffusive boundary layer. However the thickness of the boundary layer can only be either 

roughly estimated from a correlation based on just diffusive mechanisms (a questionable 

approximation) or else adjusted from experiments. 

In the present paper, a model is proposed that introduces colloidal interaction forces into the 

traditional convective-diffusive mass transfer equation through an interaction term in the osmotic 

pressure of the suspension. This model is intended to account for the non-ideal behavior of the 

concentrated suspension or solution in the boundary layer. It predicts realistic properties 

(diffusion, mobility) of a concentrated colloidal dispersion. In contrast to some previous models, 

this approach considers mass transfer in two dimensions, thus allowing the growth of 

concentration polarization, gel layer and deposit along the channel to be described. 

THEORETICAL DEVELOPMENT 

We consider the cross-flow filtration of a colloidal dispersion in a tubular configuration at 

steady state (Figure 1). This system is assumed to have rotational symmetry, thus reducing the 

three dimensions of the tubular geometry to the two dimensions r and z. The hydrodynamics in 
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this system will be treated as the sum of tangential shear flow and radial flow. This 

approximation was shown by Berman (1953) to be acceptable in a thin layer near the permeable 

wall, when he solved the Navier-Stokes equation in a porous-walled channel with a uniform 

permeation rate. In the present paper, we consider that the hydrodynamics in the axial direction 

is not affected by the growth of the cake deposit and that the colloidal matter is totally retained 

by the membrane, i.e. the pore size is too small to allow particles through. This limits our 

investigation to surface fouling, including concentration polarization and particle deposition, and 

excludes pore blocking. Furthermore, we assume the additivity of hydraulic resistance thus 

limiting the model to deposits with thicknesses greater than several particle diameters. For mass 

transfer modeling, we consider only interactions between particles: the interaction between the 

membrane surface and the colloid is not accounted for. This corresponds to neglecting the 

transient state of membrane/colloid interaction and considering only a balance between 

suspended and deposited colloid at steady state or considering that the membrane has similar 

surface properties to those of the particles in suspension. On the other hand, fluid mechanical 

forces such as shear induced diffusion and lateral migration are not taken into account as they are 

negligible for particles less than one micrometer in size. The colloid is composed of 

monodisperse, incompressible and spherical particles or macromolecules in interaction with each 

other.  

Physical representation of the concentrated colloidal dispersion 

For the purpose of our work, the influence of the presence of particles interacting with each 

other on the rate of water transport at steady state is theoretically accounted for via the osmotic 

pressure and its variation with concentration. This is then used to derive the diffusivity of the 

suspended medium that determines the rate of solute transport. We hence adopt the method 

proposed by Petsev, Starov & Ivanov (1993). 

The diffusion coefficient is derived from the Einstein (1906) equation, which links the 
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diffusion coefficient to the derivative of osmotic pressure with respect to volume fraction, 

together with Vp the volume of the suspended particle and its mobility m: 

φ
Π

φ=φ
d
dVmD p)()(  (4) 

It should be noted that the diffusion coefficient defined here is not a classical self-diffusion 

coefficient but is generally termed a gradient-diffusion or collective-diffusion coefficient as it 

describes the macroscopic flux of particles in the presence of a gradient in the volume fraction of 

colloidal matter (Russel, Saville & Schowalter, 1989). 

Assuming that the mobility m(φ) is the reciprocal of the friction factor defined by the Stokes 

law, as corrected by Happel (1958) to account for the effect of concentration on the drag force, 

the following expression for the diffusion coefficient is obtained: 

φ
Π

φπμ
=φ

d
d

aH
V

D p

)(6
)(  (5) 

where a is the particle radius and φ the volume fraction. The Happel function H(φ) is given 

by: 

23
5

3
1

3
5

6996

46)(
φ−φ+φ−

φ+
=φH  (6) 

The osmotic pressure is estimated by adding together the contributions of entropy, van der 

Waals interactions and electrostatic interactions as detailed in the Appendix. It should be noted 

that the osmotic pressure here is not the total osmotic pressure of the suspension, but the osmotic 

pressure that originates from the species of the suspension retained by the membrane. 

