
HAL Id: hal-00201083
https://hal.science/hal-00201083

Preprint submitted on 23 Dec 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Asymptotic Models for Internal Waves
Jerry Bona, David Lannes, Jean-Claude Saut

To cite this version:
Jerry Bona, David Lannes, Jean-Claude Saut. Asymptotic Models for Internal Waves. 2007. �hal-
00201083�

https://hal.science/hal-00201083
https://hal.archives-ouvertes.fr


ha
l-

00
20

10
83

, v
er

si
on

 1
 -

 2
3 

D
ec

 2
00

7

Asymptotic Models for Internal Waves

J. L. Bona1, D. Lannes2 and J.-C. Saut3

December 17, 2007

Abstract

We derived here in a systematic way, and for a large class of scaling
regimes, asymptotic models for the propagation of internal waves at
the interface between two layers of immiscible fluids of different densi-
ties, under the rigid lid assumption and with a flat bottom. The full
(Euler) model for this situation is reduced to a system of evolution
equations posed spatially on Rd, d = 1, 2, which involve two nonlocal
operators. The different asymptotic models are obtained by expanding
the nonlocal operators with respect to suitable small parameters that
depend variously on the amplitude, wave-lengths and depth ratio of
the two layers. We rigorously derive classical models and also some
model systems that appear to be new. Furthermore, the consistency
of these asymptotic systems with the full Euler equations is established.

Nous établissons ici de manière systématique, et pour une grande
classe de régimes, des modèles asymptotiques pour la propagation
d’ondes internes à l’interface de deux couches de fluides immiscibles
de densité différente, sous l’hypothèse de toit rigide et de fond plat.
Les équations complètes pour cette situation (Euler) sont réduites à
un système d’équations d’évolution posé dans le domaine spatial Rd,
d = 1, 2, et qui comprend deux opérateurs non locaux. Les divers
modèles asymptotiques sont obtenus en développant les opérateurs non
locaux par rapport à des petits paramètres convenables (dépendant de
l’amplitude, de la longueur d’onde et du rapport de hauteur des deux
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couches). Nous établissons rigoureusement des modèles classiques ainsi
que d’autres qui semblent nouveaux. De plus, on montre la consistance
de ces systèmes asymptotiques avec les équations d’Euler.

1 Introduction

1.1 General Setting

The mathematical theory of waves on the interface between two layers of
immiscible fluid of different densities has attracted interest because it is
the simplest idealization for internal wave propagation and because of the
challenging modeling, mathematical and numerical issues that arise in the
analysis of this system. The recent survey article of Helfrich and Melville [20]
provides a rather extensive bibliography and a good overview of the prop-
erties of steady internal solitary waves in such systems as well as for more
general density stratifications. The compendium [22] of field observations
comprised of synthetic aperture radar (SAR) images of large-amplitude in-
ternal waves in different oceans together with associated physical data shows
just how varied can be the propagation of internal waves. This variety is
reflected in the mathematical models for such phenomena. Because of the
range of scaling regimes that come to the fore in real environments, the
literature on internal wave models is markedly richer in terms of different
types of model equations than is the case for surface wave propagation (see,
e.g. [8, 10] and the references therein).

The idealized system that will be the focus of the discussion here, when
it is at rest, consists of a homogeneous fluid of depth d1 and density ρ1

lying over another homogeneous fluid of depth d2 and density ρ2 > ρ1. The
bottom on which both fluids rest is presumed to be horizontal and featureless
while the top of fluid 1 is restricted by the rigid lid assumption, which is
to say, the top is viewed as an impenetrable, bounding surface. This is a
standard assumption, and is reckoned to be a good one when the pycnocline
is far from the top, which is when d1 is large relative to the wavelength
of a disturbance. In the present work, two general classes of waves will
be countenanced. Both of these require that the deviation of the interface
be a graph over the flat bottom, so overturning waves are not within the
purview of our theory (see Figure 1 for a definition sketch). The first,
which is referred to as the one-dimensional case, are long-crested waves that
propagate principally along one axis, say along the x-direction in a standard
x − y − z Cartesian frame in which z is directed opposite to the direction
in which gravity acts. Such motions are taken to be sensibly independent
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of the y-coordinate and can be successfully modeled in the first instance by
the two-dimensional Euler system involving only the independent variables
x, z and of course time t. Because the interface is a graph over the bottom,
these asymptotic models then depend only upon x ∈ R and t, and hence the
appellation ‘one-dimensional’. Among one-dimensional models, the simplest
are those in which one further assumes that the waves travel only in one
direction, say in the direction of increasing values of x. Models which we will
call ‘two-dimensional’ are not restricted by the long-crested presumption,
and are consequently more general than the one-dimensional models. They
are derived from the full three-dimensional Euler system and their dependent
variables depend upon the spatial variable X = (x, y) ∈ R2 and time t.

