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This paper deals with the problem of H∞ and robust H∞ control, via dynamic output feedback, of continuous time Active Fault Tolerant
Control Systems with Markovian Parameters (AFTCSMP) subject to both structured and unstructured parameter uncertainties. The
above problematic is addressed under a convex programming approach. Indeed, the fundamental tool in the analysis is an LMI (Linear
Matrix Inequalities) characterization of dynamical compensators that stochastically (robustly) stabilize the closed loop system and ensure
H∞ and robust H∞ performances. Numerical examples are presented to illustrate the theoretical results.

1 Introduction

Modern technological systems, such as nuclear power plants, aircrafts and space stations, rely on sophisti-
cated control functions in order to achieve high levels of reliability and performances. For these safety-critical
systems, Fault Tolerant Control Systems (FTCS) have been developed to meet these essential objectives.
FTCS have been a subject of great practical importance, which has attracted a lot of interest for the last
three decades. A review on reconfigurable fault tolerant control systems can be found in (Blanke et al.
2003, Zhang et al. 2003).
Active fault tolerant control systems are feedback control systems that reconfigure the control law in real
time based on the response from an automatic fault detection and identification (FDI) scheme. The dynamic
behaviour of active fault tolerant control systems (AFTCS) is governed by stochastic differential equations
(because the failures and failure detection occur randomly) and can be viewed as a general hybrid system
(Srichander et al. 1993). A major class of hybrid systems is jump linear systems (JLS). In JLS, a single
jump process is used to describe the random variations affecting the system parameters. This process is
represented by a finite state Markov chain and is called the plant regime mode. The theory of stability,
optimal control and H2/H∞ control, as well as important applications of such systems, can be found in
several papers in the current literature, for instance in (Boukas et al. 1999, 2002, 2004, 2005, 2006, Costa
et al. 1999, de Farias et al. 2000, de Souza et al. 1993, Ji et al. 1990, 1992).
To deal with AFTCS, another class of hybrid systems was defined, denoted as active fault tolerant control
systems with Markovian parameters (AFTCSMP). In this class of hybrid systems, two random processes
are defined: the first random process represents system components failures and the second random process
represents the FDI process used to reconfigure the control law. This model was proposed by Srichander and
Walker (Srichander et al. 1993). Necessary and sufficient conditions for stochastic stability of AFTCSMP
were developed for a single component failure (actuator failures). In (Mahmoud et al. 1999), the authors
proposed a dynamical model that takes into account multiple failures occurring at different locations in the
system, such as in control actuators and plant components. The authors derived necessary and sufficient
conditions for the stochastic stability in the mean square sense. The problem of stochastic stability of
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AFTCSMP in the presence of noise, parameter uncertainties, detection errors, detection delays and actua-
tor saturation limits has also been investigated in (Mahmoud et al. 1999, 2001, 2002, 2003). Another issue
related to the synthesis of fault tolerant control laws was also addressed by (Mahmoud et al. 2000, Shi
et al. 1997, 2003). In (Mahmoud et al. 2000), the authors designed an optimal control law for AFTCSMP
using the matrix minimum principle to minimize an equivalent deterministic cost function. The problem of
H∞ and robust H∞ control (in the presence of norm bounded parameter uncertainties) was treated in (Shi
et al. 1997, 2003) for both continuous and discrete time AFTCSMP. The authors defined a single failure
process to characterize random failures affecting the system (i.e. the location and the nature of the faulty
components were not taken into account), and they showed that the state feedback control problem can
be solved in terms of the solutions of a set of coupled Riccati inequalities. However, to the best of author’s
knowledge, the problem of dynamic output feedback H∞ and robust H∞ control of an uncertain AFTC-
SMP (in the case of structured and unstructured uncertainties, respectively) subject to multiple failures
processes has not been fully investigated.
In this paper, we are concerned with the problem of dynamic output feedback H∞ and robust H∞ control
of an uncertain AFTCSMP via convex analysis, which has shown to be a powerful tool to derive numerical
algorithms for several important control problems. The first problematic we consider in this paper is the
dynamic output feedback stochastic stabilization and robust stochastic stabilization of uncertain AFTCSMP
subject to multiple failure processes: one for plant components and the other for actuators. The main reason
for using two independent failure processes is that it allows the modelling of faults at different locations
with independent failure characteristics (Mahmoud et al. 2003). The uncertainties we consider here are
modeled in three different forms: norm bounded uncertainties, linear combination uncertainties and value
bounded uncertainties. The motivation to consider the above three different uncertainty forms is to provide
a more unified treatment to handle both structured and unstructured parameter uncertainties. It is shown
that the necessary and sufficient conditions for the internal exponential stability in the mean square sense
(robust internal exponential stability, respectively) can be written in terms of an LMI feasibility problem.
This leads to an LMI characterization of all dynamical output feedback compensators that satisfied the
stability requirements. Having obtained this result, we can move on the control problems and write the
dynamic output feedback H∞ and robust H∞ control problems of continuous time uncertain AFTCSMP
in terms of LMI optimization problems. The convex approach naturally leads to powerful numerical algo-
rithms to solve these problematic.
This paper is organized as follows: section 2 describes the dynamical model of the system with appropriately
defined random processes. A brief summary of basic stochastic terms, results and definitions are given in
section 3. Section 4 derives the necessary and sufficient conditions for the stochastic (robust) exponential
stability in the mean square sense, and the LMI characterization of the dynamical compensators. Sections
5 and 6 consider, respectively, the H∞ and robust H∞ control problems for the output feedback system
via LMI optimization problems. Finally, a conclusion is given in section 7.
Notations. The notations in this paper are quite standard. Rm×n is the set of m-by-n real matrices. AT is
the transpose of the matrix A. The notation X ≥ Y (X > Y , respectively), where X and Y are symmetric
matrices, means that X − Y is positive semi-definite (positive definite, respectively); I and 0 are identity
and zero matrices of appropriate dimensions, respectively; E{·} denotes the expectation operator with re-
spect to some probability measure P ; L2[0,∞) stands for the space of square-integrable vector functions
over the interval [0,∞); ‖ · ‖ refers to either the Euclidean vector norm or the matrix norm, which is the
operator norm induced by the standard vector norm; ‖ · ‖2 stands for the norm in L2[0,∞); while ‖ · ‖E2

denotes the norm in L2((Ω,F , P ), [0,∞)); (Ω,F , P ) is a probability space. In block matrices, ⋆ indicates

symmetric terms:

[

A B
B′ C

]

=

[

A ⋆
B′ C

]

=

[

A B
⋆ C

]

.