 )()()()( φφφφ elevdwent Π+Π+Π=Π  (7) 

The magnitude of these different contributions varies with the volume fraction of the 

suspension, with the particle size and with physico-chemical parameters. An example of the 

osmotic pressure calculated for suspensions spheres of 5 nm and 100 nm in radius is shown in 
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Figures 2 & 3 with each contribution detailed. Other data for calculating osmotic pressure are 

given in Table 1 (second column). At low volume fraction, the osmotic pressure is dominated by 

the entropic effect for small spheres (Figure 2) whereas for larger ones (Figure 3) the entropic 

contribution is negligible and osmotic pressure only results from the electrostatic interaction 

effect. In both cases for volume fractions higher than a critical value, van der Waals surface 

interaction becomes predominant and causes a considerable drop in osmotic pressure. As already 

mentioned by Petsev, Starov & Ivanov (1993), there thus exists a maximum in theoretical 

osmotic pressure at a critical concentration denoted φc. Beyond this critical concentration, 

attractive interactions lead to an unstable suspension in which the coagulation process can be 

seen as the result of a "negative diffusion" from dilute (liquid phase) to aggregated (solid phase) 

suspension. In this work, we consider this critical concentration as the value for the liquid-solid 

transition, i.e. the transition from concentration polarization to fouling regime. We shall see later 

in the paper that it probably corresponds to the limiting wall concentration that Michaels (1968) 

called the "gel" concentration. The dispersion is considered thermodynamically stable towards 

coagulation at concentrations below φc, even if a slow coagulation should be expected in real 

systems at concentrations just below φc, as pointed out by Jönssson and Jönsson (1996).  

Experimentally, the transition between liquid and solid phases appears in a graph of osmotic 

pressure versus volume fraction as a discontinuity zone indicating the coexistence of both fluid 

and solid (Russel, Saville & Schowalter, 1989, p. 342). The transition can also be observed by 

studying the reversibility of osmotic pressure measurements using the osmotic stress method 

(Bonnet-Gonnet, Belloni & Cabane, 1994). It should be noted that the decline in osmotic 

pressure at volume fractions above the fluid/solid transition (dashed line in Figures 2 & 3) is not 

physical and cannot be observed experimentally. In fact, at volume fractions above the maximum 

a phase transition occurs (often called spinodal decomposition) and a solid is formed : the 

contact forces between solid surfaces induce an additional resistance to the compression that 
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increases with volume fraction, however the latter compression is irreversible whereas osmotic 

pressure remains reversible. In this work, we use the osmotic pressure only to describe properties 

of the fluid phase and the maximum in osmotic pressure corresponds to the solid/fluid transition. 

This physical description allows the diffusive properties of concentrated interacting particles 

to be seen as the combination of an entropic effect and colloidal interaction. It should be noted 

that repulsive colloidal interaction plays a role at intermediate volume fractions by enhancing the 

gradient diffusion coefficient (as shown in Figure 3 by an increase in osmotic pressure), whereas 

for high volume fraction attractive interaction reduces diffusivity leading to coagulation beyond 

φc. This kind of behavior is qualitatively in agreement with the way that experimental 

measurements of the osmotic pressure vary with the particle size and the physico-chemical 

properties of the suspension, such as ionic strength and zeta potential. So even if no fully 

predictive theoretical model for concentrated colloidal dispersions exists, the approximate 

method of simply adding colloidal interaction to the entropic effect provides a good qualitative 

description of the behavior of a large range of colloidal systems. 

Hydrodynamics and mass transfer 

Hydrodynamics and mass transfer in the filtration device (Figure 1) are described from 

volume (Eq. 8) and mass (Eq. 15) balances in the axial x direction, combined with a convection-

diffusion mass balance in the radial z direction (Eq. 13), including the physical representation of 

concentrated suspensions as discussed in the previous section.  

From a volume balance accounting for permeation, a differential equation is obtained for the 

axial variation in the total flow rate:  

wRV
dx
dQ π2−=  (8) 

The axial pressure gradient along the membrane channel is determined by the friction factor 

for laminar or turbulent flow:  
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52

2

)('
R

QfxP
dx
dP

π
ρ

−==  (9) 

The  hydrodynamic regime in the membrane channel depends on the Reynolds number: 

bR
Q

μπ
ρ2Re =  (10) 

In the laminar regime (Re < 2100), the friction factor is given by the Poiseuille relationship: 

Re/16=f  (11) 

whereas for turbulent flow, a common approximation for the friction factor is given by the 

Blasius correlation: 
4/1Re/0791.0=f  (12) 

Mass transfer in the radial z direction, i.e. perpendicular to the membrane surface, is described by 

a convection-diffusion equation including the effect of colloidal interaction on the different 

properties as a function of volume fraction, as developed in the previous section. For a colloid 

totally retained by the membrane, its comes : 

0)( =
∂
φ∂

φ−φ−
z

DVw  (13) 

As the polarization layer is thin compared with the membrane channel radius, the following 

equation is valid throughout the polarization layer. 

