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This paper deals with the problem of Hoo and robust Hoo control, via dynamic output feedback, of continuous time Active Fault Tolerant
Control Systems with Markovian Parameters (AFTCSMP) subject to both structured and unstructured parameter uncertainties. The
above problematic is addressed under a convex programming approach. Indeed, the fundamental tool in the analysis is an LMI (Linear
Matriz Inequalities) characterization of dynamical compensators that stochastically (robustly) stabilize the closed loop system and ensure
Hoo and robust Hoo performances. Numerical examples are presented to illustrate the theoretical results.

1 Introduction

Modern technological systems, such as nuclear power plants, aircrafts and space stations, rely on sophisti-
cated control functions in order to achieve high levels of reliability and performances. For these safety-critical
systems, Fault Tolerant Control Systems (FTCS) have been developed to meet these essential objectives.
FTCS have been a subject of great practical importance, which has attracted a lot of interest for the last
three decades. A review on reconfigurable fault tolerant control systems can be found in (Blanke et al.
2003, Zhang et al. 2003).

Active fault tolerant control systems are feedback control systems that reconfigure the control law in real
time based on the response from an automatic fault detection and identification (FDI) scheme. The dynamic
behaviour of active fault tolerant control systems (AFTCS) is governed by stochastic differential equations
(because the failures and failure detection occur randomly) and can be viewed as a general hybrid system
(Srichander et al. 1993). A major class of hybrid systems is jump linear systems (JLS). In JLS, a single
jump process is used to describe the random variations affecting the system parameters. This process is
represented by a finite state Markov chain and is called the plant regime mode. The theory of stability,
optimal control and Hy/H control, as well as important applications of such systems, can be found in
several papers in the current literature, for instance in (Boukas et al. 1999, 2002, 2004, 2005, 2006, Costa
et al. 1999, de Farias et al. 2000, de Souza et al. 1993, Ji et al. 1990, 1992).

To deal with AFTCS, another class of hybrid systems was defined, denoted as active fault tolerant control
systems with Markovian parameters (AFTCSMP). In this class of hybrid systems, two random processes
are defined: the first random process represents system components failures and the second random process
represents the FDI process used to reconfigure the control law. This model was proposed by Srichander and
Walker (Srichander et al. 1993). Necessary and sufficient conditions for stochastic stability of AFTCSMP
were developed for a single component failure (actuator failures). In (Mahmoud et al. 1999), the authors
proposed a dynamical model that takes into account multiple failures occurring at different locations in the
system, such as in control actuators and plant components. The authors derived necessary and sufficient
conditions for the stochastic stability in the mean square sense. The problem of stochastic stability of
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AFTCSMP in the presence of noise, parameter uncertainties, detection errors, detection delays and actua-
tor saturation limits has also been investigated in (Mahmoud et al. 1999, 2001, 2002, 2003). Another issue
related to the synthesis of fault tolerant control laws was also addressed by (Mahmoud et al. 2000, Shi
et al. 1997, 2003). In (Mahmoud et al. 2000), the authors designed an optimal control law for AFTCSMP
using the matrix minimum principle to minimize an equivalent deterministic cost function. The problem of
Hoo and robust He, control (in the presence of norm bounded parameter uncertainties) was treated in (Shi
et al. 1997, 2003) for both continuous and discrete time AFTCSMP. The authors defined a single failure
process to characterize random failures affecting the system (i.e. the location and the nature of the faulty
components were not taken into account), and they showed that the state feedback control problem can
be solved in terms of the solutions of a set of coupled Riccati inequalities. However, to the best of author’s
knowledge, the problem of dynamic output feedback Hs, and robust H control of an uncertain AFTC-
SMP (in the case of structured and unstructured uncertainties, respectively) subject to multiple failures
processes has not been fully investigated.

In this paper, we are concerned with the problem of dynamic output feedback Hs, and robust H, control
of an uncertain AFTCSMP via convex analysis, which has shown to be a powerful tool to derive numerical
algorithms for several important control problems. The first problematic we consider in this paper is the
dynamic output feedback stochastic stabilization and robust stochastic stabilization of uncertain AFTCSMP
subject to multiple failure processes: one for plant components and the other for actuators. The main reason
for using two independent failure processes is that it allows the modelling of faults at different locations
with independent failure characteristics (Mahmoud et al. 2003). The uncertainties we consider here are
modeled in three different forms: norm bounded uncertainties, linear combination uncertainties and value
bounded uncertainties. The motivation to consider the above three different uncertainty forms is to provide
a more unified treatment to handle both structured and unstructured parameter uncertainties. It is shown
that the necessary and sufficient conditions for the internal exponential stability in the mean square sense
(robust internal exponential stability, respectively) can be written in terms of an LMI feasibility problem.
This leads to an LMI characterization of all dynamical output feedback compensators that satisfied the
stability requirements. Having obtained this result, we can move on the control problems and write the
dynamic output feedback Hso and robust H., control problems of continuous time uncertain AFTCSMP
in terms of LMI optimization problems. The convex approach naturally leads to powerful numerical algo-
rithms to solve these problematic.