2 Dynamical Model of AFTCSMP with Parameter Uncertainties

To describe the class of linear systems with Markovian jumping parameters that we deal with in this paper,
let us fix a complete probability space (Ω,F , P ). This class of systems owns a hybrid state vector. The
first component vector is continuous and represents the system states, and the second one is discrete and
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represents the failure processes affecting the system. The dynamical model of the AFTCSMP defined in
the fundamental probability space (Ω,F , P ), is described by the following differential equations:

ϕ :











ẋ(t) = [A(ξ(t)) + ∆A(ξ(t))]x(t) + B(η(t))u(y(t), ψ(t), t) + E(ξ(t), η(t))w(t)

y(t) = C2x(t) + D2(ξ(t), η(t))w(t)

z∞(t) = C1x(t) + D1(η(t))u(y(t), ψ(t), t)

(1)

where x(t) ∈ Rn is the system state, u(y(t), ψ(t), t) ∈ Rr is the system input, y(t) ∈ Rq is the system
measured output, z(t) ∈ Rp is the controlled output, w(t) ∈ Rm is the disturbance input which belongs
to L2[0,∞) and ∆A(ξ(t)) is a real, time-varying matrix function representing the system uncertainties,
ξ(t), η(t) and ψ(t) represent the plant component failure process, the actuator failure process and the FDI
process, respectively. ξ(t), η(t) and ψ(t) are separable and measurable Markov processes with finite state
spaces Z = {1, 2, ..., z}, S = {1, 2, ..., s} and R = {1, 2, ..., r}, respectively. The matrices A(ξ(t)), B(η(t)),
E(ξ(t), η(t)), D2(ξ(t), η(t)), D1(η(t)) and ∆A(ξ(t)) are properly dimensioned matrices which depend on
random parameters.
We introduce a full order dynamic output feedback compensator (ϕc) of the form:

ϕc :

{

v̇(t) = Ac(ψ(t))v(t) + Bc(ψ(t))y(t)

u(t) = Cc(ψ(t))v(t)
(2)

where Ac(ψ(t)) ∈ Rn×n, Bc(ψ(t)) ∈ Rn×q, Cc(ψ(t)) ∈ Rr×n. Applying the controller ϕc to the uncertain
AFTCSMP ϕ, we obtain the following closed loop system:











χ̇(t) = [Λ(ξ(t), η(t), ψ(t)) + ∆Λ(ξ(t))]χ(t) + Ē(ξ(t), η(t), ψ(t))w(t)

ȳ(t) = C̄2(ψ(t))χ(t) + D̄2(ξ(t), η(t))w(t)

z∞(t) = C̄1(η(t), ψ(t))χ(t)

(3)

where:

χ(t) = [x(t)T , v(t)T ]T ; ȳ(t) = [y(t)T , u(t)T ]T ; Λ(ξ(t), η(t), ψ(t)) =

[

A(ξ(t)) B(η(t))Cc(ψ(t))
Bc(ψ(t))C2 Ac(ψ(t))

]

;

∆Λ(ξ(t)) =

[

∆A(ξ(t)) 0

0 0

]

; Ē(ξ(t), η(t), ψ(t)) =

[

E(ξ(t), η(t))
Bc(ψ(t))D2(ξ(t), η(t))

]

;

C̄2(ψ(t)) =

[

C2 0

0 Cc(ψ(t))

]

; D̄2(ξ(t), η(t)) =

[

D2(ξ(t), η(t))
0

]

;

C̄1(η(t), ψ(t)) =
[

C1 D1(η(t))Cc(ψ(t))
]

.

2.1 The FDI and the Failure Processes

ξ(t), η(t) and ψ(t) being homogeneous Markov processes with finite state spaces, we can define the transition
probability of the plant components failure process as (Mahmoud et al. 2003, Srichander et al. 1993):







pij(∆t) = πij∆t + o(∆t) (i 6= j)

pii(∆t) = 1 − ∑

i6=j

πij∆t + o(∆t) (i = j)
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The transition probability of the actuator failure process is given by:







pkl(∆t) = νkl∆t + o(∆t) (k 6= l)

pkk(∆t) = 1 − ∑

k 6=l

νkl∆t + o(∆t) (k = l)

where πij is the plant components failure rate, and νkl is the actuator failure rate.
Given that ξ = k and η = l, the conditional transition probability of the FDI process ψ(t) is:







pkl
iv(∆t) = λkl

iv∆t + o(∆t) (i 6= v)

pkl
ii (∆t) = 1 − ∑

i6=v

λkl
iv∆t + o(∆t) (i = v)

Here, λkl
iv represents the transition rate from i to v for the Markov process ψ(t) conditioned on ξ = k ∈ Z

and η = l ∈ S. Depending on the values of i, v ∈ R, k ∈ Z and l ∈ S, various interpretations, such as rate
of false detection and isolation, rate of correct detection and isolation, false alarm recovery rate, etc, can
be given to λkl

iv (Mahmoud et al. 2003, Srichander et al. 1993).
Remark 1 Practically, it is difficult to determine the exact values of the conditional transition rates λkl

iv.
However, Monte Carlo simulations and prior information can be used to approximate these rates (Mahmoud
et al. 2003).

2.2 The Model of Parameter Uncertainties

The different plant models used in robust control system can have their own type of uncertainty represen-
tation. In general, modeling uncertainty is classified in a number of different ways (Zhou et al. 1996). In
this work, we consider the following forms of parameter uncertainties (Boukas et al. 1999, Mahmoud et al.
2000, Zhou et al. 1996):

2.2.1 Structured Uncertainties. This type of uncertainties arise from the linearization of a non linear
system around a fixed operating point. Two classes of structured uncertainties will be studied.
1) Norm Bounded Uncertainty (NBU)
The admissible parameter uncertainties are modelled as:

∆A(ξ(t)) = H(ξ(t))F (ξ(t))G(ξ(t))

where H(ξ(t)) ∈ Rn×pu , F (ξ(t)) ∈ Rpu×qu and G(ξ(t)) ∈ Rqu×n. H(ξ(t)), G(ξ(t)) are known constant
matrices, and F (ξ(t)) is a Lipschitz measurable matrix function satisfying the condition:

F T (ξ(t))F (ξ(t)) ≤ I, ∀t ≥ 0, ξ(t) ∈ Z

2) Linear Combination Uncertainty (LCU)
This form of structured uncertainty is modeled as:

∆A(ξ(t)) =

p∆
∑

l=1

Nl(ξ(t))al(ξ(t), t)

where Nl(ξ(t)) are known matrices and al(t) represent the bounded uncertain parameters, i.e.

|ali(t)| ≤ āi ∀l ∈ {1, ..., p∆}, ξ(t) = i ∈ Z, ∀t ≥ 0
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where āi are given positive scalars. The matrix Nl(ξ(t)) can be written as:

Nl(ξ(t)) = dl(ξ(t))v
T
l (ξ(t))

where dl(ξ(t)) and vl(ξ(t)) are matrices of appropriate dimensions.