One-dimensional, unidirectional, weakly nonlinear models such as the
Korteweg-de Vries (KdV) equation , the Intermediate Long Wave (ILW)
equation [23, 25] or the Benjamin-Ono equation [5] have been extensively
used and compared with laboratory experiments [24, 31, 36]. While much of
our qualitative appreciation of the interaction between the competing effects
of nonlinearity and dispersion in surface and internal wave propagation has
been informed by these sorts of equations, they are of somewhat limited
validity (c.f. [1]). Weakly nonlinear models in two-dimensions have been
derived by Camassa and Choi [14]. Nguyen and Dias [29] have derived and
studied a Boussinesq-type system in a weakly nonlinear regime. Fully nonlin-
ear models were obtained in the one-dimensional case by Matsuno [28], and
in the two-dimensional case by Camassa and Choi [15]. We mention also the
interesting paper by Camassa et al. [12] where the aforementioned models
are compared, in the one-dimensional case, with experimental observations
and numerical integrations of the full Euler system. In [14, 15, 28] the anal-
ysis commences with the full Euler system formulation and the asymptotic
models are obtained by formally expanding the unknowns with respect to
a small parameter. It is not easy using this approach to provide a rigorous
justification of the asymptotic expansion, except perhaps within the setting
of analytic functions. A different approach has been carried out by Craig,
Guyenne and Kalisch [17] in the one-dimensional case. These authors use the
Hamiltonian formulation of the Euler equations (due originally to Zakharov
[37] for surface waves and to Benjamin and Bridges [6] for internal waves)
and expand the Hamiltonian with respect to the relevant small parameters.
This method provides a hierarchy of Hamiltonian systems which serve as
approximations of the full Euler equations. Such systems are not always the
best for modeling, analytical or numerical purposes, however. Indeed, they
can even be linearly ill-posed in Hadamard’s classical sense. In such cases,
it is necessary in the Hamiltonian framework to proceed one stage further
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in the expansion, leading to more complicated systems (which may still not
be well posed).

The strategy followed here is inspired by that initiated in [8, 9, 10].
Namely, following the procedure introduced in [17, 19, 37], we rewrite the
full system as a system of two evolution equations posed on Rd, where d = 1
or 2 depending upon whether a one- or two-dimensional model is being con-
templated. The reformulated system, which depends only upon the spatial
variable on the interface, involves two non-local operators, a Dirichlet-to-
Neumann operator G[ζ], and what we term an “interface operator” H[ζ],
defined precisely below. Of course the operator H[ζ] does not appear in the
theory of surface waves, and this is an interesting new aspect of the internal
wave theory. A rigorously justified asymptotic expansion of the non-local
operators with respect to dimensionless small parameters is then mounted.
We consider both the “weakly nonlinear” case and the “fully nonlinear” sit-
uation and cover a variety of scaling regimes. For the considered scaling
regimes, these expansions then lead to an asymptotic evolution system. As
in [8, 9, 10], in each case a family of asymptotic models may then be inferred
by using the “BBM trick” and suitable changes of the dependent variables.
This analysis recovers most of the systems which have been introduced in
the literature and also some interesting new ones. For instance, in certain
of the two-dimensional regimes, a non-local operator appears whose analog
is not present in any of the one-dimensional cases.

All the systems derived are proved to be consistent with the full Euler
system. In rough terms, this means that any solution of the latter solves
any of the asymptotic systems up to a small error. The systems are thus
seen to be formally equivalent models in terms of the small parameter‘s that
arise in the expansions. The advantage of obtaining a family of equivalent
asymptotic systems is clear from the modeling perspective. One can use the
flexibility to adjust the linearized dispersion relation to better fit the exact
dispersion and can choose horizontal velocity variables that are well suited
to the predictions in view. Mathematically, the choice will be among those
that are well posed for the particular initial-value or initial-boundary-value
problem under consideration. When it comes to computer simulation, some
of the systems are far better suited to the construction of stable, accurate
numerical schemes and these would naturally be favored.

The paper is organized as follows. In the next portion of the Introduc-
tion, the “Zakharov formulation” of the full system is written in dimension-
less form and the different scaling regimes which will be studied enunciated.
In Subsection 1.5, a compendium of the outcome of our analysis is offered to
guide the reader through the rest of the paper. Chapter 2 is devoted to the
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rigorous asymptotic analysis of the non-local, Dirichlet-to-Neumann opera-
tor G[ζ] and the interface operator H[ζ] mentioned earlier. The asymptotic
models that result from the use of the expansions of these two operators are
introduced (and proved to be consistent with the full Euler system) in Chap-
ter 3. The somewhat technical proof of Proposition 3 is given in Appendix
A.

In the present paper, we have refrained from pursuing the analysis to
the point of obtaining convergence results for the asymptotic systems to
the full internal waves system. Such a program has been fully achieved in
the case of surface waves by combining the results of [2] and [10]. What is
needed to complete the circle of ideas in the internal wave case is a stability
analysis of the asymptotic models derived here (that is, an estimation of the
remainders which comprise the difference between the Euler system and the
models). Together with consistency, a straightforward analysis would then
provide a convergence result to the full Euler system, assuming that the
large time existence results obtained by Alvarez-Samaniego and Lannes in
[2] for the surface wave system are valid for the internal waves system. The
latter point is far from obvious; indeed, even the local well-posedness of the
Euler equations in the two-fluid configuration seems to be an open problem
in the absence of surface tension (cf [30] for the rigorous derivation of the
Benjamin-Ono equation for the two-fluid system in the presence of surface
tension).

