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In this paper, static output feedback stochastic stabilization and disturbance attenuation issues
for a class of discrete-time Networked Control Systems (NCSs) subject to random failures and ran-
dom delays are addressed. The different random processes are modeled as Markovian chains, and the
resulting closed-loop system belongs to the class of discrete-time Markovian Jump Linear Systems
(MJLS). Results are formulated as matrix inequalities. A numerical algorithm based on nonconvex
optimization is provided and its running is illustrated on a classical example from literature.
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1 Introduction

Networked control systems (NCSs) are feedback control loops closed through a real time network.
That is, in NCSs, communication networks are used to exchange informations and control signals
(reference input, plant output, control input,. . .etc.) between control system components (sensors,
controllers, actuators,. . .etc). The main advantages of NCSs are low cost, reduced weight, simple
installation and maintenance, and high reliability. As a result, NCSs have great potential in appli-
cation in complex advanced technological systems such as manufacturing plants, vehicles, aircrafts,
spacecrafts . . .etc [28]. At the same time, these complex systems could have various consequences
in the event of component failures. Therefore, it is very important to consider the safety and fault
tolerance of such systems at the design stage. For these safety-critical systems, Fault Tolerant Control
Systems (FTCS) have been developed to meet these essential objectives. FTCS have been a subject
of great practical importance, which has attracted a lot of interest for the last three decades. A
bibliographical review on reconfigurable fault tolerant control systems can be found in [4, 17, 34].

Despite the advantages and potentials, communication networks in control loops make the analysis
and design of NCSs complicated. One main issue is the network induced delays, which occur when
sensors, actuators, and controllers exchange data across the network. The delays may be constant,
time-varying, and in most cases, random. It is known that the occurrence of delay degrades the stabil-
ity and control performances of closed-loop control systems. In [23], the stability analysis and control
design of NCSs were studied when the network-induced delay at each sampling instant is random and
less than one sampling time. In [35], the stability of NCSs was analyzed by a hybrid system approach
when the induced delay is deterministic (constant or time-varying) and the controller gain is constant;
and in [21], a switched system approach was used to study the stability of NCSs. In [31], the maximum
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of the network-induced delay preserving the closed-loop stability for a given plant and controller was
considered. In [30], the network-induced delay is assumed to be time-varying and less than one sam-
pling time. It is noticed that in all of the aforementioned papers, the plant is in the continuous-time
domain. For the discrete-time case, in [20] and [29], the network-induced random delays were modeled
as Markov chains such that the closed-loop system is a jump linear system with one mode. The class
of linear systems with Markovian jumping parameters has attracted increasing attention in the recent
literature. Markovian jump systems are those having transition between models determined by a
Markov chain. It is very appropriate to model plants whose structures are subject to random abrupt
changes due to component failures or repairs, sudden environmental changes, abrupt variations of the
operating point of a nonlinear plant, changing subsystem interconnections, and so on. The theory of
stability, optimal control and H2/H∞ control, as well as important applications of such systems, can
be found in several papers in the current literature, for instance in [5, 6, 7, 8, 10, 12, 13, 14, 15, 18, 19]
for continuous-time case, and [9] for the discrete-time case. Fault tolerant control issues were also
considered in the same framework, for instance in [1, 2, 3, 22, 24, 25, 26].

On the other hand, one of the most challenging open problems in control theory is the synthesis of
fixed-order or static output feedback controllers that meet desired performances and specifications
[27]. Among all variations of this problem, this note is concerned with the problem of static out-
put feedback stochastic stabilization and disturbance attenuation (H∞ control) issues for a class of
discrete-time NCSs subject to random failures, random delays and/or packet loss. Results are formu-
lated as matrix inequalities with an equality constraint of the form PX = I. A numerical algorithm
based on nonconvex optimization is provided and its running is illustrated on a classical example from
literature.

This paper is organized as follows: Section 2 describes the dynamical model of the system with
appropriately defined random processes. A brief summary of basic stochastic terms, results and
definitions are given in Section 3. Section 4 addresses the stochastic stabilization and H∞ control
problematic. In Section 5, a numerical algorithm based on nonconvex optimization is provided and its
running is illustrated on a classical example from literature. Finally, a conclusion is given in Section 6.