2.2.2 Unstructured Uncertainties. The unstructured uncertainties are associated with unmodeled dy-
namics, truncation of high frequency modes, or nonlinearity in the system. A major class of this type of
uncertainty is the Value Bounded Uncertainty (VBU). In this class, parameter uncertainties are modeled
as:

|∆Ai| ≤ Mi, Mi = [mlj ]i;mlj ≥ 0

where | · | represents the modulus of entries of the corresponding matrix and Mi is known constant matrix
with all positive elements.
For notational simplicity, we will denote A(ξ(t)) = Ai, H(ξ(t)) = Hi, F (ξ(t)) = Fi and G(ξ(t)) = Gi

when ξ(t) = i ∈ Z, B(η(t)) = Bj and D1(η(t)) = D1j when η(t) = j ∈ S, E(ξ(t), η(t)) = Eij and
D2(ξ(t), η(t)) = D2ij when ξ(t) = i ∈ Z, η(t) = j ∈ S and Ac(ψ(t)) = Ack, Bc(ψ(t)) = Bck, Cc(ψ(t)) = Cck

when ψ(t) = k ∈ R. We also denote x(t) = xt, y(t) = yt, z∞(t) = z∞t, w(t) = wt, ξ(t) = ξt, η(t) = ηt,
ψ(t) = ψt and the initial conditions x(t0) = x0, ξ(t0) = ξ0, η(t0) = η0 and ψ(t0) = ψ0.

3 Definitions and Basic Results

For system (1), when ut ≡ 0 and ∆A(ξt) ≡ 0 for all t ≥ 0, we have the following definition:
Definition 3.1 System (1) is said to be internally exponentially stable in the mean square sense (IESS),
if there exist positive constants α and β such that the solution of

ẋt = A(ξt)xt

satisfies the following inequality

E
{

‖xt‖2
}

≤ β‖x0‖2 exp [−α(t − t0)] (4)

for arbitrary initial conditions (x0, ξ0, η0, ψ0).
When the system uncertainties are not equal to zero, the concept of stochastic stability becomes robust
stochastic stability and is defined for system (1) as follows:
Definition 3.2 System (1) is said to be robustly internally exponentially stable in the mean square sense
(RIESS), if there exist positive constants α and β such that the solution of

ẋt = [A(ξt) + ∆A(ξt)]xt

satisfies (4) for arbitrary initial conditions (x0, ξ0, η0, ψ0) and for all admissible uncertainties.
We conclude this section by recalling the following lemmas which will be useful for the proof of our main
results in the next sections.
Lemma 3.3 (Petersen et al. 1987) Let G, M , N be real matrices of appropriate dimensions. Then, for any
γ > 0, and for all the functional matrices satisfying MT (t)M(t) ≤ I, we have:

2xT PGM(t)Nx ≤ γxT PGGT Px + (1/γ)xT NT Nx
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Lemma 3.4 (Schur complement) (Boyd et al. 1994) Given constant matrices M, L,Q of appropriate di-
mensions where M and Q are symmetric, then Q > 0 and M + LT Q−1L < 0 if and only if:

[

M LT

⋆ −Q

]

< 0

4 Stochastic Stabilization

In this section, we will first derive a necessary and sufficient condition for the internal exponential (robust
exponential) stability in the mean square sense of the system (3), in term of coupled matrix inequalities,
and then we will give an LMI characterization of dynamical compensators (ϕc) that internally exponentially
stabilize (robustly stabilize) the closed-loop system in the mean square sense.

4.1 Internal Stochastic Stability

We are concerned by the problem of finding all the dynamical compensators ϕc, as defined in section 2,
such that the AFTCSMP (3) becomes internally exponentially stable in the mean square sense.
The following proposition gives a necessary and sufficient condition for internal exponential stability in the
mean square sense for the system (3).
Proposition 4.1 A necessary and sufficient condition for IESS of the system (3) is that there exist
symmetric positive-definite matrices Pijk, i ∈ Z, j ∈ S and k ∈ R such that:

Λ̃T
ijkPijk + PijkΛ̃ijk +

∑

h∈Z
h 6=i

πihPhjk +
∑

l∈S
l 6=j

νjlPilk +
∑

v∈R
v 6=k

λij
kvPijv = Ξijk < 0 (5)

where: Λ̃ijk = Λijk − 0.5I







∑

h∈Z
h 6=i

πih +
∑

l∈S
l 6=j

νjl +
∑

v∈R
v 6=k

λij
kv






.

Proof See (Aberkane et al. 2005). ¤

We are now able to present the following proposition which gives an LMI characterization of dynamical
compensators (ϕc) that internally stabilize the closed-loop system in the mean square sense.
Proposition 4.2 A necessary and sufficient condition for IESS of the system (3) is that the following
matrix inequalities:

[

ÃijkYijk + YijkÃ
T
ijk + F T

ijkB
T
j + BjFijk Rijk(Y )

⋆ Sijk(Y )

]

< 0,

[

Yijk I
⋆ Xijk

]

> 0 (6)

ÃT
ijkXijk + XijkÃijk + CT

2 HT
ijk + HijkC2 +

∑

h∈Z
h 6=i

πihXhjk +
∑

l∈S
l 6=j

νjlXilk +
∑

v∈R
v 6=k

λij
kvXijv < 0 (7)
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where



































































































Rijk = [R1ijk, R2ijk, R3ijk]

R1ijk =
[

αi1Yijk, ...αi(i−1)Yijk, αi(i+1)Yijk, ..., αizYijk

]

R2ijk =
[

βj1Yijk, ...βj(j−1)Yijk, βj(j+1)Yijk, ..., βjsYijk

]