Note finally that the analysis of the present paper could be extended to
the case of a seabed with structure (a non-flat bottom, see [13] for the case of
surface waves) and to the case of a two-layer system where the upper surface
is free rather than restricted by the rigid lid hypothesis (see [3, 19, 28] for
a derivation of asymptotic models in this situation). These issues are under
study and an analysis will be reported separately. Of especial interest is a
comparison of the problem considered with the rigid-lid condition at the top
and the problem wherein the upper surface is left free in the case where d1

is relatively large.
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Notation
Denote by X the d-dimensional horizontal variable as described earlier,

where d = 1, 2. Thus, X = x when d = 1 and X = (x, y) when d = 2. We
continue to use z for the vertical variable.

The usual symbols ∇ and ∆ connote the gradient and Laplace operator
in the horizontal variables, whereas ∇X,z and ∆X,z are their d+ 1-variable
version (the gradient in both or all three variables, depending on whether
d = 1 or 2 and similarly for the Laplacian). For µ > 0, it is very convenient to
also introduce scaled versions of the gradient and Laplace operators, namely
∇µ

X,z = (
√
µ∇T , ∂z)

T and ∆µ
X,z = ∇µ

X,z · ∇
µ
X,z = µ∆ + ∂2

z .
For any tempered distribution u, denote by û or Fu its Fourier transform.

If f and u are two functions defined on Rd, we use the Fourier multiplier
notation f(D)u which is defined in terms of Fourier transforms, viz.

f̂(D)u = fû.

The projection onto gradient fields in L2(Rd)d is written Π and is defined
by the formula

Π = −∇∇T

|D|2 .

(Note that Π = Id when d = 1.) The operator Λ = (1 − ∆)1/2 is equiva-
lently defined using the Fourier multiplier notation to be Λ = (1 + |D|2)1/2.
Appearing frequently are the Fourier multipliers Tµ and Tµ2 , given by

Tµ = tanh(
√
µ|D|) and Tµ2 = tanh(

√
µ2|D|);

where µ, µ2 > 0.
The standard notation Hs(Rd), or simply Hs if the underlying domain is

clear from the context, is used for the L2-based Sobolev spaces; their norm
is written | · |Hs .

The planar strip S = Rd × (−1, 0) appears often. The unadorned norm
‖ · ‖ will always be the usual norm of L2(S).

1.2 The Equations

The Euler system of equations for our system is reviewed here. As in Fig-
ure 1, the origin of the vertical coordinate z is taken at the rigid top of
the two-fluid system. Assuming each fluid is incompressible and each flow
irrotational, there exists velocity potentials Φi (i = 1, 2) associated to both
the upper and lower fluid layers which satisfy

∆X,zΦi = 0 in Ωi
t (1)
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for all time t, where Ωi
t denotes the region occupied by fluid i at time t,

i = 1, 2. As above, fluid 1 refers to the upper fluid layer whilst fluid 2 is the
lower layer (see again Figure 1). Assuming that the densities ρi, i = 1, 2, of
both fluids are constant, we also have two Bernouilli equations, namely,

∂tΦi +
1

2
|∇X,zΦi|2 = −P

ρi
− gz in Ωi

t, (2)

where g denotes the acceleration of gravity and P the pressure inside the
fluid. These equations are complemented by two boundary conditions stat-
ing that the velocity must be horizontal at the two rigid surfaces Γ1 := {z =
0} and Γ2 := {z = −d1 − d2}, which is to say

∂zΦi = 0 on Γi, (i = 1, 2). (3)

Finally, as mentioned earlier, it is presumed that the interface is given as
the graph of a function ζ(t,X) which expresses the deviation of the interface
from its rest position (X,−d1) at the spatial coordinate X at time t. The
interface Γt := {z = −d1 + ζ(t,X)} between the fluids is taken to be a
bounding surface, or equivalently it is assumed that no fluid particle crosses
the interface. This condition, written for fluid i, is classically expressed by
the relation ∂tζ =

√
1 + |∇ζ|2vi

n, where vi
n denotes the upwards normal

derivative of the velocity of fluid i at the surface. Since this equation must
of course be independant of which fluid is being contemplated, it follows
that the normal component of the velocity is continuous at the interface.
The two equations

∂tζ =
√

1 + |∇ζ|2∂nΦ1 on Γt, (4)

and
∂nΦ1 = ∂nΦ2 on Γt, (5)

with

∂n := n · ∇X,z and n :=
1√

1 + |∇ζ|2
(−∇ζ, 1)T

follow as a consequence. A final condition is needed on the pressure to close
this set of equations, namely,

P is continuous at the interface. (6)
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1.3 Transformation of the Equations

In this subsection, a new set of equations is deduced from the internal-wave
equations (1)-(6). Introduce the trace of the potentials Φ1 and Φ2 at the
interface,

ψi(t,X) := Φi(t,X,−d1 + ζ(t,X)), (i = 1, 2).