Notations. The notations in this paper are quite standard. Rm×n is the set of m-by-n real matrices.
A′ is the transpose of the matrix A. The notation X ≥ Y (X > Y , respectively), where X and Y
are symmetric matrices, means that X − Y is positive semi-definite (positive definite, respectively);
I and 0 are identity and zero matrices of appropriate dimensions, respectively; E{·} denotes the
expectation operator with respect to some probability measure P ; L2[0,∞) stands for the space of
square-integrable vector functions over the interval [0,∞); ‖ · ‖ refers to either the Euclidean vector
norm or the matrix norm, which is the operator norm induced by the standard vector norm; ‖ · ‖2

stands for the norm in L2[0,∞); while ‖ · ‖E2 denotes the norm in L2((Ω,F , P ), [0,∞)); (Ω,F , P )

is a probability space. In block matrices, ⋆ indicates symmetric terms:

[
A B
B′ C

]

=

[
A ⋆
B′ C

]

=
[

A B
⋆ C

]

.

2 System Modeling

Consider the following class of dynamical systems in a given fixed complete probability space (Ω,F , P ):

ϕ :







xk+1 = A(ηk)xk + Bu(ηk)u(yk, k) + Bw(ηk)wk

yk = Cyxk

zk = Cz(ηk)xk + Dz(ηk)u(yk, k)

(1)

where xk ∈ Rn is the system state, u(yk, k) ∈ Rr is the system input, yk ∈ Rq is the system measured
output, wk is the system external disturbance which belongs to L2[0,∞), zk is the controlled output
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which belongs to L2((Ω,F , P ), [0,∞)) and {ηk, k ≥ 0} denotes the state of the random process
describing the failures. It is assumed that ηk is a measurable discrete-time Markov process taking
values on a finite set i = {1, . . . , ν}. For the failure process ηk, the known one-step transition
probability from state i to state l, i, l ∈ i is given by αil, i.e.

αil = Prob{η(k + 1) = l | ηk = i} (2)

It is also assumed that there are random but bounded delays from the sensor to the controller (Figure–
1). The mode-dependent switching static output feedback control law is

ϕs :
{

u(yk, rsk, k) = K(rsk)yk = K(rsk)Cyxk−rsk
(3)

where {rsk} is a bounded random integer sequence with 0 ≤ rsk ≤ ds < ∞, and ds is the finite delay
bound.

Remark 1 We can use a mode-dependent switching controller if we know the delay steps on-line,
and this is the case if we use time-stamped data in the network communication. However, it is
important to note that the theoretical results developed in this work remain correct for the case of
mode-independent control.

If we augment the state variable

x̃k = [x′
k x(k − 1)′ . . . x(k − ds)

′]′

where x̃k ∈ R(ds+1)n, then the closed-loop system is

ϕcl :







x̃(k + 1) =
(

Ã(ηk) + B̃u(ηk)K(rsk)C̃y(rsk)
)

x̃k + B̃w(ηk)wk

yk = C̃y(rsk)x̃k

zk =
(

C̃z(ηk) + Dz(ηk)K(rsk)C̃y(rsk)
)

x̃k

(4)

where

Ã(ηk) =










A(ηk) 0 . . . 0 0

I 0 . . . 0 0

0 I . . . 0 0
...

...
. . .

...
...

0 0 . . . I 0










, B̃u(ηk) =










Bu(ηk)
0

0
...
0










, B̃w(ηk) =










Bw(ηk)
0

0
...
0










C̃y(rsk) =
[

0 . . . 0 Cy 0 . . . 0
]

C̃z(ηk) =
[

Cz(ηk) . . . 0 0 0 . . . 0
]

and C̃y(rsk) has all elements being zero except for the rsth block being the matrice Cy.