Separation of variables in Eq. 13 allows the coordinate z to be replaced by the concentration 

φ: 

φ
φ
φ

−= dD
V

dz
w

)(1  (14) 

At steady state, the flux of suspended matter along the channel is constant and equal to the 

mass flux entering the inlet section of the channel; the left-hand integral in Eq. 15 can be 

represented as the sum of the mass flux in the bulk (first term) and that in the boundary layer 

thickness δ where the concentration polarization is present 
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We adopt the assumption already made by Davis & Sherwood (1990) and Song & Elimelech 

(1995) that there is no variation in bulk concentration in the axial direction of the membrane 

tube. This assumption is justified by the fact that, in the calculations performed in this paper, the 

permeate flow rate is always less than one percent of the bulk flow rate Q and the very low 

diffusivities of colloidal particles imply that concentration variations only appear within the very 

thin polarisation layer.  

Equation (15) can then be rewritten as: 

( )∫ −−=

δ

φφ
φ
π

0

0
2 dzuRQQ b

b
 (16) 

The cross-flow velocity u can be evaluated by assuming that the shear stress throughout the 

boundary layer thickness is equal to the wall shear stress RP'(x)/2 :   

∫ φμ
−=

z dzxPRzu
0 )(
)('

2
)(  (17) 

In this work we have chosen to represent the variation of viscosity with volume fraction by 

the Eilers-Chong formula (Kissa, 1999): 

2
( ) 1.251

1b cp

μ φ φ
μ φ φ

⎡ ⎤
= +⎢ ⎥

−⎢ ⎥⎣ ⎦
 (18)  

where μb is the bulk viscosity and φcp is the volume fraction for close packing as defined in 

the Appendix. In fact φcp is likely to be a function of the physico-chemical properties of the 

system, although its value is much greater than the critical volume fraction that represents the 

maximum concentration reached in our calculations. Since this work focused on the effect of 

particles interactions on diffusivity and osmotic pressure, we assumed φcp to be a constant: a 
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more detailed treatment of this point is left to future work. 

By substituting Eqs. 14 and 17 in Eq. 16, we obtain an equation depicting the mass balance 

with concentration-dependent diffusion and viscosity in the mass-transfer boundary layer : 

φφ
φμφ

φ
φ

φ
π
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ddDD
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xPRQQ

b

w wwb
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0  (19) 

Using Eq. 9 for the pressure derivative along the membrane and simplifying by introducing a 

function G, Eq. 19 can finally be written: 

( )
QQ

G
R
f

R
QV wb

b
w −

φφ
πφ

ρ
=

0

,  (20) 

with  ( ) φφ
φμφ
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φ=φφ ∫ ∫
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φ
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w

b

w

wb '
)'('
)'()(,  (21) 

From considerations of hydrodynamics and mass transfer in the membrane channel, Eq. 20 

relates the permeate flux to the volume concentration at the wall. Another relationship linking 

these two parameters would allow the system to be completely determined. This is achieved here 

by using the osmotic pressure model to describe the permeate flux through the membrane (cf. 

Eq. 1):  

m

w
w R

xPxV
0

)()()(
μ

φΠ−
=  (22) 

Equations 20 and 22 can be solved simultaneously to give φw and Vw. This non-linear 

algebraic system can be combined with the ordinary differential equations 8 and 9 so that for 

given values of  pressure P and flow rate Q, the gradients P' and Q' are obtained. This set of first-

order ordinary differential equations can then be solved by a numerical method such as the 

Runge-Kutta technique.  

Critical volume fraction and deposition mechanism 

If φw the volume fraction at the wall is less than the critical volume fraction φc, then only 
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concentration polarization is present, with no colloidal deposition on the membrane and the 

calculation technique outlined above is satisfactory. However, if the calculated φw is greater than 

the critical volume fraction, this implies physically that the high concentration at the membrane 

has caused a transition of the suspension from a liquid to a solid state, leading to particle 

deposition. In this case, the permeation equation must include a cake hydraulic resistance Rc for 

this deposit (from Eq. 1):  

)(
)()()(

0 cm

c
w RR

xPxV
+μ

φΠ−
=  (23) 

However Rc is an unknown value. To solve this problem, we assume that the local cake 

thickness will increase until a value of Rc is obtained such that Eq. 23 will be in agreement with a 

version of Eq. 20 and 21 in which φw is set equal to φc. 