This paper is organized as follows: section 2 describes the dynamical model of the system with appropriately
defined random processes. A brief summary of basic stochastic terms, results and definitions are given in
section 3. Section 4 derives the necessary and sufficient conditions for the stochastic (robust) exponential
stability in the mean square sense, and the LMI characterization of the dynamical compensators. Sections
5 and 6 consider, respectively, the Ho, and robust H., control problems for the output feedback system
via LMI optimization problems. Finally, a conclusion is given in section 7.

Notations. The notations in this paper are quite standard. R™*™ is the set of m-by-n real matrices. A7 is
the transpose of the matrix A. The notation X > Y (X > Y, respectively), where X and Y are symmetric
matrices, means that X — Y is positive semi-definite (positive definite, respectively); I and 0 are identity
and zero matrices of appropriate dimensions, respectively; £{-} denotes the expectation operator with re-
spect to some probability measure P; L2[0,00) stands for the space of square-integrable vector functions
over the interval [0,00); || - || refers to either the Euclidean vector norm or the matrix norm, which is the
operator norm induced by the standard vector norm; || - |2 stands for the norm in L2[0,c0); while || - g,
denotes the norm in L2((Q, F, P),[0,00)); (€2, F, P) is a probability space. In block matrices, x indicates
AB| |Ax| |AB

wo|=lwel=lrc)

symmetric terms: [

2 Dynamical Model of AFTCSMP with Parameter Uncertainties

To describe the class of linear systems with Markovian jumping parameters that we deal with in this paper,
let us fix a complete probability space (2, F, P). This class of systems owns a hybrid state vector. The
first component vector is continuous and represents the system states, and the second one is discrete and
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represents the failure processes affecting the system. The dynamical model of the AFTCSMP defined in
the fundamental probability space (2, F, P), is described by the following differential equations:

2(t) = [A€(1) + AAE@)] () + B(n(t))uly(t), v (1), t) + E(E(t), n(t))w(?)
p: Qu(t) = Cox(t) + Da(&(t), n(t))w(t) (1)
200 (t) = Cra(t) + D1(n(t))uly(t), (1), t)

where z(t) € R™ is the system state, u(y(t),v(t),t) € R" is the system input, y(t) € R? is the system
measured output, z(¢) € RP is the controlled output, w(t) € R™ is the disturbance input which belongs
to L?[0,00) and AA(£(t)) is a real, time-varying matrix function representing the system uncertainties,
&(t), n(t) and v (t) represent the plant component failure process, the actuator failure process and the FDI
process, respectively. £(t), n(t) and 1 (t) are separable and measurable Markov processes with finite state
spaces Z = {1,2,...,z}, S ={1,2,...,s} and R = {1,2,...,r}, respectively. The matrices A({(t)), B(n(t)),
E(&(t),n(t)), Da(&(t),n(t)), D1(n(t)) and AA(E(t)) are properly dimensioned matrices which depend on
random parameters.

We introduce a full order dynamic output feedback compensator (¢.) of the form:

(2)

where A.(1(t)) € R™", Bo(y(t)) € R™ 9, Cc(v(t)) € R™*™. Applying the controller ¢, to the uncertain
AFTCSMP ¢, we obtain the following closed loop system:

(0) = A€ 100 9(2) + SAED) (O + BED,0(0) w(1)) ()
3(0) = Calb(O)x(t) + Dae(0). () (1) ®)
2o (t) = Can(6), DX ()
where

() = [0 o075 30) = T a5 e 0. 00) = | (S, PRI
AA[R) O] | - _ E(£(t),n(t

ante) = [ 45D 0B oo = | g oSori

Ca((0) = | oy | et = [P

2.1 The FDI and the Failure Processes

&(t), n(t) and 1 (t) being homogeneous Markov processes with finite state spaces, we can define the transition
probability of the plant components failure process as (Mahmoud et al. 2003, Srichander et al. 1993):

pu(At) =1- ZT['ijAt + O(At) (Z = j)

{ pij(At) = m; At + o( At) (i # j)
i#£]
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The transition probability of the actuator failure process is given by:

Pri(At) = vy At + o(At) (k#1)
pre(At) =1 — gé:leAt +o(At) (k=1

where 7;; is the plant components failure rate, and vy; is the actuator failure rate.
Given that £ = k and n = [, the conditional transition probability of the FDI process ¥ (t) is:

P (At) = NTAt + o(At) (i # v)
PE(AL) =1 — S MAL +o(At) (i =)
£V

Here, )\% represents the transition rate from ¢ to v for the Markov process ¢ (t) conditioned on { = k € Z
and n =1 € S. Depending on the values of i, v € R, k € Z and [ € S, various interpretations, such as rate
of false detection and isolation, rate of correct detection and isolation, false alarm recovery rate, etc, can
be given to Akl (Mahmoud et al. 2003, Srichander et al. 1993).

Remark 1 Practically, it is difficult to determine the exact values of the conditional transition rates )\%
However, Monte Carlo simulations and prior information can be used to approximate these rates (Mahmoud
et al. 2003).

2.2 The Model of Parameter Uncertainties

The different plant models used in robust control system can have their own type of uncertainty represen-
tation. In general, modeling uncertainty is classified in a number of different ways (Zhou et al. 1996). In
this work, we consider the following forms of parameter uncertainties (Boukas et al. 1999, Mahmoud et al.
2000, Zhou et al. 1996):

2.2.1  Structured Uncertainties. This type of uncertainties arise from the linearization of a non linear
system around a fixed operating point. Two classes of structured uncertainties will be studied.