One of the difficulties with this approach is how to model the rsk sequence. One way is to model the
transitions of the random delays rsk as a finite state Markov process [20, 29, 33]. In this case we have

Prob{rs(k + 1) = j | rsk = i} = pij (5)

where 0 ≤ i, j ≤ ds. This model is quite general, communication package loss in the network can be
included naturally as explained below. The assumption here is that the controller will always use the
most recent data. Thus, if we have y(k − rsk) at step k, but there is no new information coming at
step k + 1 (data could be lost or there is a longer delay), then we at least have y(k − rsk) available
for feedback. So, in our model of the system in Figure 1, the delay rsk can increase at most by 1 each
step, and we constrain
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Prob{rs(k + 1) > rsk + 1} = 0

However, the delay rsk can decrease as many steps as possible. Decrement of rsk models communica-
tion package loss in the network, or disregarding old data if we have newer data coming in the same
time. Hence the structured transition probability matrix is

Ps =











p00 p01 0 0 . . . 0
p10 p11 p12 0 . . . 0
...

...
...

...
. . .

...
...

...
...

...
... pds−1ds

pd0 pd1 pd2 pd3 . . . pdsds











(6)

where

0 ≤ pij ≤ 1 and

ds∑

j=0

pij = 1 (7)

because each row represents the transition probabilities from a fixed state to all the states. The
diagonal elements are the probabilities of data coming in sequence with equal delays. The elements
above the diagonal are the probabilities of encountering longer delays, and the elements below the
diagonal indicate package loss or disregarding old data.

3 Basic Definitions and Results

In this section, we will first give some basic definitions related to stochastic stability notions and then
we will summarize some results about stochastic stabilizability of the discrete-time NCS subject to
random failures and delays. Without loss of generality, we assume that the equilibrium point, x = 0,
is the solution at which stability properties are examined.

We introduce the following stability and stabilizability definitions for discret-time jump linear system.

Definition 1. The system (1) with uk ≡ 0, wk ≡ 0, is said to be stochastically stable, if for every
initial state (x0, rs0, η0), the following holds:

E
{

∞∑

k=0

‖ xk(x0, rs0, η0) ‖2| x0, rs0, η0

}

< ∞ (8)

Definition 2. We say that system (1) (with w(k) ≡ 0) is stochastically stabilizable by linear static
output feedback control, if for every initial state (x̃0, rs0, η0), there exists a linear static output feed-
back control law ϕs such that the closed loop system (4) is stochastically stable.

The following proposition gives a necessary and sufficient condition for the mean square stability of
system (4).

Proposition 1. The following statements are equivalent:

i) System (4) is stochastically stabilizable by ϕs;

ii) The matrix inequalities
Ā′

ijP̄ijĀij −Pij < 0, ∀i ∈ i, j ∈ S. (9)

are feasible for some matrices Kj and Pij > 0. where

Āij = Ãi + B̃iKjC̃yj ; P̄ij =

ds∑

v=1

pjv

ν∑

m=1

αimPmv
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iii) For any given Q = (Q11, . . . ,Qij , . . . ,Qνds
) with Qij > 0, there exist a unique

P = (P11, . . . ,Pij , . . . ,Pνds
) with Pij > 0 satisfying the following coupled Lyapunov equations

Ā′
ijP̄ijĀij − Pij + Qij = 0 ∀i ∈ i, j ∈ S. (10)

¤

Proof. The proof of this Proposition follows the same lines as for the proof of stability results in
[9, 32], except here we consider two Makovian processes, while in the aforementioned references, the
authors consider a single Markov process. ¥

We conclude this section by introducing the following Lemma that will be used in the derivation of
the main results of this note.

Lemma 1. The following statements are equivalent

i) There exists a symmetric definite positive matrix P such that

A′f(P)A − P < 0

where f(P) > 0 is a matrix function of P.

ii) There exists a symmetric definite positive matrix P and a matrix G such that

[
−P A′G′

⋆ −G − G′ + f(P)

]

< 0

¨

Proof. The proof of this lemma follows the same arguments as for the proof of Theorem 1 in [11].¥

4 Main Results

4.1 Stochastic Stabilization

In this section, we shall address the problem of finding all static compensators (ϕs), as defined in
section 2, such that the closed loop system (ϕcl) becomes stochastically stable. To this end, we use
Proposition 1 to get the following necessary and sufficient conditions for the stochastic stabilizability
of the system (4).

