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This paper deals with static output feedback control of a class of discrete-time Networked Control
Systems (NCSs) subject to random failures and random delays. The different random processes are
modeled as Markovian chains, and the resulting closed-loop system belongs to the class of discrete-
time Markovian Jump Linear Systems (MJLS). The main contribution is to formulate conditions for
multi-performance design related to this class of stochastic hybrid systems. The specifications and
objectives under consideration include stochastic stability, H2 and H∞ performances. Results are
formulated as matrix inequalities. A numerical algorithm is provided and its running is illustrated on
a numerical example.

Keywords: Fault Tolerant Control - Networked Systems - Markovian Jumping Parameters - Output
Feedback.

1 Introduction

Networked control systems (NCSs) are feedback control loops closed through a real time network.
That is, in NCSs, communication networks are used to exchange informations and control signals
(reference input, plant output, control input,. . .etc.) between control system components (sensors,
controllers, actuators,. . .etc). The main advantages of NCSs are low cost, reduced weight, simple in-
stallation and maintenance, and high reliability. As a result, NCSs have great potential in application
in complex advanced technological systems such as vehicles, aircrafts, spacecrafts . . .etc [30]. At the
same time, these complex systems could have various consequences in the event of component failures.
Therefore, it is very important to consider the safety and fault tolerance of such systems at the design
stage. For these safety-critical systems, Fault Tolerant Control Systems (FTCS) have been developed
to meet these essential objectives. FTCS have been a subject of great practical importance, which
has attracted a lot of interest for the last three decades. A bibliographical review on reconfigurable
fault tolerant control systems can be found in [37].
Despite the advantages and potentials, communication networks in control loops make the analysis
and design of NCSs complicated. One main issue is the network induced delays, which occur when
sensors, actuators, and controllers exchange data across the network. The delays may be constant,
time-varying, and in most cases, random. It is known that the occurrence of delay degrades the
stability and control performances of closed-loop control systems. In [22], the stability analysis and
control design of NCSs were studied when the network-induced delay at each sampling instant is ran-
dom and less than one sampling time. In [36], the stability of NCSs was analyzed by a hybrid system
approach when the induced delay is deterministic (constant or time-varying) and the controller gain
is constant; and in [20], a switched system approach was used to study the stability of NCSs. In
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[33], the maximum of the network-induced delay preserving the closed-loop stability for a given plant
and controller was considered. In [32], the network-induced delay is assumed to be time-varying and
less than one sampling time. It is noticed that in all the aforementioned papers, the plant is in the
continuous-time domain. For the discrete-time case, in [19] and [31], the network-induced random de-
lays were modeled as Markov chains such that the closed-loop system is a jump linear system with one
mode. The class of Markovian jump linear systems (MJLS) has attracted increasing attention in the
recent literature. Markovian jump systems are those having transition between models determined by
a Markov chain. It is very appropriate to model plants whose structures are subject to random abrupt
changes due to component failures or repairs, sudden environmental changes, abrupt variations of the
operating point of a nonlinear plant, changing subsystem interconnections, and so on. The theory of
stability, optimal control and H2/H∞ control, as well as important applications of such systems, can
be found in several papers in the current literature, for instance in [4, 5, 6, 8, 10, 11, 12, 13, 15, 16]
for continuous-time case, and [9] for the discrete-time case. Fault tolerant control issues were also
considered in the same framework, for instance in [1, 2, 3, 21, 25, 26, 28].
On the other hand, one of the most challenging open problems in control theory is the synthesis of
fixed-order or static output feedback controllers that meet desired performances and specifications
[29]. Among all variations of this problem, this note is concerned with the problem of static output
feedback control of discrete-time NCSs. This problem is addressed under a MJLS framework. Most
of the developed results in the field of MJLS control are obtained under the restrictive assumption
of control with complete state observation (Markov and system states). However, the access to the
system mode may not be possible in some circumstances, which limits the use of such controllers. For
instance, if the changes in the Markov chain are associated to failures of components of non-critical
significance, or more generally if some changes are difficult to measure, it is quite possible that the
associated Markov states are not accessible to controller. To design mode-independent controllers,
two approaches can be adopted. The first one employs a constant Lyapunov function, which makes
the design problem formulated as a linear matrix inequality (LMI) problem. The second one uses
mode-dependent Lyapunov function and therefore leads to less conservative results. To the best of our
knowledge, to date the problem of mode-independent output-feedback H2/H∞ control of discrete-
time NCSs has not yet been fully addressed. Our approach belongs to the class of methods that use
mode-dependent Lyapunov functions.
This paper is organized as follows: Section 2 describes the dynamical model of the system with appro-
priately defined random processes. A brief summary of basic stochastic terms, results and definitions
are given in Section 3. Section 4 addresses the stochastic stabilization of NCSs. Sections 5 considers
the H2/H∞ control problem for the output feedback. In Section 6, a numerical algorithm based on
nonconvex optimization is provided and its running is illustrated on a classical example from litera-
ture. Finally, a conclusion is given in Section 7.
Notations. The notations in this paper are quite standard. Rm×n is the set of m-by-n real matrices.
A′ is the transpose of the matrix A. The notation X ≥ Y (X > Y , respectively), where X and Y
are symmetric matrices, means that X −Y is positive semi-definite (positive definite, respectively); I