R3ijk =
[

γk1Yijk, ...γk(k−1)Yijk, γk(k+1)Yijk, ..., γkrYijk

]

αil =
√

πil;βjl =
√

νjl; γkl =
√

λij
kl

Sijk = −diag [S1ijk, S2ijk, S3ijk]

S1ijk =
[

Y1jk, ..., Y(i−1)jk, Y(i+1)jk, ..., Yzjk

]

S2ijk =
[

Yi1k, ..., Yi(j−1)k, Yi(j+1)k, ..., Yisk

]

S3ijk =
[

Yij1, ..., Yij(k−1), Yij(k+1), ..., Yijr

]

Ãijk = Ai − 0.5I







∑

h∈Z
h 6=i

πih +
∑

l∈S
l 6=j

νjl +
∑

v∈R
v 6=k

λij
kv







have feasible solutions Xijk = XT
ijk, Yijk = Y T

ijk, Hijk, and Fijk. The corresponding compensator (ϕc) is
given by:

Acijk =
(

Xijk − Y −1
ijk

)−1









ÃT
ijk + XijkÃijkYijk + XijkBjFijk + HijkC2Yijk +









∑

h∈Z
h6=i

πihY −1
hjk

+
∑

l∈S
l 6=j

νjlY
−1
ilk +

∑

v∈R
v 6=k

λij
kvY

−1
ijv









Yijk









Y −1
ijk + 0.5I









∑

h∈Z
h 6=i

πih +
∑

l∈S
l 6=j

νjl +
∑

v∈R
v 6=k

λij
kv









(8)

Bcijk =
(

Y −1
ijk − Xijk

)−1
Hijk, Ccijk = FijkY

−1
ijk (9)

Proof see (Aberkane et al. 2005). ¤

4.2 Robust Internal Stochastic Stability

In this part, we shall address the problem of characterising all dynamical compensators ϕc that internally
robustly exponentially stabilize the uncertain AFTCSMP in the mean square sense. The uncertainties we
consider here are, respectively, structured ((NBU) and (LCU) uncertainties) and unstructured uncertainties
((VBU) uncertainties). The motivation to consider the above three different uncertainty forms is to provide
a more unified treatment to handle both structured and unstructured parameter uncertainties.
Before giving a characterization of the dynamical compensators ϕc, we first introduce the following propo-
sition which gives a necessary and sufficient condition for internal robust exponential stability in the mean
square sense for the system (3), in term of coupled matrix inequalities. Indeed, the LMI characterization
of the compensators is based on this condition.
Proposition 4.3 A necessary and sufficient condition for IRESS of the system (3) is that there exist
symmetric positive-definite matrices Pijk and some positive constants γi, i ∈ Z, j ∈ S and k ∈ R such that
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a) (NBU) uncertainties

Λ̃T
ijkPijk + PijkΛ̃ijk +

∑

h∈Z

h6=i

πihPhjk +
∑

l∈S

l 6=j

νjlPilk +
∑

v∈R

v 6=k

λij
kvPijv + γiPijkD̄iPijk + (1/γi)K̄i < 0 (10)

b) (LCU) uncertainties

Λ̃T
ijkPijk + PijkΛ̃ijk +

∑

h∈Z

h 6=i

πihPhjk +
∑

l∈S

l 6=j

νjlPilk +
∑

v∈R

v 6=k

λij
kvPijv + āiγiPijk

p∆
∑

l=1

d̄lid̄
T
liPijk + (āi/γi)

p∆
∑

l=1

v̄liv̄
T
li < 0

(11)

c) (VBU) uncertainties

Λ̃T
ijkPijk + PijkΛ̃ijk +

∑

h∈Z

h6=i

πihPhjk +
∑

l∈S

l 6=j

νjlPilk +
∑

v∈R

v 6=k

λij
kvPijv + γiPijkPijk + (n/γi)diag(M̄T

i M̄i) < 0 (12)

Where: D̄i = H̄iH̄
T
i , H̄i =

[

Hi

0

]

, K̄i = ḠT
i Ḡi, Ḡi =

[

Gi 0
]

, d̄li =

[

dli

0

]

, v̄li =

[

vli

0

]

, M̄i =
[

Mi 0
]

.

Proof We will only develop the proof for the case of (NBU) uncertainties. The same arguments can be used
for the other forms of uncertainties.
Let a quadratic stochastic Lyapunov function:

ϑ(χt, ξt, ηt, ψt) = χT
t P (ξt, ηt, ψt)χt (13)

where P (ξt, ηt, ψt) is a positive symmetric matrix ∀ξt = i ∈ Z, ηt = j ∈ R and ψt = k ∈ R. Evaluating
Lϑ(χt, ξt, ηt, ψt) for the system (3), when the quantities ξt = i ∈ Z, ηt = j ∈ R and ψt = k ∈ R have
occurred at some t ∈ [0,∞), we have:

Lϑ = χT
t

{

Λ̃T
ijkPijk + PijkΛ̃ijk +

∑

h∈Z
h 6=i

πihPhjk +
∑

l∈S
l 6=j

νjlPilk +
∑

v∈R
v 6=k

λij
kvPijv + 2Pijk∆Λi

}

χ (14)

Note that, due to presence of the parameter uncertainties, the weak infinitesimal operator of the uncertain
AFTCSMP contains an additional term in comparison with that of the certain AFTCSMP, that is

Luϑ(χt, ξt, ηt, ψt) = Lcϑ(χt, ξt, ηt, ψt) + ∆Lϑ(χt, ξt, ηt, ψt)

where Luϑ(χt, ξt, ηt, ψt) is the weak infinitesimal operator of the uncertain AFTCSMP, Lcϑ(χt, ξt, ηt, ψt)
is the weak infinitesimal operator of the certain AFTCSMP and ∆Lϑ(χt, ξt, ηt, ψt) is the part of the
weak infinitesimal operator associated with the parameter uncertainties. This part has an upper bound,
(∆Lϑ)bound. Then

Luϑ(χt, ξt, ηt, ψt) ≤ Lupϑ(χt, ξt, ηt, ψt) = Lcϑ(χt, ξt, ηt, ψt) + (∆Lϑ)bound (15)

where Lupϑ(χt, ξt, ηt, ψt) is the upper bound of the weak infinitesimal operator with the maximum uncer-
tainty values. From equation (14), the term due to the parameter uncertainties is

∆Lϑ(χt, i, j, k) = 2χT
t Pijk∆Λiχt.