1) Norm Bounded Uncertainty (NBU)

The admissible parameter uncertainties are modelled as:

where H({(t)) € R™ P+, F(£(t)) € RP+*9 and G(&(t)) € R™*™ H(&(t)), G(&(t)) are known constant
matrices, and F(£(t)) is a Lipschitz measurable matrix function satisfying the condition:

FLE)FE®) <1, VE>0, &t)eZ

2) Linear Combination Uncertainty (LCU)
This form of structured uncertainty is modeled as:

AAE(®) =) NiE®)ar(&(t), 1)
=1

where N;(£(t)) are known matrices and a;(t) represent the bounded uncertain parameters, i.e.

()| <ai Vie{l,..pa}, &t)=i€Z, Vt>0
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where a; are given positive scalars. The matrix N;(£(t)) can be written as:

Ni(&()) = di(E(®)vi (£(1))

where d;(§(t)) and v;(£(t)) are matrices of appropriate dimensions.

2.2.2  Unstructured Uncertainties. The unstructured uncertainties are associated with unmodeled dy-
namics, truncation of high frequency modes, or nonlinearity in the system. A major class of this type of
uncertainty is the Value Bounded Uncertainty (VBU). In this class, parameter uncertainties are modeled
as:

|AA;| < M;,  M; = [myjli;mg; >0

where | - | represents the modulus of entries of the corresponding matrix and M; is known constant matrix
with all positive elements.

For notational simplicity, we will denote A({(t)) = Ai, H(E(t)) = H;, F(&(t)) = F; and G(&(t)) = G;
when {(t) = i € Z, B(n(t)) = B;j and Di(n(t)) = Di; when n(t) = j € S, E({(t),n(t)) = E;; and
Dy (&(t),n(t)) = Dajj when {(t) =i € Z,n(t) = j € S and Ac(¥(t)) = Ack, Be(¥(t)) = Bek, Ce(¥(t)) = Cex
when ¢ (t) = k € R. We also denote x(t) = ¢, y(t) = Ui, Zoo(t) = zoor, W(t) = wy, £(t) = &, n(t) = e,
¥(t) = 1 and the initial conditions x(to) = xo, &(to) = &o, n(to) = no and P (to) = vo.

3 Definitions and Basic Results

For system (1), when u; =0 and AA(&) =0 for all ¢ > 0, we have the following definition:
DEFINITION 3.1 System (1) is said to be internally exponentially stable in the mean square sense (IESS),
if there exist positive constants a and ( such that the solution of

@y = A(e)me

satisfies the following inequality

E {llll*} < Bllavol® exp [—a(t — to)] (4)

for arbitrary initial conditions (g, &o, 7o, %0)-

When the system uncertainties are not equal to zero, the concept of stochastic stability becomes robust
stochastic stability and is defined for system (1) as follows:

DEFINITION 3.2 System (1) is said to be robustly internally exponentially stable in the mean square sense
(RIESS), if there exist positive constants o and 3 such that the solution of

By = [A(&) + AA(E)] v

satisfies (4) for arbitrary initial conditions (z¢, &p, Mo, %0) and for all admissible uncertainties.

We conclude this section by recalling the following lemmas which will be useful for the proof of our main
results in the next sections.

LEMMA 3.3 (Petersen et al. 1987) Let G, M, N be real matrices of appropriate dimensions. Then, for any
v > 0, and for all the functional matrices satisfying M7 (t)M (t) <1, we have:

2:T PGM (t)Nz < v2T PGGT Pz + (1/7)z" NT Nz
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LEMMA 3.4 (Schur complement) (Boyd et al. 1994) Given constant matrices M, L, @ of appropriate di-
mensions where M and @ are symmetric, then @ > 0 and M + LTQ'L < 0 if and only if:

[M LT

] <o

4 Stochastic Stabilization

In this section, we will first derive a necessary and sufficient condition for the internal exponential (robust
exponential) stability in the mean square sense of the system (3), in term of coupled matrix inequalities,
and then we will give an LMI characterization of dynamical compensators (¢.) that internally exponentially
stabilize (robustly stabilize) the closed-loop system in the mean square sense.

4.1 Internal Stochastic Stability

We are concerned by the problem of finding all the dynamical compensators ., as defined in section 2,
such that the AFTCSMP (3) becomes internally exponentially stable in the mean square sense.

The following proposition gives a necessary and sufficient condition for internal exponential stability in the
mean square sense for the system (3).