and 0 are identity and zero matrices of appropriate dimensions, respectively; E{·} denotes the expec-
tation operator with respect to some probability measure P ; L2[0,∞) stands for the space of square-
summable vector functions over the interval [0,∞); ‖ · ‖ refers to either the Euclidean vector norm or
the matrix norm, which is the operator norm induced by the standard vector norm; ‖ · ‖2 stands for
the norm in L2[0,∞); while ‖ · ‖E2

denotes the norm in L2((Ω,F , P ), [0,∞)); (Ω,F , P ) is a probability

space. In block matrices, ⋆ indicates symmetric terms:

[
A B
B′ C

]
=

[
A ⋆
B′ C

]
=

[
A B
⋆ C

]
.
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2 System Modeling

Consider the following class of dynamical systems in a given fixed complete probability space (Ω,F , P ):

ϕ :






xk+1 = Ax(ηk)xk + Bu(ηk)u(yk, k) + Bw(ηk)wk

yk = Cyxk

zk = Cz(ηk)xk + Dz(ηk)u(yk, k)

(1)

where xk ∈ Rn is the system state, u(yk, k) ∈ Rr is the system input, yk ∈ Rq is the system measured
output, wk ∈ Rm is the system external disturbance which belongs to L2[0,∞), zk is the controlled
output which belongs to L2((Ω,F , P ), [0,∞)) and {ηk, k ≥ 0} denotes the state of the random process
describing the failures. It is assumed that ηk is a measurable discrete-time Markov process taking
values on a finite set i = {1, . . . , ν}. For the failure process ηk, the known one-step transition
probability from state i to state l (i, l ∈ i) is given by αil, i.e.

αil = P{ηk+1 = l | ηk = i} (2)

It is also assumed that there are random but bounded delays from the sensor to the controller

Plant

Random Delays

Controller

ku kz ky

cky

Figure 1: Control over networks

(Figure–1). The mode-independent static output feedback control law is

ϕs :
{

u(yk, rsk, k) = Kyck = KCyxk−rsk
(3)

where {rsk} is a bounded random integer sequence with 0 ≤ rsk ≤ ds < ∞, and ds is the finite delay
bound.
If we augment the state variable

x̃k = [x′

k x′

k−1 . . . x′

k−ds
]′

where x̃k ∈ R(ds+1)n, then the closed-loop system is given by

ϕcl :






x̃k+1 =
(
Ãx(ηk) + B̃u(ηk)KC̃y(rsk)

)
x̃k + B̃w(ηk)wk

yk = C̃y(rsk)x̃k

zk =
(
C̃z(ηk) + Dz(ηk)KC̃y(rsk)

)
x̃k

(4)

where

Ãx(ηk) =





Ax(ηk) 0 . . . 0 0

I 0 . . . 0 0

0 I . . . 0 0
...

...
. . .