Physically this means that the permeation rate will gradually decline from the value which 

induced the wall accumulation higher than φc until it reaches a value where the diffusion-

convection equilibrium at the wall (i.e. at the cake surface) will set φw equal to φc. This procedure 

of calculation is illustrated in Figure 4. Finally Eq. 23 can be used to calculate the ratio Rc/Rm. 

The thickness of the cake cannot be calculated, unless its specific hydraulic resistance and 

density are known, but we shall assume that the cake thickness is negligible when compared to 

the hydraulic radius of the channel. This assumes that deposit growth does not disturb the axial 

flow. 

DISCUSSION  

Simulations using the model developed in the previous section have been performed for 

various operating conditions and physico-chemical properties of the media. To illustrate the 

capability of the model to describe both concentration polarization and particle deposition, 

simulation results are first presented for two different kinds of colloidal material: small particles 

(5 nm in radius) which could represent a macromolecule such as a big protein and larger ones 
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(100 nm) like latex particles, for example. The common data set for these simulations is listed in 

Table 1. These data correspond to colloid ultrafiltration with turbulent cross-flow conditions in a 

tubular device (Re = 6000). Results of the simulation are the 2D concentration profile and the 

local permeate flux along the membrane as illustrated in Figure 5. It shows clearly how the 

concentration polarization develops at the membrane surface along x the length of the 

membrane, in a boundary layer whose thickness grows characteristically with x1/3. Note that wall 

concentration reaches a value of φ ≈ 0.5 at a certain distance from the inlet which will be seen 

later on in the paper as associated with the formation of irreversible deposit. 

Overall analysis of the simulation 

In Figures 6 and 7, the average flux J through the membrane (found by integrating the local 

flux Vw) for these two suspensions is plotted versus TMP, with other parameter values as in 

Table 1. Both of these graphs show the typical ultrafiltration behavior, with an initial increase in 

flux with TMP and at higher TMP, a leveling-off to a quasi-plateau in flux commonly called the 

"limiting" flux. This "experimenter's view" of the system shows two graphs very similar in 

shape, but there is an important theoretical difference between them. For the larger colloid 

(Figure 7), the average flux equals the pure solvent flux right until it reaches the limiting flux. 

For the macromolecules (Figure 6), the flux is soon well below the water flux and reaches the 

limiting flux more gradually. This difference can be explained by analyzing the way in which the 

volume fraction at the interface φw and the cake resistance Rc (both at the outlet of the membrane 

channel) vary with TMP, as shown in Figures 6b and 7b.  

In the case of macromolecular particles, the increase in concentration polarization with 

increasing TMP explains the loss in permeate flux without cake formation: the osmotic pressure 

reaches values comparable with the TMP. As indicated earlier, concentration polarization alone 

is sufficient to explain the strong limitation in flux. It has to be noted however that for high 

enough TMP (above 20 kPa in Figure 6), a deposit appears on the membrane even when the flux 
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is already clearly limited. The possible link with the appearance of a gel layer is discussed 

below. In the other case, i.e. for a particulate colloid, the transition is directly correlated to the 

appearance of a cake resistance at the outlet of the membrane channel. This transition between a 

no-fouling zone (permeate flux equal to water flux) and the limiting flux (flux invariant with 

TMP) is very sharp.  

These first results show how the model is able to describe the flux reduction due to 

concentration polarization, to irreversible fouling and to cake formation and the transition 

between these regimes.  

Formation of irreversible fouling: concepts of critical flux and critical Péclet number 

To go further in the analysis, let us take a closer look at the way irreversible fouling can 

appear locally on the membrane. For this purpose, we define the critical flux as the flux for 

which an irreversible deposit begins to appear somewhere on the membrane surface, indicated by 

arrows and the vertical dashed line in Figures 6 and 7. For large and stable colloids, we note by 

comparing Figures 7a and 7b that the transition between the non-fouling condition and the quasi-

limiting flux is linked with the occurrence of the critical flux. In this case, the concept of critical 

flux represents both the first local appearance of irreversible fouling and the average flux above 

which fouling would be rapid. It should be noted that the average flux may increase beyond the 

critical flux. This can be analyzed through Figure 9, where the local permeate flux is plotted as a 

function of x, the axial coordinate of the membrane channel, for different TMP's from previous 

results. As illustrated by the loss in permeate flux, the deposit begins to form near the outlet of 

the channel, where hydrodynamic conditions are unfavorable and the accumulation is maximum. 