Proposition 2. System (4) is stochastically stabilized by ϕs iff there exists matrices Kj , matrices
Ḡij and symmetric matrices Pij > 0, Xij > 0 satisfying the following coupled matrix inequalities





−Pij Ā′
ij 0

⋆ −Ḡij − Ḡ′
ij ḠijRij

⋆ ⋆ −X̄



 < 0 (11)

under the constraints
PijXij = I (12)

where
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





X̄ = diag{k1, k2, . . . , kν};
k1 = [X11,X12, . . . ,X1ds

];
...

kν = [Xν1,Xν2, . . . ,Xνds
];

Rij = [Γ1ij , Γ2ij , . . . ,Γνij ];

Γ1ij =
[√

αi1pj1,
√

αi1pj2, . . . ,
√

αi1pjds

]
;

...

Γνij =
[√

αiνpj1,
√

αiνpj2, . . . ,
√

αiνpjds

]
;

Then, if (11)-(12) are feasible, the stabilizing output feedback control law is given by

ujk = Kjyk

¤

Proof. Let us consider the matrix inequalities given by (9). The use of Lemma 1 with f(Pij) = P̄ij

yields

[ −Pij Ā′
ijG′

ij

⋆ −G′
ij − Gij + P̄ij

]

< 0 (13)

Notice that from (13), Gij is nonsingular. Let us define Ḡij = G−1
ij , then by the congruence transfor-

mation

[
I 0

0 Ḡij

]

and with a Schur complement operation with respect to the term ḠijP̄ijḠ′
ij , the inequality (13) in

turn becomes





−Pij Ā′
ij 0

⋆ −Ḡij − Ḡ′
ij ḠijRij

⋆ ⋆ −X̄



 < 0 (14)

then, the proof is complete. ¥

4.2 The H∞ Control Problem

In this section, we deal with the design of controllers that stochastically stabilize the closed-loop
system and guarantee the disturbance rejection, with a certain level γ∞ > 0. This problematic is
addressed under a non convex optimization framework.

In order to put the H∞ control problem in a stochastic setting, we bring to bear the space
L2((Ω,F , P ), [0,∞)) of F-measurable processes, zk, for which

‖ z ‖E2= E
{

∞∑

k=0

z′kzk

}1/2

< ∞

The stochastic H∞ control problem can be stated as follows:

For a given level on the H∞ norm, γ∞, find stabilizing static output feedback gains Kj such that

E
{

∞∑

k=0

z′kzk

}

< γ2
∞

∞∑

k=0

w′
kwk (15)
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i.e.
‖ z∞ ‖E2< γ∞ ‖ w ‖2

In this situation, the closed loop system (4) is said to have an H∞ performance level γ∞ over
[0,∞).

Before introducing our result on H∞ control for this class of stochastic hybrid systems, let us consider
the following proposition which is obtained as a special case of the bounded real lemma of discrete
time Markovian jump linear systems [32].

Proposition 3. The system (4) is stochastically stable and ‖ ϕcl ‖∞< γ if there exist matrices Kj

and symmetric matrices Pij > 0 satisfying the following coupled matrix inequalities

[
Ā′

ijP̄ijĀij −Pij + C̄ ′
zijC̄zij Ā′

ijP̄ijB̃wi

⋆ −(γ2I − B̃′
wiP̄ijB̃wi)

]

< 0 (16)

where
C̄zij = C̃zi + DziKjC̃yj

¤

Now, we are in position to give the result on the solvability of the H∞ static output feedback control
problem. Indeed, Proposition 4 gives a NLMI (Nonlinear Matrix Inequalities) characterization of
static output feedback compensators (ϕs) that stochastically stabilize the closed loop system (4) and
ensures (15).