...
...

0 0 . . . I 0




, B̃u(ηk) =





Bu(ηk)
0

0
...
0




, B̃w(ηk) =





Bw(ηk)
0

0
...
0
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C̃y(rsk) =
[

0 . . . 0 Cy 0 . . . 0
]

C̃z(ηk) =
[

Cz(ηk) . . . 0 0 0 . . . 0
]

and C̃y(rsk) has all elements being zero except for the (rsk + 1) − th block being the matrice Cy.
One of the difficulties with this approach is how to model the rsk sequence. One way is to model
the transitions of the random delays rsk as a finite state Markov process where rsk ∈ S = {0, . . . , ds}
[19, 31, 35]. In this case we have

P{rs(k+1) = j | rsk = i} = pij (5)

where 0 ≤ i, j ≤ ds. This model is quite general, communication package loss in the network can be
included naturally as explained below [31]. The assumption here is that the controller will always use
the most recent data. Thus, if we have y(k−rsk) at step k, but there is no new information coming at
step k + 1 (data could be lost or there is a longer delay), then we at least have y(k−rsk) available for
feedback. So, in our model of the system in Figure 1, the delay rsk can increase at most by 1 each
step, and we constrain

P{rs(k+1) > rsk + 1} = 0

However, the delay rsk can decrease as many steps as possible. Decrement of rsk models communica-
tion package loss in the network, or disregarding old data if we have newer data coming at the same
time. Hence the structured transition probability matrix is

Ps =





p00 p01 0 0 . . . 0
p10 p11 p12 0 . . . 0
...

...
...

...
. . .

...
...

...
...

...
... p(ds−1)ds

pds0 pds1 pds2 pds3 . . . pdsds




(6)

where

0 ≤ pij ≤ 1 and

ds∑

j=0

pij = 1 (7)

because each row represents the transition probabilities from a fixed state to all the states. The
diagonal elements are the probabilities of data coming in sequence with equal delays. The elements
above the diagonal are the probabilities of encountering longer delays, and the elements below the
diagonal indicate package loss or disregarding old data.

3 Definitions and Basic Results

In this section, we will first give some basic definitions related to stochastic stability notions and then
we will summarize some results about stochastic stabilizability of the discrete-time NCS subject to
random failures and delays.
We introduce the following stability definition for discrete-time jump linear systems.
Definition 1. The system (4) with uk ≡ 0, wk ≡ 0, is said to be stochastically stable (SS), if for
every initial state (x̃0, rs0, η0), the following holds:

E

{
∞∑

k=0

‖ x̃k(x̃0, rs0, η0) ‖
2| x̃0, rs0, η0

}
< ∞ (8)

The following proposition gives a necessary and sufficient condition for the (SS) of system (4).
Proposition 1. The following statements are equivalent:

i) System (4) is stochastically stabilizable by ϕs;
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ii) The matrix inequalities

Ā′
ijP̄ijĀij − Pij = ijג < 0, ∀i ∈ i, j ∈ S. (9)

are feasible for some matrices K and Pij > 0, where

Āij = Ãxi + B̃uiKC̃yj ; P̄ij =

ds∑

v=1

pjv

ν∑

m=1

αimPmv

iii) For any given Q = (Q11, . . . ,Qij , . . . ,Qνds
) with Qij > 0, there exist a unique

P = (P11, . . . ,Pij , . . . ,Pνds
) with Pij > 0 satisfying the following coupled Lyapunov equations

Ā′
ijP̄ijĀij − Pij + Qij = 0 ∀i ∈ i, j ∈ S. (10)

¤

Proof. The proof of this proposition follows the same lines as for the proof of stability results in
[9, 34], except here we consider two Markovian processes, while in the aforementioned references, the
authors consider a single Markov process. ¥