PROPOSITION 4.1 A necessary and sufficient condition for IESS of the system (3) is that there exist
symmetric positive-definite matrices Pj;, ¢ € Z, j € S and k € R such that:

ALLPik + Pyehiji + > minPrjr + Y _viPax + Y A2, Pijo = Sije < 0 (5)
hez Ies veR
he#i 1£] vtk

where: IN\,'jk = Aijk —0.591 Z Tip + Zle + Z )\Z:‘]U

hez les vER
hti 1£] vk
Proof See (Aberkane et al. 2005). O

We are now able to present the following proposition which gives an LMI characterization of dynamical
compensators (¢.) that internally stabilize the closed-loop system in the mean square sense.
PROPOSITION 4.2 A necessary and sufficient condition for IESS of the system (3) is that the following
matrix inequalities:

AijeYije + Yiu ALy + F5 B + B Fyy R@-jka/)} “0 {Y]k n

ijk gk X
* ijk

* Sije(Y) } >0 ©)

Ag;‘kXijk + XiinAir + CQTHZk + H;j1,Co + Zﬂ'z’hthk + ZleXilk + Z)\g,Xijv <0 (7)
hez les veR
heti 1] vtk
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where

Riji, = [R1ijk, R2;ji, R3ijk)

Rl = [0t Yijk, - Qigi—1) Yijhs Qigi1) Yighs --r @iz Yijk)

R2ij = B Yijhs --Bii—1)Yijhs Big+1) Yijhs - BjsYijn]
R3ijk = [Wr1Yijks - W(h—1) Yighr Y(hr1) Yijs - Var Yiji
il = /Tits Bj1 = V15 Ykl = \/)\72][

Sij/c = —diag [Slijk, SQijk, Sgijk]

STk = [Yijhr s Yiim1)jks Yiit1)jks -+ Yejk]

525k = [Yitks - Yi(j—1)» Yi(j+1)ks - Yisk]

S3ijk = [Yij1 - Yijh—1) Yij(h+1) - Yijr]

Aijk =A; —0.51 Z Tin + ZVJ'[ + Z )\;CJU
heZ lesS vER
\ h#i l#j v#k

Yijk = YL, Hijk, and Fy . The corresponding compensator () is

have feasible solutions X, = X ik

ijk
given by:

-1 .
Aciji = (Xz'jk - Yw_kl) ALy + XijrAigrYije + XijeBiFige + HigrCoYige + | Y minYj s

hez
h#i
Y Yt Y NG | Yik | Yol 405 | Y “min+ Y v+ Y A, (8)
les veER heZ lesS veER
I£] vk hti 1£] vk
Beiji = (Y;j_kl - Xijk) Hiji,  Cejr = FijkYi;kl 9)
Proof see (Aberkane et al. 2005). O

4.2 Robust Internal Stochastic Stability

In this part, we shall address the problem of characterising all dynamical compensators ¢, that internally
robustly exponentially stabilize the uncertain AFTCSMP in the mean square sense. The uncertainties we
consider here are, respectively, structured (NBU) and (LCU) uncertainties) and unstructured uncertainties
((VBU) uncertainties). The motivation to consider the above three different uncertainty forms is to provide
a more unified treatment to handle both structured and unstructured parameter uncertainties.

Before giving a characterization of the dynamical compensators ¢., we first introduce the following propo-
sition which gives a necessary and sufficient condition for internal robust exponential stability in the mean
square sense for the system (3), in term of coupled matrix inequalities. Indeed, the LMI characterization
of the compensators is based on this condition.

PROPOSITION 4.3 A necessary and sufficient condition for TRESS of the system (3) is that there exist
symmetric positive-definite matrices P;;; and some positive constants 7;, ¢ € Z, j € S and k € R such that
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a) (NBU) uncertainties

AL Piji + PijrAiji + Zﬂ'ihPhjk + Zyjlpilk + ZAZJ;PHU + v Pije Di Piji + (1/7:)K; <0 (10)

heZz les vER
hi#i 1#] vk
b) (LCU) uncertainties
B N B Pa pa
Al Pk + PijeDige + > minPugk + > _vitPak + Y AL Pijo + @viPir Y dudi; P + (a:/7:) > 0105 < 0
hez les veR =1 =1
h#i l#7 v#k

(11)
¢) (VBU) uncertainties

Az‘;}cpijk + PijrAijn + E Tin Phji + E Vit Pk + E N P + i P Pigr + (n/vi)diag(M M;) <0 (12)
hez l1es veR
heti 1] vk

(%

0

Where: Dy — HT, H; [Ig] Ki=GIG, G =[Gi0],dy = {d(;] B = [

} N, = [ 0.
Proof We will only develop the proof for the case of (NBU) uncertainties. The same arguments can be used
for the other forms of uncertainties.

Let a quadratic stochastic Lyapunov function:

VXt Ees M, Ut) = XtTP(ft,Utﬂﬁt)Xt (13)

where P(&,n:, 1) is a positive symmetric matrix V& =i € Z, n, = j € R and ¢y = k € R. Evaluating
LI(xt, &y ey W) for the system (3), when the quantities & =i € Z, 5 = j € R and ¢y = k € R have
occurred at some t € [0,00), we have:

LY = X?{]\Z;kpijk + Pyelijr + > minPrji + Y _viiPax + Y N, P + 2PijkAAi}X (14)
hez les R
hoti 1] vk

Note that, due to presence of the parameter uncertainties, the weak infinitesimal operator of the uncertain
AFTCSMP contains an additional term in comparison with that of the certain AFTCSMP, that is

CuﬂXt;ﬁt;Ut;d’t) = ﬁcﬁ(Xtaft,ntﬂ/Jt) =+ Aﬁﬁ(Xtaft,mﬂﬁt)

where L£,9(x¢, &, M, 1) is the weak infinitesimal operator of the uncertain AFTCSMP, L£.9(x¢, &, me, ¥t)
is the weak infinitesimal operator of the certain AFTCSMP and ALI(xy, &, me,1¢) is the part of the

weak infinitesimal operator associated with the parameter uncertainties. This part has an upper bound,
(Aﬁ'ﬂ)bound- Then