Using lemma 3.3, the upper bound of ∆Lϑ(χt, i, j, k) is

2χT
t Pijk∆Λiχt = 2χT

t PijkH̄iFiḠiχt ≤ χT
t

[

γiPijkH̄iH̄
T
i Pijk + (1/γi)Ḡ

T
i Ḡi

]

χt
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Therefore: (∆Lϑ(χt, i, j, k))bound = χT
t

{

γiPijkD̄iPijk + (1/γi)K̄i

}

χt.
Remark 2 For the other forms of uncertainties, (∆Lϑ(χt, i, j, k))bound is given as follows:

• (LCU) uncertainties: (∆Lϑ(χt, i, j, k))bound = χT
t

{

āiγiPijk
∑p∆

l=1 d̄lid̄
T
liPijk + (āi/γi)

∑p∆

l=1 v̄liv̄
T
li

}

χt.

• (VBU) uncertainties: (∆Lϑ(χt, i, j, k))bound = χT
t

{

γiPijkPijk + (n/γi)diag(M̄T
i M̄i)

}

χt.

a) Sufficiency

Assume that there exist γi > 0 and Pijk > 0, i ∈ Z, j ∈ S and k ∈ R such that (10) is verified. Then
ϑ(χt, ξt, ηt, ψt) = χT

t P (ξt, ηt, ψt)χt is a stochastic Lyapunov function. From (10), we have

Lupϑ(χt, ξt, ηt, ψt) = Lcϑ(χt, ξt, ηt, ψt) + (∆Lϑ)bound < 0

then ∃ Q(ξt, ηt, ψt) > 0, such that Lupϑ(χt, ξt, ηt, ψt) = −χT
t Q(ξt, ηt, ψt)χt < 0. From (10), we obtain

Luϑ(χt, ξt, ηt, ψt) ≤ −χT
t Q(ξt, ηt, ψt)χt

For the quadratic Lyapunov function (13), we have

Luϑ(χt, ξt, ηt, ψt)

ϑ(χt, ξt, ηt, ψt)
≤ −χT

t Q(ξt, ηt, ψt)χt

χT
t P (ξt, ηt, ψt)χt

.

Taking the maximum, we obtain

Luϑ(χt, ξt, ηt, ψt)

ϑ(χt, ξt, ηt, ψt)
≤ max

i,j,k

[−χT
t Q(ξt, ηt, ψt)χt

χT
t P (ξt, ηt, ψt)χt

]

= −min
i,j,k

[

λminQ(ξt, ηt, ψt)

λmaxP (ξt, ηt, ψt)

]

= −α < 0 (16)

where λminQ(ξt, ηt, ψt) is the eigenvalue of the matrix Q(ξt, ηt, ψt) with the smallest real part, and
λmaxP (ξt, ηt, ψt) is the eigenvalue of P (ξt, ηt, ψt) with the largest real part, for all i ∈ Z, j ∈ S and
k ∈ R. α is a positive constant and represents the rate of convergence. We can rewrite (16) as

Luϑ(χt, ξt, ηt, ψt) ≤ −αϑ(χt, ξt, ηt, ψt)

From Dynkin’s formula and the Gronwell-Bellman lemma (Mahmoud et al. 2003), we have

E {ϑ(χt, ξt, ηt, ψt)} ≤ exp(−ǫ(t − t0))ϑ(χ0, ξ0, η0, ψ0, t)

or

E
{

‖χ(t; χ0, t0‖2
}

≤ b‖χ0‖2 exp [−ǫ(t − t0)]

where b and ǫ are positive constants.
Then, by definition 3.2, the dynamical system (3) is IRESS ∀t > t0.

b) Necessity

Assume that (3) is internally robustly exponentially stable in the mean square sense, then using same
arguments as in (Srichander et al. 1993) (Lemma 4.2), for any given positive-definite matrices Qijk, i ∈ Z,
j ∈ S and k ∈ R, there exist symmetric positive-definite matrices Pijk, i ∈ Z, j ∈ S and k ∈ R such that

Lupϑ(χt, ξt, ηt, ψt) = −χT
t Qijkχt < 0 (17)

where ϑ(χt, ξt, ηt, ψt) is given by (13). From (17), we conclude that there exist symmetric positive-definite
matrices Pijk, i ∈ Z, j ∈ S and k ∈ R and some positive constants γi, ∀i ∈ Z such that (10) is verified.
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Hence the proof is complete. ¤

The following proposition gives an LMI characterization of dynamical compensators (ϕc) that internally
robustly stabilize the closed-loop system in the mean square sense.

Proposition 4.4 A necessary and sufficient condition for internal robust exponential stability in the mean
square sense of the system (3) is that the following matrix inequalities





φijk ∆T
ijk Rijk(Y )

⋆ −γiI 0

⋆ ⋆ Sijk(Y )



 < 0,

[

θijk Ξijk

⋆ −(1/γi)I

]

< 0,

[

Yijk I
⋆ Xijk

]

> 0 (18)

where

a) (NBU) uncertainties































φijk = ÃijkYijk + YijkÃ
T
ijk + F T

ijkB
T
j + BjFijk + γiHiH

T
i

θijk = ÃT
ijkXijk + XijkÃijk + CT

2 LT
ijk + LijkC2

+(1/γi)G
T
i Gi +

∑

h∈Z
h 6=i

πihXhjk +
∑

l∈S
l 6=j

νjlXilk +
∑

v∈R
v 6=k

λij
kvXijv

∆ijk = GiYijk, Ξijk = XijkHi

b) (LCU) uncertainties











































φijk = ÃijkYijk + YijkÃ
T
ijk + F T

ijkB
T
j + BjFijk + āiγiWiW

T
i

θijk = ÃT
ijkXijk + XijkÃijk + CT

2 LT
ijk + LijkC2

+(āi/γi)T
T
i Ti +

∑

h∈Z
h 6=i

πihXhjk +
∑

l∈S
l 6=j

νjlXilk +
∑

v∈R
v 6=k

λij
kvXijv

Wi =
[

d1i . . . dp△i

]