3.1 Matrix Ellipsoids

Through this note, a particular set of matrices is used. Due to the notations and by extension of the
notion of Rn ellipsoids, these sets are referred to as matrix ellipsoids of R(m×p).
Definition 2. [23, 24] Given three matrices X ∈ Sq, Y ∈ Rq×r and Z ∈ Sr, the {X, Y, Z}-ellipsoid of
Rr×q is the set of matrices K satisfying the following matrix inequalities:

Z > 0;
[

I K′
] [

X Y

⋆ Z

] [
I

K

]
≤ 0 (11)

By definition, K0 = −Z−1Y′ is the center of the ellipsoid and R = K′
0ZK0−X is the radius. Inequality

(11) can also be written as
Z > 0; (K −K0)

′
Z(K −K0) ≤ R (12)

This definition shows that matrix ellipsoids are special cases of matrix sets defined by quadratic matrix
inequality. Some properties of these sets are:

i) A matrix ellipsoid is a convex set ;

ii) the {X, Y, Z}-ellipsoid is nonempty iff the radius (R ≥ 0) is positive semi definite. This property
can also be expressed as

X ≤ YZ
−1

Y
′ (13)

4 Stochastic Stabilization

In this section, we shall address the problem of finding all static compensators (ϕs), as defined in
section 2, such that the closed loop system (ϕcl) becomes stochastically stable. To this end, we use
proposition 1 and the idea of synthesizing convex sets of controllers [23, 24] to get the following
necessary and sufficient conditions for the (SS) of the system (4).
Proposition 2. System (4) is stochastically stabilised by static output-feedback compensator (ϕs) if
and only if there exists matrices Pij = P ′

ij > 0, X ∈ Sq, Y ∈ Rq×r and Z = Z′ > 0 that simultaneously
satisfy the following LMI constraints

[
I 0

Ãxi B̃ui

]′ [
−Pij 0

⋆ P̄ij

] [
I 0

Ãxi B̃ui

]
<

[
C̃yj 0

0 I

]′ [
X Y

⋆ Z

] [
C̃yj 0

0 I

]
(14)
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and the nonlinear inequality constraint
X ≤ YZ

−1
Y
′ (15)

∀i ∈ i, j ∈ S.
Let {Pij , X, Y, Z} be a solution, then the nonempty {X, Y, Z}-ellipsoid is a set of stabilizing gains.¤
Proof.

Sufficiency. Assume that the constraints (14)-(15) are satisfied for some {Pij , X, Y, Z} matrices.
Due to the properties of matrix ellipsoids, the {X, Y, Z}-ellipsoid is nonempty. Take any element K.
The LMI (14) implies that for all

(
x̃′

k u′

k

)
6= 0

(
x̃k

Ãxix̃k + B̃uiuk

)′ [
−Pij 0

⋆ P̄ij

](
x̃k

Ãxix̃k + B̃uiuk

)
<

(
C̃yj x̃k

uk

)′ [
X Y

⋆ Z

](
C̃yj x̃k

uk

)
(16)

Definition 2 implies that for all nonzero trajectories

x̃′

kגij x̃k < y′k
[

I K′
] [

X Y

⋆ Z

] [
I

K

]
yk ≤ 0 (17)

∀i ∈ i and j ∈ S.
Then, the closed-loop stochastic stability is assessed by proposition 1 for the quadratic stochastic
Lyapunov function ϑ(ηk, rsk) = x̃′

kP(ηk, rsk)x̃k.
Necessity. Assume K is a stabilizing static output feedback gain and ϑ(ηk, rsk) = x̃′

kP(ηk, rsk)x̃k is
a stochastic Lyapunov function. Then from proposition 1, we have

[
KC̃yj −I

] (
x̃k

uk

)
= 0 ⇒

(
x̃k

uk

)′ [
I 0

Ãxi B̃ui

]′ [
−Pij 0

⋆ P̄ij

] [
I 0

Ãxi B̃ui

](
x̃k

uk

)
< 0

(18)
∀i ∈ i and j ∈ S.
Applying the well known Finsler Lemma [27], there exist scalars τij such that
[