Proposition 4. System (7) is stochastically stabilized by ϕs and ‖ ϕcl ‖∞< γ iff there exists matrices
Kj , matrices Ḡij and symmetric matrices Pij > 0, Xij > 0 satisfying the following coupled matrix
inequalities









−
[

I

0

]

Pij

[
I 0

]
−

[
0 0

0 γ2I

] [
C̄ ′

zij

0

] [
Ā′

ij

B̃′
wi

]

0

⋆ −I 0 0

⋆ ⋆ −Ḡij − Ḡ′
ij ḠijRij

⋆ ⋆ ⋆ −X̄









< 0 (17)

under the constraints
PijXij = I (18)

If (17)-(18) are feasible, the stabilizing output feedback control law that guarantees an H∞ perfor-
mance level γ∞ is given by

ujk = Kjyk

¤

Proof. The matrix inequalities (16) can be equivalently written as follows

[
Ā′

ij

B̃′
wi

]

P̄ij

[
Āij B̃wi

]
−

{[
I

0

]

Pij

[
I 0

]
+

[
0 0

0 γ2I

]

−
[

C̄ ′
zij

0

]
[

C̄zij 0
]
}

︸ ︷︷ ︸

Lij

< 0 (19)

The use of Lemma 1 with f(Pij) = P̄ij yields




−Lij

[
Ā′

ij

B̃′
wi

]

G′
ij

⋆ −G′
ij − Gij + P̄ij



 < 0 (20)
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then by the congruence transformation

[
I 0

0 Ḡij

]

and with a Schur complement property, we obtain (17). Hence, the proof is complete. ¥

5 Computational Issues and Example

5.1 A Cone Complementary Algorithm

The necessary and sufficient conditions derived in Proposition 2 and Proposition 4 are formulated as
LMI feasibility problem under equality constraints of the form PijXij = I. The numerical example is
solved using a first order iterative algorithm. It is based on a cone complementary (CCL) technique
[16], that allows to concentrate the non convex constraint in the criterion of some optimisation prob-
lem.

For P = (P11, . . . ,Pij , . . . ,Pνds
), G = (G11, . . . ,Gij , . . . ,Gνds

), K = (K1, . . . ,Kj , . . . ,Kds
) and X =

(X11, . . . ,Xij , . . . ,Xνds
), define two convex sets by a set of LMIs as

Cs
(P,G,K,X) , {(P,G,K,X) : LMIs(11),Pij > 0,Xij > 0,∀i ∈ i, j ∈ S}

and
CH∞

(P,G,K,X) , {(P,G,K,X) : LMIs(17),Pij > 0,Xij > 0,∀i ∈ i, j ∈ S}

It can be seen from Proposition 4 (resp. Proposition 2) that the H∞ control problem (resp. stochastic
stabilization) of the system (4) iff there exist P = (P11, . . . ,Pij , . . . ,Pνds

), G = (G11, . . . ,Gij , . . . ,Gνds
),

K = (K1, . . . ,Kj , . . . ,Kds
) and X = (X11, . . . ,Xij , . . . ,Xνds

) such that

(P,G,K,X) ∈ CH∞

(P,G,K,X), PijXij = I ∀i ∈ i, j ∈ S (21)

(resp.
(P,G,K,X) ∈ Cs

(P,G,K,X), PijXij = I ∀i ∈ i, j ∈ S) (22)

is feasible.

The CCL algorithm is based on the fact that for any matrices X > 0 and P > 0 (X ,P ∈ Rn×n), if
the LMI [

X I

⋆ P

]

≥ 0 (23)

is feasible, then tr(PX ) ≥ n, and tr(PX ) = n if and only if PX = I. Hence a feasible solution of (21)
(resp. (22)) can be obtained from the solution of the following nonconvex optimization problem

min
(P,G,K,X)∈CH∞

(P,G,K,X)

{

tr(XP) :

[
Xij I

I Pij

]

≥ 0,∀i ∈ i, j ∈ S

}

(24)

(resp.

min
(P,G,K,X)∈Cs

(P,G,K,X)

{

tr(XP) :

[
Xij I

I Pij

]

≥ 0,∀i ∈ i, j ∈ S

}

) (25)

where

X = diag{X11, . . . ,Xij , . . . ,Xνds
}, P = diag{P11, . . . ,Pij , . . . ,Pνds

}
We may see that if the optimal solution of (24) (resp. (25)) satisfies

tr(XP) = ν × (ds + 1)2 × n (26)
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then (21) (resp. (22)) is feasible. Hence, the H∞ control problem (resp. stochastic stabilization) of
the system (4) is now changed to a problem of finding a global solution of the minimization problem
(24) (resp. (25)). This is however, still a difficult issue since the objective function is nonconvexe.
The CCL algorithm can find the global solutions of problems like (24) (resp. (25)) most of the time [?].