, Ti =
[

v1i
... vp△i

]T
, ∆ijk =

√
āiTiYijk

Ξijk =
√

āiXijkWi

c) (VBU) uncertainties



































φijk = ÃijkYijk + YijkÃ
T
ijk + F T

ijkB
T
j + BjFijk + γiI

θijk = ÃT
ijkXijk + XijkÃijk + CT

2 LT
ijk + LijkC2

+(n/γi) diag(MT
i Mi) +

∑

h∈Z
h6=i

πihXhjk +
∑

l∈S
l 6=j

νjlXilk +
∑

v∈R
v 6=k

λij
kvXijv

∆ijk =
√

n diag(MT
i Mi)Yijk, Ξijk = Xijk

have feasible solutions Xijk = XT
ijk, Yijk = Y T

ijk, Lijk, Fijk and γi > 0, ∀i ∈ Z, j ∈ S and k ∈ R. The

corresponding compensator (ϕc) is given by

Bcijk = (Y −1
ijk − Xijk)

−1Lijk, Ccijk = FijkY
−1
ijk (19)
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Acijk =
(

Xijk − Y −1
ijk

)−1









ÃT
ijk + XijkÃijkYijk + XijkBjFijk + LijkC2Yijk +









∑

h∈Z
h 6=i

πihY −1
hjk

+
∑

l∈S
l 6=j

νjlY
−1
ilk +

∑

v∈R
v 6=k

λij
kvY

−1
ijv + Σijk









Yijk + Φijk









Y −1
ijk + 0.5I









∑

h∈Z
h 6=i

πih +
∑

l∈S
l 6=j

νjl +
∑

v∈R
v 6=k

λij
kv









(20)

where

• (NBU) uncertainties: Σijk = (1/γi)G
T
i Gi, Φijk = γiXijkHiH

T
i .

• (LCU) uncertainties: Σijk = (āi/γi)T
T
i Ti, Φijk = āiγiXijkWiW

T
i .

• (VBU) uncertainties: Σijk = (n/γi)diag(MT
i Mi), Φijk = γiXijk.

Proof The proof of this proposition follows the same arguments as for the proof of proposition 4.2. ¤

5 H∞ Control

In this section, we deal with the design of controllers that stochastically stabilize the closed-loop system
and guarantee the disturbance rejection, with a certain level µ > 0. This problematic is addressed under
a convex optimization framework. Mathematically, we are concerned with the LMI characterization of
dynamical compensators ϕc that stochastically stabilize the system (3) and guarantee the following for all
w ∈ L2[0,∞):

‖ z∞ ‖E2
= E

{∫ ∞

0
zT
∞tz∞tdt

}1/2

< µ
[

‖ w ‖2
2 +a(χ0, ξ0, η0, ψ0)

]1/2
(21)

where µ > 0 is a prescribed level of disturbance attenuation to be achieved and a(χ0, ξ0, η0, ψ0) is a constant
that depends on the initial conditions (χ0, ξ0, η0, ψ0). To this end, we need the auxiliary result given by the
following proposition.
Proposition 5.1 If the system (3) is IESS, for every w = {wt; t ≥ 0} ∈ L2[0,∞), we have that χ =
{χt; t ≥ 0} ∈ L2((Ω,F , P ), [0,∞)), i.e., E

{∫ ∞

0 χT
t χtdt

}

< ∞, for any initial conditions (χ0, ξ0, η0, ψ0)
Proof Since the system (3) is internally exponentially stable in the mean square sense, it follows from
proposition 4.1 that there exist symmetric positive-definite matrices Pijk, i ∈ Z, j ∈ S and k ∈ R such
that (5) is verified.
Note that it is easy to show that there exists α > 0, such that

Ξijk + αP 2
ijk < 0.

∀i ∈ Z, j ∈ S and k ∈ R.
Let us consider the same quadratic stochastic Lyapunov function as in (13). Then

Lϑ(χt, ξt, ηt, ψt) = χT
t {Ξ(ξt, ηt, ψt)}χt + 2χT

t P (ξt, ηt, ψt)Ē(ξt, ηt, ψt)wt. (22)

Using lemma 3.3, it follows from (22) that

Lϑ(χt, ξt, ηt, ψt) ≤ −χT
t Γ(ξt, ηt, ψt)χt + α−1wT

t Ē(ξt, ηt, ψt)
T Ē(ξt, ηt, ψt)wt
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where Γ(ξt, ηt, ψt) = −Ξ(ξt, ηt, ψt) − αP 2(ξt, ηt, ψt). From Dynkin’s formula, we have

E {ϑ(χT , ξT , ηT , ψT )} − ϑ(χ0, ξ0, η0, ψ0) = E
{∫ T

0
Lϑ(χτ , ξτ , ητ , ψτ )dτ

}

≤ −E
{∫ T

0
χT

τ Γ(ξτ , ητ , ψτ )χτdτ

}

+ α−1E
{∫ T

0
wT

τ Ē(ξτ , ητ , ψτ )
T Ē(ξτ , ητ , ψτ )wτdτ

}

≤ −E
{∫ T

0
λminΓ(ξτ , ητ , ψτ )χ

T
τ χτdτ

}

+ α−1E
{∫ T

0
λmax(Ē(ξτ , ητ , ψτ )

T Ē(ξτ , ητ , ψτ ))w
T
τ wτdτ

}

(23)

From (23), we get

lim
T→∞

{

E
{

χT
T P (ξT , ηT , ψT )χT

}

+ min
i,j,k

{λminΓ(i, j, k)} E
{∫ T

0
χT

τ χτdτ

}}

≤
{

χT
0 P (ξ0, η0, ψ0)χ0

}

+ α−1max
i,j,k

{

λmaxĒ
T (i, j, k)Ē(i, j, k)

}

E
{∫ ∞

0
wT

τ wτdτ

}

(24)

From (24), and knowing that E
{

χT
t P (ξt, ηt, ψt)χt

}

≥ 0 and w(·) ∈ L2[0,∞), then the system (3) is
stochastically stable. Hence the proof is complete. ¤

Proposition 5.2 If there exist symmetric positive-definite matrices Pijk, i ∈ Z, j ∈ S and k ∈ R such
that

Λ̃T
ijkPijk + PijkΛ̃ijk + C̄T

1jkC̄1jk + µ−2PijkĒijkĒT
ijkPijk +

∑

h∈Z

h 6=i

πihPhjk +
∑

l∈S

l 6=j

νjlPilk +
∑

v∈R

v 6=k

λij
kvPijv = Πijk < 0 (25)

then the system (3) (when the uncertainties are equal to zero) is stochastically stable and satisfies

‖ z∞ ‖E2
<

[

µ2 ‖ w ‖2
2 +χT

0 P (ξ0, η0, ψ0)χ0

]1/2
. (26)

Proof Since C̄T
1jkC̄1jk + µ−2PijkĒijkĒ

T
ijkPijk ≥ 0, it follows from (25) and proposition 4.1, that the system

(3) is internally exponentially stable in the mean square sense. Using proposition 5.1, it follows that (3) is
stochastically stable.
Let us now prove that (26) is verified. We begin by defining the following function

JT = E
{∫ T

0

(

zT
∞tz∞t − µ2wT

t wt

)

dt

}

(27)

Then, to prove (26), it suffices to establish that: J∞ ≤ χT
0 P (ξ0, η0, ψ0)χ0.