I 0

Ãxi B̃ui

]′ [
−Pij 0

⋆ P̄ij

] [
I 0

Ãxi B̃ui

]
< τij

[
KC̃yj −I

]
′
[
KC̃yj −I

]
≤ ε

[
KC̃yj −I

]
′
[
KC̃yj −I

]

(19)

where ε = max
i,j

(τij). The inequality (15) is obtained with

X = εK′K, Y = −εK′, Z = εI

From (19) we have 0 < Z. Hence the proof is complete. ¥

5 The Control Problem

5.1 H∞ Control

Let us consider the system (1) with

zk = z∞k = C∞(ηk)xk + D∞(ηk)u(yk, k)

z∞k stands for the controlled output related to H∞ performance.
In this section, we deal with the design of controllers that stochastically stabilize the closed-loop
system and guarantee the disturbance rejection, with a certain level γ∞ > 0. This problematic is
addressed under a nonconvex optimization framework.
In order to put the H∞ control problem in a stochastic setting, we bring to bear the space
L2((Ω,F , P ), [0,∞)) of F-measurable processes, z∞k, for which

‖ z∞ ‖E2
= E

{
∞∑

k=0

z′∞kz∞k

}1/2

< ∞

The stochastic H∞ control problem can be stated as follows:
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For a given level on the H∞ norm, γ∞, find a stabilizing static output feedback gain K such that

E

{
∞∑

k=0

z′∞kz∞k

}
< γ2

∞

∞∑

k=0

w′

kwk (20)

i.e.
‖ z∞ ‖E2

< γ∞ ‖ w ‖2

In this situation, the closed loop system (4) is said to have an H∞ performance level γ∞ over
[0,∞).

Before introducing our result on H∞ control for this class of stochastic hybrid systems, let us consider
the following proposition which is obtained as a special case of the bounded real lemma of discrete
time Markovian jump linear systems [34].
Proposition 3. The system (4) is stochastically stable and ‖ ϕcl ‖∞< γ∞ if there exist a matrix K
and symmetric matrices Pij > 0 satisfying the following coupled matrix inequalities

[
Ā′

ijP̄ijĀij − Pij + C̄ ′
∞ijC̄∞ij Ā′

ijP̄ijB̃wi

⋆ −(γ2
∞I − B̃′

wiP̄ijB̃wi)

]
< 0 (21)

where
C̄∞ij = C̃∞i + D∞iKC̃yj

¤

Now, we are in position to give the result on the solvability of the H∞ static output feedback control
problem. Indeed, proposition 4 gives a nonlinear matrix inequalities characterization of static output
feedback compensator (ϕs) that stochastically stabilize the closed loop system (4) and ensures (20).
Proposition 4. If there exists matrices P∞ij = P ′

∞ij > 0, X ∈ Sq, Y ∈ Rq×r and Z = Z′ > 0 that
simultaneously satisfy the following LMI constraints

M
′
1i

[
−P∞ij 0

⋆ P̄∞ij

]
M1i < M

′
2i

[
−I 0

0 γ2
∞I

]
M2i + M

′
3j

[
X Y

⋆ Z

]
M3j (22)

and the nonlinear inequality constraint
X ≤ YZ

−1
Y
′ (23)

∀i ∈ i, j ∈ S, where

M1i =

[
I 0 0

Ãxi B̃wi B̃ui

]
, M2i =

[
C̃∞i 0 D∞i

0 I 0

]
, M3j =

[
C̃yj 0 0

0 0 I

]

then the {X, Y, Z}-ellipsoid is a set of stabilizing gains such that

‖ z∞ ‖E2
< γ∞ ‖ w ‖2

¤

Proof. The proof of this proposition follows the same arguments as for the proof of proposition 2.¥

5.2 H2 Control

Before introducing the main results of this section, let us consider the following definition which
represents a generalization of the H2-norm of discrete-time Markovian jump linear systems [7].
Let us consider the system (1) with

zk = z2k = C2(ηk)xk + D2(ηk)u(yk, k)
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z2k stands for the controlled output related to H2 performance.
Definition 3. We define the H2-norm of the (SS ) system (ϕcl) as