With increasing TMP, the deposit progressively spreads and finally reaches the entrance of the 

membrane channel. Gourgues, Aimar & Sanchez (1992) already suggested this mechanism for 

cake formation after visual observations of clay deposits on outer-skinned hollow fibers and 

previous models have predicted this behavior. It should be noted that deposits can be formed 
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near the module inlet when there is an important pressure drop along the membrane. An 

important point of the present model is that particle fouling by a growing cake can be seen as the 

natural continuation of concentration polarization. 

In the case of a macromolecular colloid, i.e. small particles, the flux limitation mainly results 

from concentration polarization creating an osmotic pressure difference: the flux is limited by 

osmotic pressure before TMP is high enough for the critical flux to be reached. The local critical 

flux for a TMP around 20 kPa (black squares in Figure 8) appears all along the membrane at the 

same TMP. At this point any further increase in pressure will not increase the steady state 

average flux, but will induce an additional irreversible phase change. In this case, the limiting 

flux is almost equal to the critical flux value.  

As already noted (Bacchin et al., 1995) and confirmed here by simulation, the critical flux is 

thus a local concept and is reached for different TMP at different positions along the membrane 

channel. It is therefore more appropriate to introduce a local Péclet number: 

b

w

D
xxV )()(Pe δ

=  (24) 

Where Vw and δ are respectively the local permeate flux and boundary layer thickness at a 

given distance x from the inlet to the membrane channel. The value of the boundary layer 

thickness is calculated by integration of Eq. 14: 

φ
φ
φ

=δ ∫
φ

φ

dD
V

w

bw

)(1  (25) 

The Péclet number represents the ratio of convective transport Vw to diffusive transport D/δ in 

the boundary layer. The variation of this number along the membrane is represented in Figures 

10 and 11 for data corresponding to distribution of permeate flux already plotted in Figures 8 and 

9. Note that the distribution of critical flux along the membrane due to hydrodynamics is here 

represented by a constant Péclet number (the "critical" value Pecrit). For small colloids, in the 

absence of an irreversible layer, the Péclet number is almost constant along the membrane, 
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because of the concentration polarization phenomena which already limit the permeate flux. So 

the range of TMP for which the irreversible deposit appears over the whole membrane surface is 

very narrow. The critical value for the Péclet number is reached at different points along the 

membrane at about the same TMP. This justifies the idea of a critical pressure. On the other 

hand, in the case of large colloids, in the absence of irreversible fouling, the flux is almost 

uniform along the membrane surface because of negligible osmotic effects. So the Péclet number 

increases with x because of the increasing thickness of the boundary layer. Thus the critical Pe is 

first reached at the outlet of the channel creating a initial unfouled zone followed by a zone with 

irreversible fouling. The concept of critical Péclet number is of importance for the understanding 

and the engineering of colloidal filtration as the transition between concentration polarization 

and cake formation along the membrane surface can be quantified by a single parameter. These 

considerations must be limited to cases where membrane-suspension and cake-suspension 

interactions are similar: otherwise there may be one critical Péclet for forming the first 

monolayer of cake and a different critical Péclet number for cake growth, thus giving more 

complex behavior during filtration. 

To summarize, an important difference between macromolecular and particulate irreversible 

fouling arises from the way the cake appears in the membrane device:  

• in the case of particles ("large" colloids), when the TMP is increased, the cake appears 

gradually from the outlet to the inlet of the membrane channel leading to a progressive rise in 

flux from the first local critical flux to the overall limiting flux. On the other hand, the 

transition between limitation by membrane resistance and limitation by cake formation is 

very sharp. Thus for a large colloid, cake formation (assimilated in the next section to 

particle deposition) is a gradually spreading distribution of fouling with a sharp transition 

from non-fouling to fouling conditions.  

• in the case of macromolecules (small colloids) when TMP is increased the phase transition 
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appears simultaneously on the whole membrane surface but with a transition between fouling 

mechanisms smoother than in the case of big particles. The gel layer formation, as defined in 

next section, is then characterized by a smooth transition between non-limited and limited 

flux induced by concentration polarization limitation, leading to a simultaneous widespread 

irreversible fouling. 

In this approach, osmotic pressure appears to be a key property. It affects the flux (as 

traditionally accepted via eq. 1) but it also controls the mass accumulation through the variation 

in diffusivity (eq. 4). For large particles having little osmotic effect, osmotic pressure still plays 

an important role as it determine the phase transition and so affects the critical flux for 

irreversible fouling. 