Let a quadratic stochastic Lyapunov function as defined in (13), then:

Lϑ(χt, ξt, ηt, ψt) = χT
t {Ξ(ξt, ηt, ψt)}χt + 2χT

t P (ξt, ηt, ψt)Ē(ξt, ηt, ψt)wt. (28)
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adding and subtracting E
{

∫ T
0 Lϑ(χt, ξt, ηt, ψt)dt

}

to (27), we get

JT = E
{∫ T

0
χT

t

[

Ξ(ξt, ηt, ψt) + C̄1(ηt, ψt)
T C̄1(ηt, ψt)

]

χt

+ µ−2χT
t P (ξt, ηt, ψt)Ē(ξt, ηt, ψt)Ē(ξt, ηt, ψt)

T P (ξt, ηt, ψt)χt

− µ2(wt − µ−2Ē(ξt, ηt, ψt)
T P (ξt, ηt, ψt)χt)

T

(wt − µ−2Ē(ξt, ηt, ψt)
T P (ξt, ηt, ψt)χt)dt

}

− E
{∫ T

0
Lϑ(χt, ξt, ηt, ψt)dt

}

= E
{

∫ T

0
χT

t

[

Π(ξt, ηt, ψt)
]

χt − µ2(wt − µ−2Ē(ξt, ηt, ψt)
T P (ξt, ηt, ψt)χt)

T

(wt − µ−2Ē(ξt, ηt, ψt)
T P (ξt, ηt, ψt)χt)dt

}

− E
{∫ T

0
Lϑ(χt, ξt, ηt, ψt)dt

}

(29)

From Dynkin’s formula, we have

E {ϑ(χT , ξT , ηT , ψT )} − ϑ(χ0, ξ0, η0, ψ0) = E
{∫ T

0
Lϑ(ξt, ηt, ψt)dt

}

(30)

Since Π(ξt, ηt, ψt) < 0 and E {ϑ(χT , ξT , ηT , ψT )} ≥ 0, it follows from (29) and (30) that

JT ≤ ϑ(χ0, ξ0, η0, ψ0)

which yields J∞ ≤ χT
0 P (ξ0, η0, ψ0)χ0. Hence the proof is complete. ¤

The H∞ constraints (26) can be rephrased in LMI form. This is illustrated by proposition 5.3, which gives
an LMI characterization of output feedback dynamical compensators (ϕc) that stochastically stabilize the
AFTCSMP and ensures (26).
Proposition 5.3 The H∞ constraints (25) are equivalent to that (31)-(32)





φ̄ijk (C1Yijk + D1jFijk)
T Rijk(Y )

(C1Yijk + D1jFijk) −I 0
Rijk(Y )T 0 Sijk(Y )



 < 0 (31)

[

θ̄ijk (XijkEij + LijkD2ij)
(XijkEij + LijkD2ij)

T −µ2I

]

< 0,

[

Yijk I
I Xijk

]

> 0 (32)

where























φ̄ijk = ÃijkYijk + YijkÃ
T
ijk + F T

ijkB
T
j + BjFijk + µ−2EijE

T
ij

θ̄ijk = ÃT
ijkXijk + XijkÃijk + CT

2 LT
ijk + LijkC2

+CT
1 C1 +

∑

h∈Z
h 6=i

πihXhjk +
∑

l∈S
l 6=j

νjlXilk +
∑

v∈R
v 6=k

λij
kvXijv

have feasible solutions Xijk = XT
ijk, Yijk = Y T

ijk, Lijk and Fijk, ∀i ∈ Z, j ∈ S and k ∈ R. The corresponding

compensator (ϕc) is given by

Bcijk = (Y −1
ijk − Xijk)

−1Lijk, Ccijk = FijkY
−1
ijk (33)
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Acijk =
(

Xijk − Y −1
ijk

)−1









ÃT
ijk + XijkÃijkYijk + XijkBjFijk + LijkC2Yijk +









∑

h∈Z
h 6=i

πihY −1
hjk

+
∑

l∈S
l 6=j

νjlY
−1
ilk +

∑

v∈R
v 6=k

λij
kvY

−1
ijv









Yijk + CT
1 (C1Yijk + D1jFijk) + µ−2(XijkEij + LijkD2ij)









Y −1
ijk

+ 0.5I









∑

h∈Z
h6=i

πih +
∑

l∈S
l 6=j

νjl +
∑

v∈R
v 6=k

λij
kv









(34)

Proof The proof of this proposition follows essentially the same lines as for the proof of proposition 4.2.¤

6 Robust H∞ Control

In this section, we investigate the robust H∞ control of uncertain AFTCSMP subject to both structured
((NBU) and (LCU) uncertainties) and unstructured uncertainties ((VBU) uncertainties). It is shown that
the above problematic can be recast as a convex optimization problem characterized by LMI, providing
thus a characterization of output feedback dynamical compensators that robustly stochastically stabilize
the AFTCSMP and ensures (26) for all admissible uncertainties.
The robust H∞ control problem addressed in this paper can be formulated as follows: given a prescribed
level of disturbance attenuation µ > 0, construct a dynamic output feedback controller of the form (2) such
that the following two requirements are satisfied:

a) The uncertain AFTCSMP (3) is robustly stochastically stable;
b) (26) is satisfied for all w ∈ L2[0,∞) and all admissible uncertainties.