‖ ϕcl ‖
2
2=

m∑

d=1

∑

i,j

‖ z2d,i,j ‖
2
E2

where z2d,i,j represents the output sequence (z20, z21, . . .) when :

a) the input sequence is given by w = (w0, w1, . . .), w0 = ed, wk = 0, k > 0, ed ∈ Rm is the unitary
vector formed by one at the d-th position and zero elsewhere;

b) η0 = η1 = i, rs0 = rs1 = j.

From the definition above and using the same arguments as in [7], we can state the following corollary.
Corollary 2. Assume that (ϕcl) is (SS ) then

i) ‖ ϕcl ‖
2
2=

∑
i,j tr(B̃′

wiPoijB̃wi), where Po = {Po11, . . . ,Poνds
} denotes the observability Gram-

mian, i.e., Poij are the unique positive semi definite solutions of the following equations

Ā′
ijP̄oijĀij −Poij + C̄ ′

2ijC̄2ij = 0 (24)

∀i ∈ i and j ∈ S.

ii) ‖ ϕcl ‖
2
2<

∑
i,j tr(B̃′

wiP2ijB̃wi), where P2ij is a positive definite solution of the following matrix
inequality

Ā′
ijP̄2ijĀij −P2ij + C̄ ′

2ijC̄2ij < 0 (25)

∀i ∈ i and j ∈ S.

iii) If there exists positive definite matrices P2ij and a matrix K such that

∑

i,j

tr(B̃′
wiP2ijB̃wi) < γ2

2

Ā′
ijP̄2ijĀij −P2ij + C̄ ′

2ijC̄2ij < 0

∀i ∈ i and j ∈ S, then K is a stabilizing gain such that ‖ ϕcl ‖2< γ2.

♦

Using the same framework as for the stochastic stabilization and the H∞ control problematic, similar
H2 control results are obtained and summarized as follows:
Proposition 5. If there exists matrices P2ij = P ′

2ij > 0, X ∈ Sq, Y ∈ Rq×r and Z = Z′ that
simultaneously satisfy the constraints

X ≤ YZ
−1

Y
′ (26)

∑

i,j

tr(B̃′
wiP2ijB̃wi) < γ2

2 (27)

N
′
1i

[
−P2ij 0

⋆ P̄2ij

]
N1i < −N

′
2iN2i + N

′
3j

[
X Y

⋆ Z

]
N3j (28)

∀i ∈ ,ג j ∈ S, where

N1i =

[
I 0

Ãxi B̃ui

]
, N2i =

[
C̃2i D2i

]
, N3j =

[
C̃yj 0

0 I

]

then the {X, Y, Z}-ellipsoid is a set of stabilizing gains such that ‖ ϕcl ‖2< γ2. ¤

Proof. The proof of this proposition follows the same arguments as for the proof of proposition 2.¥
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5.3 Multi-Objective Synthesis

The multi-objective synthesis problem consists in finding a common controller that stochastically
stabilizes the system and ensures the different performance levels. This can be stated as follows:

For two given levels on the H∞ and H2 norms, γ∞ and γ2 respectively, find a stabilizing static
output feedback gain K such that

‖ z∞ ‖E2
< γ∞ ‖ w ‖2

‖ ϕcl ‖2< γ2

The result is straightforward. It amounts to verify all related matrix inequality constraints.
Corollary 2. If there exists matrices P∞ij , P2ij , X ∈ Sq, Y ∈ Rq×r and Z ∈ Sr that simultaneously
satisfy the constraints (22)-(23) and (27)-(28), then the {X, Y, Z}-ellipsoid is a set of stabilizing gains
such that the performance levels are satisfied. ♦