Analysis of transport phenomena implied in the fouling  

The approach adopted in this work underlines important differences in the mechanisms 

responsible for membrane fouling depending on the size of the colloid filtered. A more detailed 

analysis of the importance of each transport phenomenon involved in the fouling can be 

instructive. 

Figure 12 summarizes the links between driving forces (permeation, entropic diffusion, 

attractive and repulsive colloidal interaction) and mechanisms implied in the fouling 

(concentration polarization, gel formation and deposition). First, transport phenomena can be 

classified into three categories: 

• the driving phenomenon for fouling is permeation. At the same time, it is essential for the 

separation and can be seen as the separation force. This antagonism explains the fact that 

pressure driven membrane separation can never be performed without mass accumulation. 

• the regulating phenomenon, such as entropic diffusion or repulsive colloidal interaction, 

limits fouling. These phenomena can be seen globally as mixing effects, in contrast with the 

demixing (separating) effect of permeation. 
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• the irreversible phenomenon, attractive interaction, emphasizes fouling and introduces an 

irreversible character. This third category of transport phenomena is responsible for the 

liquid/solid transition leading to the deposition of particles and can be seen as a "reaction" 

from liquid to solid phase. 

Conditions for fouling are the result of a physical combination of these transport phenomena. 

Concentration polarization is a totally reversible mass accumulation at the membrane surface. 

This mechanism implies a balance between a driving and a regulating phenomenon and does not 

bring into play attractive interactions between the solute in solution and the solute already 

deposited. The regulating phenomenon for small particles can be entropic diffusion which is 

associated with an osmotic pressure comparable to the driving TMP. In this case, concentration 

polarization reduces permeate flux below the pure water flux (see Figure 6, below the critical 

flux). For large colloids or very concentrated macromolecular solutions, concentration 

polarization is a balance between permeation and repulsive interaction. But the osmotic pressure 

here is very low and filtration below the limiting flux is essentially limited by the membrane 

resistance. To summarize, for large colloids, concentration polarization does occur but it has 

hardly any effect on filtration because of the low value of osmotic pressure. 

If the colloidal system exhibits attractive interaction for small inter-particle distances (i.e. 

high volume fraction) and if the driving force is high enough, surface attraction between solute 

in solution and solute already deposited leads to an irreversible fouling phase (liquid to solid 

transition). At this point, two cases can be considered depending on the nature of regulating 

phenomenon: 

• If repulsive interaction is dominant (large colloids – right-hand side of Figure 12), the high 

concentration of repulsive colloid at the membrane surface should lead to an orderly 

organization of particles in the polarized layer according to Russel, Saville & Schowalter 

(1989). The liquid/solid transition would occurs if the volume fraction exceeds the critical 
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value, would then create a relatively compact and organized deposit at the membrane surface. 

One might imagine this as a "ballistic" deposition mechanism with contacts resulting from 

linear trajectories (Chapter 6.4 in Elimelech, Gregory, Jia & Williams, 1995); these linear 

trajectories would arise from the oriented nature of diffusion in ordered suspensions 

(collective diffusion).  

• In the opposite case, the importance of entropic diffusion will create a disordered solid phase 

formed under totally attractive interaction. Each contact between solute in suspension and 

solute deposited on the membrane will result in a liquid/solid transition. Moreover, because 

of Brownian diffusion, contacts will occur in all directions. The result is a "dendritic" layer 

leading to a loose deposit, usually called a gel. It is clear that between these extreme cases 

there can exist situations intermediate between gel and deposit, depending on the physico-

chemical properties of the filtered media. 

Figure 12 brings these ideas together in a simple form. It can be seen as an operating diagram 

where fouling mechanisms are located as a function of the driving force and the colloid size 

(and/or intensity of surface interaction), where four areas appear: concentration polarization, gel 

layer, non-fouling and deposition (Figure 13). Globally, the driving force can, if high enough, 

give rise to irreversible phenomena. The colloid size (or more generally its physico-chemical 

properties) plays a role in the way the deposit is formed at the membrane surface (gel formation 

and deposition). The transition between reversible and irreversible fouling and its effect on flux 

is increasingly sharper as the colloid size increases (as illustrated by the gray gradation in Figure 

13). With the engineering aspect in mind, it would be interesting to determine exact transitions 

between these fouling mechanisms whose consequences for the process are radically different. 