One can evaluate Eq. (2) at the interface and use (4) and (5) to obtain a
set of equations coupling ζ to ψi (i = 1, 2), namely

∂tζ −
√

1 + |∇ζ|2∂nΦi = 0, (7)

ρi

(
∂tψi + gζ +

1

2
|∇ψi|2 −

(
√

1 + |∇ζ|2(∂nΦi) + ∇ζ · ∇ψi)
2

2(1 + |∇ζ|2)
)

= −P, (8)

where in (7) and (8), (∂nΦi) and P are both evaluated at the interface
z = −d1 + ζ(t,X). Notice that ∂nΦ1 is fully determined by ψ1 since Φ1

is uniquely given as the solution of Laplace’s equation (1) in the upper
fluid domain, the Neumann condition (3) on Γ1 and the Dirichlet condition
Φ1 = ψ1 at the interface. Following the formalism introduced for the study
of surface water waves in [18, 19, 37], we can therefore define the Dirichlet-
Neumann operator G[ζ]· by

G[ζ]ψ1 =
√

1 + |∇ζ|2(∂nΦ1)|z=−d1+ζ
.

Similarly, one remarks that ψ2 is determined up to a constant by ψ1 since
Φ2 is given (up to a constant) by the resolution of the Laplace equation (1)
in the lower fluid domain, with Neumann boundary conditions (3) on Γ2 and
∂nΦ2 = ∂nΦ1 at the interface (this latter being provided by (5)). It follows
that ψ1 fully determines ∇ψ2 and we may thus define the operator H[ζ]· by

H[ζ]ψ1 = ∇ψ2.

Using the continuity of the pressure at the interface expressed in (6), we
may equate the left-hand sides of (8)1 and (8)2 using the operators G[ζ] and
H[ζ] just defined. This yields the equation

∂t(ψ2 − γψ1) + g(1 − γ)ζ +
1

2

(
|H[ζ]ψ1|2 − γ|∇ψ1|2

)
+ N (ζ, ψ1) = 0

where γ = ρ1/ρ2 and

N (ζ, ψ1) :=
γ
(
G[ζ]ψ1 + ∇ζ · ∇ψ1

)2 −
(
G[ζ]ψ1 + ∇ζ ·H[ζ]ψ1

)2

2(1 + |∇ζ|2) .
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Taking the gradient of this equation and using (7) then gives the system of
equations





∂tζ −G[ζ]ψ1 = 0,

∂t(H[ζ]ψ1 − γ∇ψ1) + g(1 − γ)∇ζ
+ 1

2∇
(
|H[ζ]ψ1|2 − γ|∇ψ1|2

)
+ ∇N (ζ, ψ1) = 0,

(9)

for ζ and ψ1. This is the system of equations that will be used in the next
sections to derive asymptotic models.

Remark 1. More precise definitions of the operators G[ζ] and H[ζ] will be
presented in Subsection 1.4 and in Section 2.

Remark 2. Setting ρ1 = 0, and thus γ = 0, in the above equations, one
recovers the usual surface water-wave equations written in terms of ζ and ψ
as in [18, 19, 37].

1.4 Non-Dimensionalization of the Equations

The asymptotic behaviour of (9) is more transparent when these equations
are written in dimensionless variables. Denoting by a a typical amplitude of
the deformation of the interface in question, and by λ a typical wavelenth,
the following dimensionless indendent variables

X̃ :=
X

λ
, z̃ :=

z

d1
, t̃ :=

t

λ/
√
gd1,

,

are introduced. Likewise, we define the dimensionless unknowns

ζ̃ :=
ζ

a
, ψ̃1 :=

ψ1

aλ
√
g/d1

,

as well as the dimensionless parameter‘s

γ :=
ρ1

ρ2
, δ :=

d1

d2
, ε :=

a

d1
, µ :=

d2
1

λ2
.

Though they are redundant, it is also notationally convenient to introduce
two other parameter‘s ε2 and µ2 defined as

ε2 =
a

d2
= εδ, µ2 =

d2
2

λ2
=

µ

δ2
.

Remark 3. The parameters ε2 and µ2 correspond to ε and µ with d2 rather
than d1 taken as the unit of length in the vertical direction.
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Before writing (9) in dimensionless variables, a dimensionless Dirichlet-
Neumann operator Gµ[εζ]· is needed, associated to the non-dimensionalized
upper fluid domain

Ω1 = {(X, z) ∈ R
d+1,−1 + εζ(X) < z < 0}.

Throughout the discussion, it will be presumed that this domain remains
connected, so there is a positive value H1 such that

1 − εζ ≥ H1 on R
d. (10)

Definition 1. Let ζ ∈ W 2,∞(Rd) be such that (10) is satisfied and let
ψ1 ∈ H3/2(Rd). If Φ1 is the unique solution in H2(Ω1) of the boundary-
value problem

{
µ∆Φ1 + ∂2

zΦ1 = 0 in Ω1,
∂zΦ1 |z=0

= 0, Φ1 |z=−1+εζ(X)
= ψ1,

(11)

then Gµ[εζ]ψ1 ∈ H1/2(Rd) is defined by

Gµ[εζ]ψ1 = −µε∇ζ · ∇Φ1 |z=−1+εζ
+ ∂zΦ1 |z=−1+εζ

.