6 Computational Issues and Example

6.1 A Cone Complementary (CCL) Algorithm

The numerical example is solved using a first order iterative algorithm. It is based on a cone comple-
mentary technique [14], that allows to concentrate the non convex constraint in the criterion of some
optimisation problem.
Lemma 1. The multi-objective control problem is feasible if and only if zero is the global optimum
of the optimisation problem 





min tr(T S)

s.t. (22), (27) − (28)

X ≤ X̂ S =

[
X̂ Y

⋆ Z

]
≥ 0

T1 ≥ I T =

[
T1 T2

⋆ T3

]
≥ 0

(29)

Proof. The proof of this Lemma follows the same arguments as in [24]. ¥

CCL algorithm. For two given levels γ∞ > 0, γ2 > 0

i) Find a feasible solution X0, Y0, Z0, X̂0, Qij0, T0, S0. If there is no solution, STOP,

the algorithm failed. h = 0;

ii) set Vh = Sh, Wh = Th, and find X(h+1), Y(h+1), Z(h+1), X̂(h+1), Qij(h+1), Th+1, S(h+1), Th+1

solutions of the LMI problem






min tr(VhT + WhS)

s.t. (22), (27) − (28)

X ≤ X̂ S =

[
X̂ Y

⋆ Z

]
≥ 0

T1 ≥ I T =

[
T1 T2

⋆ T3

]
≥ 0

(30)

iii) if tr(Th−1Sh−1 − ThSh < ε), then STOP, the algorithm failed.

iv) if X ≤ YZ−1Y′, STOP, a matrix ellipsoid is found. Otherwise, set h = h + 1 and go

to step ii).
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6.2 Numerical Example

In this section, the proposed static output feedback multi-objective control of the NCS subject to
random failures is illustrated using a VTOL helicopter model [17]. The sampling time is Ts = 0.01s,
and the random sensor delay exists in rs ∈ {0, 1}, and its transition probability matrix is given by

[pij ] =

[
0.9 0.1
0.9 0.1

]

Consider the nominal system with

Ax =





0.9996 2.70 × 10−4 1.646 × 10−4 −4.557 × 10−3

4.794 × 10−4 0.9900 −1.761 × 10−4 −0.0400
9.995 × 10−4 0.0050 0.9931 0.0252

0 0 9.965 × 10−3 1



 ,

Bu =





4.423 × 10−3 1.754 × 10−3

0.0508 −0.0755
−0.0548 0.0445

−2.749 × 10−4 2.233 × 10−3



 , Ew =





0.0100 0
0 0
0 0
0 3 × 10−3



 , Cy =
[

0 0 0 1
]
,

C∞ =

[
0 0 1 0
0 0 0 0

]
, D∞ =

[
0 0
1 0

]
, C2 =

[
0 1 0 0
0 0 0 0

]
, D2 =

[
0 0
0 1

]
.

For illustration purposes, we will consider the following faulty mode

◦ Mode 2: Total loss of the second actuator.

From above, we have that i = {1, 2}, where the mode 1 represents the nominal case. The failure
process is assumed to have Markovian transition characteristics.
The actuator failure transition probability matrix is assumed to be:

[αij ] =

[
0.9 0.1
0 1

]

Figure 2 shows the ellipsoidal set of controllers corresponding to γ2
∞ = γ2

2 = 5. The central controller
(center of the ellipsoid) is given by

K′
0 =

[
1.0575 −0.1174

]

The state trajectories of the closed loop system resulting from the discretized model and the ob-
tained controller are shown in figure 3. These trajectories represent a single sample path simulation
corresponding to a realization of the failure process ηk and the random delay process rsk. Figure 4
represents the evolution of the controlled outputs zk. It can be seen that the closed-loop system is
stochastically stable and that the disturbance attenuation is achieved.

7 Conclusion

In this paper, the static output feedback multi-objective control of discrete-time NCSs subject to
random failures and random delays was considered under the discrete-time Markovian Jump Linear
Systems framework. The specifications and objectives considered include stochastic stability, H2

and H∞ performances. The numerical resolution of the obtained results was done using a cone
complementary algorithm and its running was illustrated on a numerical example.
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Figure 2: Static output feedback ellipsoid
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