For example from Figure 6, one has to limit the TMP to 20 kPa to prevent the formation of a 

strongly irreversible gel layer. Such a transition depends on physico-chemical properties such as 

ionic strength or zeta potential. It is then possible to determine a critical Péclet number to 
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characterize the transition between non-fouling and deposition. Our objective in future work will 

be to use the model to delimit quantitatively the border shown in Figure 13 as a function of the 

physico-chemical properties of the suspension and operating conditions. 

Limiting and critical flux 

The limiting flux is the maximum stationary flux obtained when increasing TMP. As discussed 

in the previous section, consideration of the transport phenomena involved in fouling makes it 

possible to distinguish two kinds of limiting fluxes: limiting flux controlled by entropic diffusion 

(LFED) and limiting flux controlled by surface repulsion (LFSR). Unlike the limiting flux, the 

critical flux is a criterion for the transition between concentration polarization and fouling, i.e. 

when attractive interaction occurs between colloids near the membrane (critical flux for surface 

attraction CFSA). The critical flux is reached when irreversible fouling occurs at a certain point 

on the membrane, whereas the limiting flux is reached when the whole membrane surface 

operates at the critical flux. Experimentally, the critical flux can only be measured by having 

each step up in TMP followed by a smaller step down so as to detect the first irreversibility in the 

system; in comparison, the limiting flux is easy to measure. But the critical flux can provide 

more information on fouling and on the way the process has to be run. Whereas solute 

accumulation can never be totally eliminated from a filtration process, irreversible fouling can be 

avoided if the process is run below the critical flux. This possibility opens up interesting 

perspectives for the filtration of stable colloids exhibiting low osmotic pressure. 

CONCLUSIONS 

The model presented and discussed in this paper is capable of accounting for concentration 

polarization, gel-layer formation and particle deposition and depicting the continuity between the 

major fouling mechanisms involved in ultrafiltration of colloidal suspensions. It shows that a 

single theoretical approach is capable of covering a wide range of suspension sizes and of cross 
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flow situations. Basic transport phenomena, such as convection and diffusion (with colloidal 

interactions and their concentration dependence taken into account) are sufficient to create a 

realistic description of concentrated suspensions without introducing any adjustable parameters, 

such as an a priori value for the gel concentration. In the present model, colloidal interaction acts 

both on transport phenomena (diffusive properties of the suspension) and on the interface 

process of cake formation. This complexity of colloidal suspensions allows a physically realistic 

description of mass accumulation (by separation and mixing in a boundary layer) and liquid/solid 

transition (by "reaction" at the membrane surface). In particular, the variation of osmotic 

pressure with the volume fraction of the suspension seems to be a key element for the fouling 

model, as it specifies the condition for liquid/solid transition, i.e. the formation of a gel layer or 

deposit. This two-dimensional simulation allows realistic suspension physics to be combined 

with an accurate representation of hydrodynamics.  

Through simulation, the local permeate flux and the 2D concentration distribution may be 

visualized. Variation of stationary flux with transmembrane pressure (TMP) clarifies the 

contribution of membrane resistance, concentration polarization and irreversible layer formation 

to limiting the flux for different sizes of colloids. The relative importance of these different 

effects is found to depend on the operating conditions (such as TMP) and the suspension 

properties (colloid size and physico-chemical parameters). The model shows its capacity to 

describe the continuous transition from concentration polarization to cake formation by seeing 

cake formation in a feed-back relationship with the concentration polarization: the cake layer is 

formed when the volume fraction at the membrane exceeds a critical value corresponding to a 

maximum in osmotic pressure and the cake formation causes a decline in flux until concentration 

returns to the critical value. Physically, the attractive colloidal interaction between particles 

(cause of the drop in osmotic pressure at high concentration) is shown to be responsible for the 

coagulation of particles on the membrane giving an irreversible solid layer. This irreversible 
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layer is seen to appear in the membrane device for a critical Péclet number which is constant 

along the membrane surface, as this dimensionless number takes into account the difference in 

hydrodynamic conditions. It thus appears as a key parameter for engineering the process. The 

following distinction is made between two mechanisms for the formation of irreversible layers:  

• The gelation mechanism: formation of loose layer with a low fractal dimension, appearing 

simultaneously across the membrane surface. 

• The deposition mechanism: formation of a compact ordered deposit growing progressively 

from the outlet to the inlet of the membrane device. 

From the numerical tools provided by the model and the better understanding of fouling that it 

allows, tools for process optimization must now developed. As an example, precise 

determination of the border between fouling mechanisms can help in choosing operating 

conditions within the reversible accumulation zone. Here the critical Péclet number is obviously 

a key parameter for engineering the process. On the other hand, our speculations about gel or 

deposit formation need to be checked experimentally and could open up interesting perspectives 

for understanding the structure of deposit layers. 
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APPENDIX 

The osmotic pressure of a suspension of interacting colloidal particles is considered as the 

sum of entropic, electrostatic and van der Waals contributions, which are evaluated by using a 

cell model.  