Euﬁ(Xtaﬁtﬂhﬂ/)t) < Eupﬁ(Xtvgtynta ¢t) = ['cﬁ(Xtyft’nta ¢t) + (Aﬁﬁ)bound (15)

where L,0(xt, e, ¢) is the upper bound of the weak infinitesimal operator with the maximum uncer-
tainty values. From equation (14), the term due to the parameter uncertainties is

Using lemma 3.3, the upper bound of ALY (x¢,1,J, k) is

2x7 PijiANixe = 2x{ Piji i FiGixe < X{ [viPije HiH Pji + (1/7:)GT G3] xe
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Therefore: (ALY (xt, i, j, k))bouna = X7 {ViPijuDiPiji + (1/7%)Ki } Xz
Remark 2 For the other forms of uncertainties, (ALI(x¢, 7, J, k) )bound iS given as follows:

e (LCU) uncertainties: (ALY (xt, %, J, k))bound = XtT {&fyiPijk Zfﬁl JliciﬁPijk —|—_(di/_%-) Zﬁl 17”617;} Xt
e (VBU) uncertainties: (ALI(x¢, 5, k) )bound = X¢ {ViPijkPijk + (n/vi)diag(M M;) } x:.

a) Sufficiency

Assume that there exist 75 > 0 and P > 0,7 € Z, j € S and k € R such that (10) is verified. Then
I(xt, &My V) = X3 P (&, me,%0¢)Xe is a stochastic Lyapunov function. From (10), we have

['upﬁ(Xt’ §t7 Mty wt) = »ch?(Xt’ §t7 Tt ¢t) + (A’Cﬁ)bound <0

then 3 Q(&, m¢, ) > 0, such that L,p0(x¢, &, e, ) = X7 Q& me, ) xe < 0. From (10), we obtain

LuO(Xts & Mes ) < —XZQ(ft,TZtvdft)Xt

For the quadratic Lyapunov function (13), we have

L,9(xt: & M, Vt) < —XtTQ(ftmt7¢t)Xt
xe, &, me0e)  — xE P& me, ) xe

Taking the maximum, we obtain

[ru19<Xt;§ta77t7¢t) < _X?Q(gtﬂ?tﬂ/ft)Xt] _ —mlil |:)\IninQ<£t7ntawt) — —a<0 (16)
2,9

< max
P(xe, &y e, ) ik | XE P& nes ) X Amax P (&, 1, ¢)

where Anin@ (&, e, 1¢) is the eigenvalue of the matrix Q(&,n:, 1) with the smallest real part, and
Amax P (&, me,¢) is the eigenvalue of P(&;,n¢, 1) with the largest real part, for all i € Z, j € S and
k € R. « is a positive constant and represents the rate of convergence. We can rewrite (16) as

Eu’ﬂ(Xta ftv , Q[)t) S _aﬁ(Xtv gtv M, Q;Z)t)

From Dynkin’s formula and the Gronwell-Bellman lemma (Mahmoud et al. 2003), we have

& {ﬁ(Xta gtv Nt Tr[)t)} < eXp(f€(t - tO))ﬁ(X(]v 507 Mo, sz)Oa t)

or

€ {IIx(t: x0, toll*} < bllxol|* exp [—€(t — to)]
where b and € are positive constants.
Then, by definition 3.2, the dynamical system (3) is IRESS V¢ > tg.
b) Necessity

Assume that (3) is internally robustly exponentially stable in the mean square sense, then using same
arguments as in (Srichander et al. 1993) (Lemma 4.2), for any given positive-definite matrices Q;jx, i € Z,
J € S and k € R, there exist symmetric positive-definite matrices Pjjx, ¢ € Z, j € S and k € R such that

LoupV(Xts & e, 0t) = — X7 Qijixe < 0 (17)

where ¥(x¢, &, ne, Yr) s given by (13). From (17), we conclude that there exist symmetric positive-definite
matrices P, ¢ € Z, j € S and k € R and some positive constants 7;, Vi € Z such that (10) is verified.
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Hence the proof is complete. O

The following proposition gives an LMI characterization of dynamical compensators (¢.) that internally
robustly stabilize the closed-loop system in the mean square sense.

PROPOSITION 4.4 A necessary and sufficient condition for internal robust exponential stability in the mean
square sense of the system (3) is that the following matrix inequalities

Gijr AL, Rijn(Y) _

. o <o, |%r Bk oo | Yur ]S (18)
n ’ *x —(1/%)0 ’ * Xijk

* * Sljk(Y)

where

a) (NBU) uncertainties

¢z]k - zkavzgk + Y;]kAij + ngBT + B F gk + 7@H H
emk - A ngk + ijkAzjk + 02 1jk + ngkCZ

ijk ..
+(1/%)GTGi + > minXnjk + SovaXak + 3 A2 Xijw
heZz lesS vER
heti 14 vk

(Aijk = GiYijk,  Zijr = XijpH,;
b) (LCU) uncertainties

¢1]k: - zgkY;]k + }/ij‘Ale ijBT + Bj -ka + (I@’YlW W

Hz]k = AzgkXUk + XijAl]k + CgL”k + LZ]kCQ
(az/’)/z)T T + Z ththk + Zylezlk + Z )\ksz]v
heZ les
h#i l#7 v;ﬁk