CCL Algorithm: For a given γ∞ > 0

i) Feasibility. h = 0: start from a point (P0,G0,K0,X0) ∈ CH∞

(P,G,K,X);

ii) set Vh = Ph and Wh = Xh. Define the linear function

fh(P,X) = tr(VhX + WhP) (27)

iii) find (Ph+1, Xh+1) solving the following convex programming

min
(P,G,K,X)∈CH∞

(P,G,K,X)

{

fh(P,X) :

[
Xij I

I Pij

]

≥ 0,∀i ∈ i, j ∈ S

}

(28)

iv) if a stopping criterion is satisfied, exist. Otherwise, set h = h + 1 and go to step ii).

The first step of the algorithm and every step ii) are simple LMI problems. There are many algorithms
for these problems, especially, interior-point methods.

5.2 Numerical Example

In this section, the proposed static output feedback stabilization of the networked AFTCSMP is
illustrated using a VTOL helicopter model. The sampling time is Ts = 0.01s, and the random sensor
delay exists in rs ∈ {0, 1}, and its transition probability matrix is given by

[pij ] =

[
0.9 0.1
0.9 0.1

]

Consider the nominal system with

A =







0.9996 0.00027 0.0001646 −0.004557
0.0004794 0.99 −0.0001761 −0.04001
0.0009995 0.005004 0.9931 0.02527

5.002e − 006 2.509e − 005 0.009965 1







, Bu =







0.004423 0.001754
0.05087 −0.07554
−0.05488 0.04455
−0.0002749 0.0002233







,

Bw =







0.1 0
0 0
0 0
0 0.1







; Cy =

[
1 0 0 0
0 1 0 0

]

; Cz =
[

0 1 0 0
]
; Dz =

[
1 0

]
.

The state vector xt ∈ R4 is composed by the following:

x1: longitudinal velocity;

x2: vertical velocity;

x3: rate of pitch;

x4: pitch angle.

and the components of command vector are:
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u1: general cyclic command;

u2: longitudinal cyclic command.

For illustration purposes, we will consider the following faulty modes:

i) Mode 2: A total loss of the actuator 2;

ii) Mode 3: A total loss of the actuator 2 and a 50% power loss on the first actuator.

From above, we have that S = {1, 2, 3}, where the mode 1 represents the nominal case. The failure
process is assumed to have Markovian transition characteristics.
The actuator failure transition probability matrix is assumed to be:

[αij ] =





0.90 0.05 0.05
0 0.95 0.05
0 0 1





For the above FTCSMP, and using lemma 2 with γ2
∞ = 10, we obtain the following controllers:

K1 =

[
0.0006 −1.5287
−0.1081 4.6208

]

, K2 =

[
−0.0045 −1.0311
0.0200 −0.9393

]

.

The state trajectories of the closed loop system resulting from the discretized model and the obtained
controller are shown in Figure 2. These trajectories represent a single sample path simulation corre-
sponding to a realization of the failure process η(k) and the random delay process rs(k). Figure 3
represents the evolution of the controlled outputs z(k). It can be seen that the closed-loop system is
stochastically stable and that the disturbance attenuation is achieved.

6 Conclusion

In this paper, static output feedback stochastic stabilization and disturbance attenuation issues for
a class of discrete-time Networked control systems (NCSs) subject to random failures and random
delays was addressed under the discrete-time Markovian Jump Linear Systems framework. Results
are formulated as matrix inequalities, one of which is nonlinear. The numerical resolution of the
obtained results was done using a cone complementary algorithm and its running was illustrated on
classical examples from literature.
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