Remark 4. Another way to approach Gµ is to define

Gµ[εζ]ψ1 =
√

1 + ε2|∇ζ|2∂nΦ1 |z=−1+εζ

where ∂nΦ1 |z=−1+εζ
stands for the upper conormal derivative associated to

the elliptic operator µ∆Φ1 + ∂2
zΦ1.

In the same vein, one may define a dimensionless operator Hµ,δ[εζ]·
associated to the non-dimensionalized lower fluid domain

Ω2 = {(X, z) ∈ R
d+1,−1 − 1/δ < z < −1 + εζ(X)},

where it is assumed as in (10) that there is an H2 > 0 such that

1 + εδζ ≥ H2 on R
d. (12)

Definition 2. Let ζ ∈ W 2,∞(Rd) be such that (10) and (12) are satisfied,
and suppose that ψ1 ∈ H3/2(Rd) is given. If the function Φ2 is the unique
solution (up to a constant) of the boundary-value problem
{
µ∆Φ2 + ∂2

zΦ2 = 0 in Ω2,
∂zΦ2 |z=−1−1/δ

= 0, ∂nΦ2 |z=−1+εζ(X)
= 1

(1+ε2|∇ζ|2)1/2G
µ[εζ]ψ1,

(13)

then the operator Hµ,δ[εζ]· is defined on ψ1 by

Hµ,δ[εζ]ψ1 = ∇(Φ2 |z=−1+εζ
) ∈ H1/2(Rd).
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Remark 5. In the statement above, ∂nΦ2 |z=−1+εζ
stands here for the upwards

conormal derivative associated to the elliptic operator µ∆Φ2 + ∂2
zΦ2,

√
1 + ε2|∇ζ|2∂nΦ2 |z=−1+εζ

= −µε∇ζ · ∇Φ2 |z=−1+εζ
+ ∂zΦ2 |z=−1+εζ

.

The Neumann boundary condition of (13) at the interface can also be stated
as ∂nΦ2 |z=−1+εζ

= ∂nΦ1 |z=−1+εζ
.

Remark 6. Of course, the solvability of (13) requires the condition
∫
Γ ∂nΦ2dΓ =

0 (where dΓ =
√

1 + ε2|∇ζ|2dX is the Lebesgue measure on the surface
Γ = {z = −1 + εζ}). This is automatically satisfied thanks to the definition
of Gµ[εζ]ψ1. Indeed, applying Green’s identity to (11), one obtains

∫

Γ
∂nΦ2dΓ =

∫

Γ
∂nΦ1dΓ = −

∫

Ω1

(µ∆Φ1 + ∂2
zΦ1) = 0.

Example 1. The operators Gµ[εζ]· and Hµ,δ[εζ]· have explicit expressions
when the interface is flat (i.e. when ζ = 0). In that case, taking the hori-
zontal Fourier transform of the Laplace equations (11) and (13) transforms
them into ordinary differential equations with respect to z which can easily
be solved to obtain

Gµ[0]ψ = −√
µ|D| tanh(

√
µ|D|)ψ and Hµ,δ[0]ψ = −tanh(

√
µ|D|)

tanh(
√

µ
δ |D|)

∇ψ.

The equations (9) can therefore be written in dimensionless variables as





∂t̃ζ̃ −
1

µ
Gµ[εζ̃]ψ̃1 = 0,

∂t̃

(
Hµ,δ[εζ̃]ψ̃1 − γ∇ψ̃1

)
+ (1 − γ)∇ζ̃

+
ε

2
∇
(
|Hµ,δ[εζ̃]ψ̃1|2 − γ|∇ψ̃1|2

)
+ ε∇N µ,δ(εζ̃, ψ̃1) = 0,

(14)

where N µ,δ is defined for all pairs (ζ, ψ) smooth enough by the formula

N µ,δ(ζ, ψ) := µ
γ
(

1
µG

µ[ζ]ψ + ∇ζ · ∇ψ
)2 −

(
1
µG

µ[ζ]ψ + ∇ζ ·Hµ,δ[ζ]ψ
)2

2(1 + µ|∇ζ|2) .

Our work centers around the study of the asymptotics of the non-dimensionalized
equations (14) in various physical regimes corresponding to different rela-
tionships among the dimensionless parameter‘s ε, µ and δ.

Notation 1. The tildes which indicate the non-dimensional quantities will
be systematically dropped henceforth.
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Remark 7. Linearizing the equations (14) around the rest state, one finds
the equations





∂tζ −
1

µ
Gµ[0]ψ1 = 0,

∂t

(
Hµ,δ[0]ψ1 − γ∇ψ1

)
+ (1 − γ)∇ζ = 0.

The explicit formulas in Example 1 thus allow one to calculate the linearized
dispersion relation

ω2 = (1 − γ)
|k|√
µ

tanh(
√
µ|k|) tanh(

√
µ

δ |k|)
tanh(

√
µ|k|) + γ tanh(

√
µ

δ |k|)
; (15)

corresponding to plane-wave solutions eik·X−iωt. In particular, the expected
instability is found when γ > 1, corresponding to the case wherein the
heavier fluid lies over the lighter one. One also checks that the classical
dispersion relation

ω2 =
1√
µ
|k| tanh(

√
µ|k|)

for surface water waves is recovered when γ = 0 and δ = 1.