T
Wi = [dli - -dpai] , Ti= {vli : UPM-} , Dy = \/@EEM
Eijk = V@i XijWi

c) (VBU) uncertainties

¢zyk - 1]kY;]k + }/tij’A ng + B; Ejk + 721
91]k - AZJkXZ]k‘ + XzykAUk + CQ ”k + ngkCZ N
+(n/vi) diag(M"M;) + 3 minXnji + S viXaw + > Ay Xijo
heZ les vER
h#i I#j v#£k
Ajjr = \/n diag(M M) Yijr,  Eijr = Xiji

have feasible solutions X, = ka, Yiik = ng,

corresponding compensator (¢.) is given by

Liji, Fijr and v > 0,Vi € Z, j € S and k € R. The

Beiji = (Yw_k—Xijk)*lLijk, Ceijk = zgkYZ]kl (19)
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—1 | .
Acijie = (ijk - Y_l) ATy + XijeAijiYije + XijeBi Fij + LijnCaYige + | >_minYiy

ijk ]
heZ
hti
+Zyjlyiﬁcl + Z)\ZJUY;;UI + ik | Yijk + Pijk YZ;kl + 0.51 ZTrih + Zl/jl + Z)\ZJU (20)
les vER heZ lesS vER
1£] vk hoti 1£] vk
where
e (NBU) uncertainties: ¥;j, = (1/7)GraG,, D51, = %-XiijiHiT.
e (LCU) uncertainties: ¥;;, = (@i/y)TIT;, Qi = ELi’inijkW/iVViT.
e (VBU) uncertainties: %;5 = (n/v;)diag(MI M;), @ik = viXijk-
Proof The proof of this proposition follows the same arguments as for the proof of proposition 4.2. O

5 Ho Control

In this section, we deal with the design of controllers that stochastically stabilize the closed-loop system
and guarantee the disturbance rejection, with a certain level p > 0. This problematic is addressed under
a convex optimization framework. Mathematically, we are concerned with the LMI characterization of
dynamical compensators ¢, that stochastically stabilize the system (3) and guarantee the following for all
w € L]0, 00):

2

0 1/2
1
I 250 |152=s{ /0 zz;,tzootdt} < [l w 12 +a(xo: Eos 0 0)] ¥ (21)

where p > 0 is a prescribed level of disturbance attenuation to be achieved and a(xo, &0, 10, %00) is a constant
that depends on the initial conditions (xo, &0, 70, %0). To this end, we need the auxiliary result given by the
following proposition.

PROPOSITION 5.1 If the system (3) is IESS, for every w = {w;t > 0} € Ly[0,00), we have that x =
{x#;t >0} € Lo((Q, F, P),[0,0)), i.e., € {fooo XtTXtdt} < 00, for any initial conditions (xo, &0, 10, %0)
Proof Since the system (3) is internally exponentially stable in the mean square sense, it follows from
proposition 4.1 that there exist symmetric positive-definite matrices Pjj;, 1 € Z, j € S and k € R such
that (5) is verified.

Note that it is easy to show that there exists o > 0, such that

- 2
Zijk t aPijk < 0.

Vie Z,j€ S and k€ R.
Let us consider the same quadratic stochastic Lyapunov function as in (13). Then

LIt &M V) = Xt AE (& 08) Y Xt + 2XE P (&t mes V) B (&, e, e w1 (22)

Using lemma 3.3, it follows from (22) that

ﬁﬂ(Xta Etv Mt wt) < _er(gta U2 ¢t)Xt =+ Oé_lthE(gta nt, ¢t)TE(ft, U2 ¢t)wt
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where T'(&, e, ¥¢) = —Z(&, e, ¥t) — aP?(&4,me,0¢). From Dynkin’s formula, we have

5{19(XT,5TJ}T,¢T)} 19(X07£057707¢0 {/ ‘Cﬁ XTvg‘mT/vaT)dT}

T

<& {/(; er(ffﬂ%v wT)XTdT}

T — —

—1—04_15 {/ sz(£T7nT7dJT)TE(gTvnT;wT)wTdT}
0
T

< =€ {/0 Aminr(gfanT’@bT)XgXTdT}

T
+ Oé_lg {/0 max( (fﬂ Nr, %) (§T7 Nr, wT))waTdT} <23)

From (23), we get

T
lim {s (P (er,m, o) e} + min a6, 5,0} € { / xeTdT}}
5 0

T—o00

< {XO 50777071/}0 XO} +a mJaX{Amax (i7j7 Z .77 }5 {/ wszdT} (24)

From (24), and knowing that & {x{ P(&,n:,¢¥e)x¢} > 0 and w(-) € L?[0,00), then the system (3) is

stochastically stable. Hence the proof is complete. O
PROPOSITION 5.2 If there exist symmetric positive-definite matrices Pjji, 1 € Z, j € S and k € R such
that

Aljkpmkr + PZ]’CA’LJk) + Cl]kcljk + /14 RjkEljkE'LJk;P’ij + § ﬂ—ZhPhjk} + § lelek + E )\ku iju — Hzﬂc <0 (25>
hez les vER
h#i I#7 v#£k

then the system (3) (when the uncertainties are equal to zero) is stochastically stable and satisfies

| 200 lles< [12 || w 11 +x& P(E0, m0, 0)x0] 2. (26)

Proof Since C_'lTjkC_'Uk + u_QBjkEijkEngjk > 0, it follows from (25) and proposition 4.1, that the system
(3) is internally exponentially stable in the mean square sense. Using proposition 5.1, it follows that (3) is
stochastically stable.