Before introducing the sufficient condition for the solvability of the robust H∞ control problem, we first
give the following proposition which will play a key role in the derivation of our main results.
Proposition 6.1 If the system (3) is IRESS, for every w = {wt; t ≥ 0} ∈ L2[0,∞), we have that χ =
{χt; t ≥ 0} ∈ L2((Ω,F , P ), [0,∞)), i.e., E

{∫ ∞

0 χT
t χtdt

}

< ∞, for any initial conditions (χ0, ξ0, η0, ψ0) and
for all admissible uncertainties.
Proof The proof of this proposition follows the same arguments as for the proof of proposition 5.1. ¤

Proposition 6.2 If there exist symmetric positive-definite matrices Pijk and some positive constants γi,
i ∈ Z, j ∈ S and k ∈ R such that

a) (NBU) uncertainties

Λ̃T
ijkPijk + PijkΛ̃ijk + C̄T

1jkC̄1jk + µ−2PijkĒijkĒ
T
ijkPijk + γiPijkD̄iPijk

+ γ−1
i K̄i +

∑

h∈Z
h 6=i

πihPhjk +
∑

l∈S
l 6=j

νjlPilk +
∑

v∈R
v 6=k

λij
kvPijv < 0 (35)
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b) (LCU) uncertainties

Λ̃T
ijkPijk + PijkΛ̃ijk + C̄T

1jkC̄1jk + µ−2PijkĒijkĒ
T
ijkPijk + āiγiPijk

p∆
∑

l=1

d̄lid̄
T
liPijk

+ (āi/γi)

p∆
∑

l=1

v̄liv̄
T
li +

∑

h∈Z
h6=i

πihPhjk +
∑

l∈S
l 6=j

νjlPilk +
∑

v∈R
v 6=k

λij
kvPijv < 0 (36)

c) (VBU) uncertainties

Λ̃T
ijkPijk + PijkΛ̃ijk + C̄T

1jkC̄1jk + µ−2PijkĒijkĒ
T
ijkPijk + γiPijkPijk

+ (n/γi) diag(M̄T
i M̄i) +

∑

h∈Z
h 6=i

πihPhjk +
∑

l∈S
l 6=j

νjlPilk +
∑

v∈R
v 6=k

λij
kvPijv < 0 (37)

∀i ∈ Z, j ∈ S and k ∈ R.
then the system (3) is robustly stochastically stable and satisfies

‖ z∞ ‖E2
<

[

µ2 ‖ w ‖2
2 +χT

0 P (ξ0, η0, ψ0)χ0

]1/2
. (38)

for all admissible uncertainties.
Proof The proof of this proposition follows the same lines as for the proof of proposition 5.2. ¤

Proposition 6.3 The constraints (35) ((36) and (37), respectively) are equivalent to the following matrix
inequalities









Υijk (C1Yijk + D1jFijk)
T ∆T

ijk Rijk(Y )

⋆ −I 0 0

⋆ ⋆ −γiI 0

⋆ ⋆ ⋆ Sijk(Y )









< 0,





Ωijk (XijkEij + LijkD2ij) Ξijk

⋆ −µ2I 0

⋆ ⋆ −(1/γi)I



 < 0 (39)

[

Yijk I
⋆ Xijk

]

> 0 (40)

where

a) (NBU) uncertainties























Υijk = ÃijkYijk + YijkÃ
T
ijk + F T

ijkB
T
j + BjFijk + µ−2EijE

T
ij + γiHiH

T
i

Ωijk = ÃT
ijkXijk + XijkÃijk + CT

2 LT
ijk + LijkC2

+CT
1 C1 + (1/γi)G

T
i Gi +

∑

h∈Z
h 6=i

πihXhjk +
∑

l∈S
l 6=j

νjlXilk +
∑

v∈R
v 6=k

λij
kvXijv

b) (LCU) uncertainties























Υijk = ÃijkYijk + YijkÃ
T
ijk + F T

ijkB
T
j + BjFijk + µ−2EijE

T
ij + γiāiWiW

T
i

Ωijk = ÃT
ijkXijk + XijkÃijk + CT

2 LT
ijk + LijkC2

+CT
1 C1 + (āi/γi)T

T
i Ti +

∑

h∈Z
h6=i

πihXhjk +
∑

l∈S
l 6=j

νjlXilk +
∑

v∈R
v 6=k

λij
kvXijv
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c) (VBU) uncertainties























Υijk = ÃijkYijk + YijkÃ
T
ijk + F T

ijkB
T
j + BjFijk + µ−2EijE

T
ij + γiI

Ωijk = ÃT
ijkXijk + XijkÃijk + CT

2 LT
ijk + LijkC2

+CT
1 C1 + (n/γi) diag(MT

i Mi) +
∑

h∈Z
h 6=i

πihXhjk +
∑

l∈S
l 6=j

νjlXilk +
∑

v∈R
v 6=k

λij
kvXijv

have feasible solutions Xijk = XT
ijk, Yijk = Y T

ijk, Lijk, Fijk and γi > 0, ∀i ∈ Z, j ∈ S and k ∈ R. The

corresponding compensator (ϕc) is given by

Bcijk = (Y −1
ijk − Xijk)

−1Lijk, Ccijk = FijkY
−1
ijk (41)

Acijk =
(

Xijk − Y −1
ijk

)−1
[

ÃT
ijk + XijkÃijkYijk + XijkBjFijk + LijkC2Yijk +









∑

h∈Z
h 6=i

πihY −1
hjk

+
∑

l∈S
l 6=j

νjlY
−1
ilk +

∑

v∈R
v 6=k

λij
kvY

−1
ijv + Σijk









Yijk + Φijk

+ CT
1 (C1Yijk + D1jFijk) + µ−2(XijkEij + LijkD2ij)

]

Y −1
ijk + 0.5I









∑

h∈Z
h 6=i

πih +
∑

l∈S
l 6=j

νjl +
∑

v∈R
v 6=k

λij
kv









(42)

7 Conclusion

In this paper, we have first considered the problematic of dynamic output feedback stochastic stabiliza-
tion and robust stochastic stabilization of an uncertain AFTCSMP. It was shown that the necessary and
sufficient conditions for the internal exponential stability in the mean square sense (robust internal expo-
nential stability, respectively) can be written in terms of an LMI feasibility problem. This leads to an LMI
characterization of all dynamical output feedback compensators that satisfied the stability requirements.
Having obtained these results, we have moved on the control problem. Indeed, we have introduced an LMI
approach to the H∞ and robust H∞ control for linear uncertain continuous time AFTCSMP under a dy-
namic output feedback control. We have derived some linear matrix inequalities whose solutions indicate
the achievability of the desired control problems; i.e. we have shown that the H∞ and robust H∞ control
problematic can be recast as a convex optimization problem under constraints of LMIs which can be solved
effectively using the recently developed LMI tool. Then, based on these LMIs, we have given a simple
procedure to construct the required output feedback stabilizing controllers.
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