1.5 Principal Results

The overall goal here is to propose model systems of equations for the inter-
nal waves by obtaining the asymptotic form of the equations (14) in various
regimes corresponding to different values of the parameters ε, δ and µ. All
these asymptotic models are (1+d)-dimensional systems coupling the surface
elevation ζ to the variable v defined to be

v := Hµ,δ[εζ]ψ1 − γ∇ψ1. (16)

(For the surface water-wave problem formally recovered by taking γ = 0 and
δ = 1, v is the horizontal velocity evaluated at the free surface). We will
often refer to v as the velocity variable, though its precise interpretation will
vary. Note that v is essentially the gradient of the second canonical variable
in the hamiltonian formulation of (14), (see for instance [6]).

It will be rigorously established that the internal-wave equations (14)
are consistent with the asymptotic models for (ζ,v) derived in this paper in
the following precise sense.

Definition 3. The internal wave equations (14) are consistent with a system
S of d+1 equations for ζ and v if for all sufficiently smooth solutions (ζ, ψ1) of
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(14) such that (10) and (12) are satisfied, the pair (ζ,v = Hµ,δ[εζ]ψ1−γ∇ψ1)
solves S up to a small residual called the precision of the asymptotic model.

Remark 8. It is worth emphasis that above definition does not require the
well-posedness of the internal wave equations (14). Indeed, these can be
subject to Kelvin-Helmholtz type instabilities (see for instance [4] and [21]),
although one might expect a “stability of the instability” result even in the
face of such instabilities (see [16]). Consistency is only concerned with the
properties of smooth solutions to the system (which do exist in the classi-
cal configuration of the Kelvin-Helmholtz problem, even when instabilities
manifest themselves; see e.g. [33, 32]). In fact, the two-layer water-wave
system is known to be well-posed in Sobolev spaces in the presence of sur-
face tension [21]. In consequence, one could simply add a small amount of
surface tension at the interface between the two homogeneous layers to put
oneself in a well-posed situation. The resulting analysis would be exactly
the same and would, in fact, lead to the same asymptotic models. (Such an
approach is used in [30] for the Benjamin-Ono equation). As the resulting
model systems do not change, such a regularization has been eschewed here.

Here is a summary of the different asymptotic regimes investigated in
this paper. It is convenient to organize the discussion around the parameters
ε and ε2 = εδ (the nonlinearity, or amplitude, parameters for the upper
and lower fluids, respectively), and in terms of µ and µ2 = µ

δ2 (the long-
wavelength parameters for the upper and lower fluids). Notice that the
assumptions made about δ are therefore implicit.

The interfacial wave is said to be of small amplitude for the upper fluid
layer (resp. the lower layer) if ε ≪ 1 (resp. ε2 ≪ 1) and the upper (resp.
lower) layer is said to be shallow if µ≪ 1 (resp. µ2 ≪ 1). This terminology
is consistent with the usual one for surface water waves (recovered by taking
ρ1 = 0 and δ = 1). In the discussion below, the notation regime 1/regime
2 means that the wave motion is such that the upper layer is in regime 1
(small amplitude or shallow water) and the lower one is in regime 2.

1. The small-amplitude/small-amplitude regime: ε ≪ 1, ε2 ≪ 1. This
regime corresponds to interfacial deformations which are small for both
the upper and lower fluid domains. Various sub-regimes are defined
by making further assumptions about the size of µ and µ2.

(a) The Full Dispersion /Full Dispersion (FD/FD) regime: ε ∼ ε2 ≪
1 and µ ∼ µ2 = O(1) (and thus δ ∼ 1). In this regime, inves-
tigated in §3.1.1, the shallowness parameters are not small for
either of the fluid domains, and the full dispersive effects must
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therefore be kept for both regions; the asymptotic model corre-
sponding to this situation is given in (26).

(b) The Boussinesq / Full dispersion (B/FD) regime: µ ∼ ε ≪ 1,
µ2 ∼ 1. This regime is studied in §3.1.2 and corresponds to the
case where the flow has a Boussinesq structure in the upper part
(and thus dispersive effects of the same order as nonlinear effects),
but with a shallowness parameter not small in the lower fluid
domain. This configuration occurs when δ2 ∼ ε, that is, when
the lower region is much larger than the upper one. A further
analysis of the asymptotic model yields a three-parameter family
of equivalent systems (see (27) below).

(c) The Boussinesq/Boussinesq (B/B) regime: µ ∼ µ2 ∼ ε ∼ ε2 ≪ 1.
In this regime, investigated in §3.1.3, one has δ ∼ 1 and the flow
has a Boussinesq structure in both the upper and lower fluid
domains. Here again, a three-parameter family of asymptotic
systems is obtained (see (28) below).