The entropic contribution due to the particle distribution is approximated by Hall's (1972) 

equation for hard spheres: 
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In the low-concentration limit, the traditional van't Hoff equation is obtained.  

The van der Waals contribution is obtained by differentiating the van der Waals free energy 

with respect to the number of solvent molecules; this gives (Jönsson & Jönsson, 1996): 
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where zn is the number of neighboring particles in the cell lattice (12 in the case of a 

hexagonal lattice) and A is the Hamaker constant. 

When interacting particles are charged, electrostatic interactions occurs between particles. 

Their contribution is included in the osmotic pressure calculation using the Wigner-Seitz cell 

approach and solution of the Poisson-Boltzmann equation. Bowen & Jenner (1995) derive the 

following relationship: 
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where kTezζ=ζ*  is the reduced zeta potential, κ the Debye-Hückel parameter, NA 

Avogadro's number and I the ionic strength.  
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NOMENCLATURE 

A Hamaker constant, M.L2.T-2  

a particles or macromolecules radius; L  

D diffusion coefficient, L2.T-1 

f friction factor  

H Happel correction for sedimentation velocity 

J Mean permeate flux, L.T-1 

k Boltzman constant, M.L2.T-2.K-1 
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P pressure, M.L-1.T-2 

Q flow rate, L3.T-1 

R membrane channel radius, L 

m mobility of particle or macromolecule, M-1.T 

Rc hydraulic resistivity of deposit, L-1 

Rm hydraulic resistivity of membrane, L-1 

T temperature, K 

u axial velocity, L.T-1 

vw local permeate flux at the wall, L.T-1 

Vp Particle or macromolecule volume, L3 

x axial direction in the membrane channel, L 

z radial direction in the membrane channel, L 

 

Subscript 

0 inlet  

b bulk 

c critical 

cp close packed 

w  wall 

 

Greek letters 

δ diffusive boundary layer thickness, L 

φ volume fraction 

κ inverse of Debye length, L-1 

Π osmotic pressure, M.L-1.T-2 

ρ solution density, M.L-3 

μ viscosity, M.L-1.T-1 

ζ zeta potential, V 
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FIGURE CAPTIONS 

 

Figure 1. Major parameters and co-ordinates in cross-flow filtration in a cylindrical channel.  

Figure 2. Variation of the total osmotic pressure with the volume fraction. (a = 5 nm, other 

data as in Table 1).  

Figure 3. Variation of the total osmotic pressure with the volume fraction. (a = 100 nm, other 

data as in Table 1). 

Figure 4. Calculation procedure with a criterion for distinguishing cake formation from 

concentration polarization. 

Figure 5. 2D concentration profile for 100 nm suspension and TMP = 15 kPa (others 

conditions as in Table 1). The corresponding permeate flux profile is presented in Figure 9. 

Figure 6. Simulation of membrane fouling for interacting suspension of 5 nm radius: (a) mean 

permeate flux as a function of the transmembrane pressure, (b) volume fraction at the membrane 

and cake hydraulic resistance at the channel outlet as a function of TMP. 

Figure 7. Simulation of membrane fouling for interacting suspension of 100 nm radius: (a) 

Mean permeate flux as a function of the transmembrane pressure (b) Volume fraction at the 

membrane and cake hydraulic resistance at the membrane outlet plotted as a function of TMP. 

Figure 8. Permeate flux profile along the dimensionless length of the membrane channel for 5 

nm suspension. Profiles are shown for different transmembrane pressures. 

Figure 9. Permeate flux profile along the dimensionless length of the membrane channel for 

100 nm suspension. 

Figure 10. Variation of Péclet number along the dimensionless length of the membrane 

channel for 5 nm suspension. Profiles are shown for different transmembrane pressures. 

Figure 11. Variation of Péclet number along the dimensionless length of the membrane 

channel for 100 nm suspension.  
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Figure 12. Transport phenomena (bold characters) involved in membrane fouling and 

mechanisms (underlined characters) coupled together by transport phenomena. 

Figure 13. Diagram showing fouling mechanisms as a function of colloid size (or surface 

repulsion) and driving force (transmembrane pressure or permeate flux). 

 

TABLES 

 

Table 1. Common data set used for simulations  
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