Let us now prove that (26) is verified. We begin by defining the following function

T
Jr=E& {/ (zgotzoot 2 wy wt) dt} (27)
0

Then, to prove (26), it suffices to establish that: Jo < x& P(£0,10,%0)X0
Let a quadratic stochastic Lyapunov function as defined in (13), then:

Eﬁ(Xta fta Nt ¢t) = X;tr {E(gta U2 wt)} Xt + 2X3P(£t7 Nt ¢t)E(§ta M, wt)wt' (28)
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adding and subtracting 5{ fOT LI(Xty &ty Mt Q/Jt)dt} to (27), we get

T
Jr=¢& {/0 F[E(& ) + Crlne, )" Cr(ne ¥e) ] xe

+M_2XtTP(§t77It7¢t)E(ft,77t7¢t)E(ft777t,%Z)t)TP(ftantﬂ/}t)Xt
- M2(’wt - /fQE(&, U2 T/ft)TP(ft, Mt 1/1t)Xt)T

T
(w — w2 E (& e, o) P(&me, ) xe)dt ) — € {/0 ﬁﬁ(xt,gt,nt’w)dt}
T —
= 5{ /0 Xt [H(gtvnbwt)})(t — 12wy — W E (& me, b)) TP (€, mes b ) xe) T

(wi — p 2 E (&, e, )" (ftaﬂt7¢t)Xt)dt {/ LI( Xt7§tﬂ7t,¢t)dt} (29)

From Dynkin’s formula, we have

g{ﬁ(XT7£TanTa¢T)} 19()(0,50,770,1/10 {/ ‘C’ﬁ gtanta¢t)dt} (30)

Since (&, ne, ) < 0 and E{I(xT, &, nr, )} > 0, it follows from (29) and (30) that

jT S ﬁ(XO) 507 Mo, 1/}0)

which yields Joo < X3 P(€0,7M0,%0)x0- Hence the proof is complete. O
The H constraints (26) can be rephrased in LMI form. This is illustrated by proposition 5.3, which gives
an LMI characterization of output feedback dynamical compensators (¢.) that stochastically stabilize the
AFTCSMP and ensures (26).

PROPOSITION 5.3 The Ho, constraints (25) are equivalent to that (31)-(32)

Gijk (C1Yijk + D1jEyj) ' Rijr(Y)
(C1Yijk + D1, Fyji) —1 0 <0 (31)
Rij(Y)T 0 Sijk(Y)
0ijk (XijiEij + Lijr Daij) Yije 1
(XijkEij + LijiDaij)" —p*l <0 I Xin|~ 0 (32)

where

¢zgk - zgkY;]k’ + }/z]kA@]k + z]kBT + B;j Ejk +u EZ]EZCZ;
ewk = A”szgk + Xz]kAZ_]k + OQTL ik + Lz]kCZ
+CTCy+ 3 minXngk + v Xak + > AkUXz‘jv

hez les vER
h#i 1#j vk

have feasible solutions X, = ngk’ Yiik ka, Liji and Fj, Vi € Z, j € S and k € R. The corresponding

compensator (¢.) is given by

Beiji = (Y3, = Xije) " Ligk, - Coije = FirY 3, (33)
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—1 | .

Acijk = (Xijk - Yw_kl) ATy + XijeAijtYijh + XijeBjFijr + LijnCaYige + | >_minYio4
hez
he#i

Y Y+ Y NG5 | Yige + CT(CL Y + DayFig) + n2(XijeEij + LijeDai) | Yigpt

les vER
I#j v#k
HOSI | D min+ > v+ Y AL (34)
heZ les veER
hi 1#] v£k

Proof The proof of this proposition follows essentially the same lines as for the proof of proposition 4.2.[]

6 Robust H,, Control

In this section, we investigate the robust H,, control of uncertain AFTCSMP subject to both structured
((NBU) and (LCU) uncertainties) and unstructured uncertainties ((VBU) uncertainties). It is shown that
the above problematic can be recast as a convex optimization problem characterized by LMI, providing
thus a characterization of output feedback dynamical compensators that robustly stochastically stabilize
the AFTCSMP and ensures (26) for all admissible uncertainties.

The robust He, control problem addressed in this paper can be formulated as follows: given a prescribed
level of disturbance attenuation p > 0, construct a dynamic output feedback controller of the form (2) such
that the following two requirements are satisfied:

a) The uncertain AFTCSMP (3) is robustly stochastically stable;
b) (26) is satisfied for all w € L2[0, 00) and all admissible uncertainties.