2. The Shallow Water/Shallow Water (SW/SW) regime: µ ∼ µ2 ≪ 1.
This regime, which allows relatively large interfacial amplitudes (ε ∼
ε2 = O(1)), does not belong to the regimes singled out above. The
structure of the flow is then of shallow water type in both regions;
in particular, the asymptotic model (see §3.2) is a nonlinear, but non-
dispersive system, given in (29), which degenerates into the usual shal-
low water equations when γ = 0 and δ = 1. It is very interesting in
this case that a non-local term arises when d = 2. Such a nonlocal
term does not appear in the one-dimensional case, nor in the two-
dimensional shallow water equations for surface waves.

3. The Shallow Water/Small Amplitude (SW/SA) regime: µ ≪ 1 and
ε2 ≪ 1. In this regime, the upper layer is shallow (but with possibly
large surface deformations), and the surface deformations are small for
the lower layer (but it can be deep). Various sub-regimes arise in this
case also.

(a) The Shallow Water/Full dispersion (SW/FD) regime: µ ∼ ε22 ≪
1, ε ∼ µ2 ∼ 1. This regime is investigated in §3.3.1. The disper-
sive effects are negligible in the upper fluid, but the full dispersive
effects must be kept in the lower one (see system (31) below).

(b) The Intermediate Long Waves (ILW) regime: µ ∼ ε2 ∼ ε2 ≪ 1,
µ2 ∼ 1. In this regime, the interfacial deformations are also small
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for the upper fluid (which is not the case in the SW/FD regime).
This allows some simplifications, as shown in §3.3.2. It is also
possible (see (32)) to derive a one-parameter family of equivalent
systems.

(c) The Benjamin-Ono (BO) regime: µ ∼ ε2 ≪ 1, µ2 = ∞. A
formal study of this regime is performed in §3.3.3. It is shown
in particular how to recover the Benjamin-Ono equation as the
unidirectional limit in the one-dimensional case d = 1. The
Benjamin-Ono equation is also shown to be a particular case of
a one-parameter family of regularized Benjamin-Ono equations,
given in (34).

The range of validity of these regimes is summarized in the following
table.

ε = O(1) ε≪ 1

µ = O(1) Full equations δ ∼ 1: FD/FD eq’ns

µ≪ 1 δ ∼ 1: SW/SW eq’ns µ ∼ ε and δ2 ∼ ε: B/FD eq’ns
δ2 ∼ µ ∼ ε22: SW/FD eq’ns µ ∼ ε and δ ∼ 1: B/B eq’ns

δ2 ∼ µ ∼ ε2: ILW eq’ns
δ = 0 and µ ∼ ε2: BO eq’ns

Remark 9. The small amplitude/shallow water regime is not investigated
here. It corresponds to the situation where the upper fluid domain is much
larger than the lower one, which is more of an atmospheric configuration
than an oceanographic case.

2 Asymptotic Expansions of the Operators

In this section, asymptotic expansions are given of the central operators de-
fined in the Introduction. The discussion begins with the Dirichlet-Neumann
operator.

2.1 Asymptotic expansion of the Dirichlet-Neumann Oper-
ator Gµ[εζ ]·

The following lemma connects ζ with the vertically integrated horizontal
velocity via the Dirichlet-Neumann operator Gµ[εζ]·.
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Lemma 1. Let ζ ∈ W 2,∞(Rd) be such that (10) is satisfied and let ψ ∈
H3/2(Rd) and Φ1 be the solution of (11) with ψ1 = ψ. If V µ is defined by

V µ[εζ]ψ :=

∫ 0

−1+εζ
(
√
µ∇Φ1)dz,

then it follows that

Gµ[εζ]ψ =
√
µ∇ · (V µ[εζ]ψ).

Proof. Let ϕ ∈ C∞
c (Rd) be a test function. Using Green’s identity, and with

the notation of Remark 6, one obtains

∫

Rd

Gµ[εζ]ψϕ =

∫

Γ
∂nΦ1ϕdΓ

= −
∫

Ω1

(
√
µ∇)Φ1 · (

√
µ∇)ϕ

= −
∫

Rd

∫ 0

−1+εζ
(
√
µ∇Φ1)dz ·

√
µ∇ϕ.

Defining V µ[εζ]ψ as in the statement of the lemma, it transpires that

∫

Rd

Gµ[εζ]ϕ = −√
µ

∫

Rd

V µ[εζ]ψ · ∇ϕ =
√
µ

∫

Rd

∇ · (V µ[εζ]ψ)ϕ.

Since the above identity is true for all ϕ ∈ C∞
c (Rd), the result follows.

Remark 10. In §2.1.1 and §2.1.2 below, asymptotic expansions are obtained
of V µ[εζ]ψ in terms of ε and µ, respectively. Because of Lemma 1, asymp-
totic expansions of Gµ[εζ]ψ then follow immediately.

2.1.1 Asymptotic Expansion of V µ[εζ]· when ε≪ 1

When ε≪ 1, the approach to obtaining an asymptotic expansion of V µ[εζ]ψ
is to make a Taylor expansion in terms of the interface deformation around
the rest state, viz.

V µ[εζ]ψ = V µ[0]ψ + ε(d0(V
µ[·])ζ)ψ + · · · .