Before introducing the sufficient condition for the solvability of the robust Hs, control problem, we first
give the following proposition which will play a key role in the derivation of our main results.
PROPOSITION 6.1 If the system (3) is IRESS, for every w = {w;;t > 0} € L3[0,00), we have that x =
{xt:t > 0} € Ly((Q, F, P),[0,00)), i.e., E{ [ x{ xedt} < oo, for any initial conditions (xo, o, 70, %) and
for all admissible uncertainties.

Proof The proof of this proposition follows the same arguments as for the proof of proposition 5.1. 0
PROPOSITION 6.2 If there exist symmetric positive-definite matrices P;;;, and some positive constants -;,
1€ Z,7€ 8 and k € R such that

a) (NBU) uncertainties

ALk Pijk + Pijehije + CTyCoji + 172 Py By Bl Pigr. + i Piji Di Piji,
+ K+ Y minPujk + > _vilPak + Y N Piju < 0 (35)

heZ les veR
hti 15 vk
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b) (LCU) uncertainties
Ak P + Pigrhije + CLnCujk + 1> Py By By Py + @i Pygre > diad; P
=1
Pa B

+(@i/v:) >0t + Y minPajk + Y _VitPak + Y N, Pijy <0 (36)

=1 heZ les vER

hti 125 vtk

c) (VBU) uncertainties
AL Pijk + PigiDiji + Cy.Cujk + 17 Py By By, Pigk + i Pijk P
+ (n/7;) diag(M M) + > winPrji + > _vitPar + Y A Pju <0 (37)
hez les veR

heti 1£] vk

Vie Z,j€ S and k € R.
then the system (3) is robustly stochastically stable and satisfies

1/2
| 200 lles< [ 1w 13 -+xE P&, m0, w0)x0] 2 (38)
for all admissible uncertainties.
Proof The proof of this proposition follows the same lines as for the proof of proposition 5.2. O
PROPOSITION 6.3 The constraints (35) ((36) and (37), respectively) are equivalent to the following matrix
inequalities

Yok (C1Yign + D1jFise)” AT, Risn(Y _
ik (O + D1 Figp)™ Bigy Foge (V) Qijr (XijuFij + LijrDoij)  Eijk

* ! o‘n g <0, * — 120 0 <0 (39
N * o * x —(1/7:)0
* * * Sz]k(Y)
Yiip 1
>0 40
[ * XUJ o)

where

a) (NBU) uncertainties

Yijk = AijiYijr + YirALy + FLBY + BjFij + p 2By EL + v HH]

Qijk = AL Xk + XijeAije + C3 Ly, + LijeCo B

+OT Cr+ (1) G Gi+ 3 minXnjn + v Xak + 2 N Xijo
hez leS veR

hti 1] vk

b) (LCU) uncertainties

Tijk = Az’jkYz'jk + Yz]kfilj;k + FZ;]F,ka + BjFijk + M_2EijE£ + ’YidiWiWiT
Qiji = AL Xk + XijuAije + C3 Ly, + LijiCo B
+CV Cy + (ai/)TIT + Y minXnge + v Xak + 2 N Xijo
hez leS veR

hti 1£j vk
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¢) (VBU) uncertainties

Ti]k = Azgk’Y;jk: + Y;]kAwk z]kB + Bj szk +u ElerLj; + 7@1
Qi]k AT ijk + Xz]kAZ]k + CZTL ik + Ll]kCQ

zyk
+Cl Ci + (n/%) dlag(MTM) + Z ﬂ-thhjk + ZV]lelk + Z )‘kvXUU
leS €R
h;éz I#j Z;ﬁk

have feasible solutions Xjj;, = Xg;k, Yijk = ng, Liji, Fijr, and v; > 0, Vi € Z, j € S and k € R. The

corresponding compensator (p.) is given by

Beijik = (Y”_k — Xijk) 'Lijk,  Ceiji = E]kY;j_k (41)

ACijk = (Xl]k - }/z;k:l> Amk + ngkAUk}/zgk + ngkB -ka + LZJkCQE]k + Zﬂ-zh h]k

hez
hti
+ZVJZ n Z)‘mYm + ijk | Yije + Pijik
les vER
1] vk
+ O (C1 Y + DijFige) + = (XijiEij + LijkDaij) | Y, ,]k +0.51 th + Zujl + Z)\ (42)
heZz les vER
hti 1] vtk

7 Conclusion

In this paper, we have first considered the problematic of dynamic output feedback stochastic stabiliza-
tion and robust stochastic stabilization of an uncertain AFTCSMP. It was shown that the necessary and
sufficient conditions for the internal exponential stability in the mean square sense (robust internal expo-
nential stability, respectively) can be written in terms of an LMI feasibility problem. This leads to an LMI
characterization of all dynamical output feedback compensators that satisfied the stability requirements.
Having obtained these results, we have moved on the control problem. Indeed, we have introduced an LMI
approach to the H, and robust H, control for linear uncertain continuous time AFTCSMP under a dy-
namic output feedback control. We have derived some linear matrix inequalities whose solutions indicate
the achievability of the desired control problems; i.e. we have shown that the H,, and robust H, control
problematic can be recast as a convex optimization problem under constraints of LMIs which can be solved
effectively using the recently developed LMI tool. Then, based on these LMIs, we have given a simple
procedure to construct the required output feedback stabilizing controllers.
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