(Note, however, that the expansion of V µ[εζ]ψ itself, and not only the con-
sequent expansion of Gµ[εζ]ψ, is needed so that the elliptic estimate of
Proposition 3 can be used in the proof of Corollary 1).
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Proposition 1. Let s > d/2 and ζ ∈ Hs+3/2(Rd) be such that (10) is
satisfied. Then for ψ such that ∇ψ ∈ Hs+1/2(Rd), the inequality

∣∣V µ[εζ]ψ −
[
T0,µ∇ψ + ε

√
µ(−ζ + T1,µ[ζ])∇ψ

]∣∣
Hs

≤ ε2C(
1

H1
, ε
√
µ, |ζ|Hs+3/2 , |∇ψ|Hs+1/2),

holds for all ε ∈ [0, 1] and µ > 0, where T0,µ =
tanh(

√
µ|D|)

|D| , T1,µ[ζ] =

−∇T0,µ(ζT0,µ∇T ), and V µ[εζ]ψ is as defined in Lemma 1 (so that Gµ[εζ]ψ =√
µ∇ · V µ[εζ]ψ).

The key point in the proof is an explicit formula of the derivative of
the mapping ζ 7→ V µ[εζ]ψ, which generalizes the formula obtained in [26]
for the shape derivative of Dirichlet-Neumann operators. This interesting
technical point is the subject of the next lemma.

Lemma 2. Let s > d/2 and suppose that ψ is such that ∇ψ ∈ Hs+1/2(Rd).
The mapping Hs+3/2(Rd) ∋ ζ 7→ V µ[εζ]ψ ∈ Hs+1/2(Rd)d is differentiable.
Moreover, for all ζ, ζ ′ ∈ Hs(Rd), the derivative of V µ[ε·]ψ at ζ in the direc-
tion ζ ′ is given by the formula

dζ(V
µ[ε·]ψ)ζ ′ = −εV µ[εζ](ζ ′Zµ[εζ]ψ) − εζ ′

(√
µ∇ψ − ε

√
µ∇ζZµ[εζ]ψ

)
,

where Zµ[εζ]ψ := 1
1+ε2µ|ζ|2 (Gµ[εζ]ψ + εµ∇ζ · ∇ψ).

Proof of the Lemma. First, define another Dirichlet-Neumann operator Gµ[εζ]·
by

Gµ[εζ]ψ = ez · Pµ[εζ]∇µ2

X,zΦ|z=0
, (17)

where Φ solves
{ ∇µ2

X,z · Pµ[εζ]∇µ2

X,zΦ = 0 in − 1 < z < 0,

Φ |z=0
= ψ, ∂zΦ |z=−1

= 0,
(18)

and where

Pµ[εζ] =

(
(1 + εζ)Id×d ε

√
µ(z + 1)∇ζ

−ε√µ(z + 1)∇ζT 1+ε2µ|∇ζ|2
1+εζ

)
.

This operator is the classical Dirichlet-Neumann operator often used for
the study of the surface water-wave equations and for which an explicit
expression exists for the derivative of the mapping ζ 7→ Gµ[εζ]ψ (see, e.g.
Theorem 3.20 of [26] and Theorem 3.1 of [2]). Studying the transformation
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of the fluid domain into the flat strip −1 < z < 0 (flattening of the domain)
reveals that Gµ[εζ]ψ = −Gµ[−εζ]ψ (see Proposition 2.7 of [2] and Section
2.2 below where the same kind of transformation is performed). It will be
convenient to consider the operator Gµ[−εζ]· rather than Gµ[εζ]· because
this allow us to take over intact some elements of the proof of Theorem 3.20
in [26]. Moreover, for the sake of clarity, we take ε = µ = 1 in this proof and
leave to the reader the straighforward modifications for the general case.
The proof is divided into 5 steps.
Step 1. One has that G[ζ]ψ = −∇ · (V[ζ]), with V[ζ] =

∫ 0
−1 PI [ζ]∇X,zΦdz,

and where PI [ζ] is the d × (d + 1) matrix obtained by taking the last row
off P [ζ]. The proof of this result is more or less identical to the proof of
Lemma 1.
Step 2. Denoting by V ′ the derivative of V[·]ψ at ζ and in the direction ζ ′,
one computes

V ′ =

∫ 0

−1
P ′

I∇X,zΦdz +

∫ 0

−1
PI [ζ]∇X,zΦ

′dz,

where P ′
I and Φ′ stand, respectively, for the derivative at ζ and in the

direction ζ ′ of the mappings ζ 7→ PI [ζ] and ζ 7→ Φ.

Step 3. Defining χ = (z + 1)
ζ ′

1 + ζ
∂zΦ, one has

∫ 0

−1
PI [ζ]∇X,z(Φ

′ − χ) = −V[ζ](ζ ′Z[ζ]ψ),

with Z[ζ]ψ =
G[ζ]ψ + ∇ζ · ∇ψ

1 + |∇ζ|2 . To prove this result, first remark that

w := Φ′ − χ solves the boundary-value problem
{ ∇µ2

X,z · Pµ[εζ]∇µ2

X,zw = 0 in − 1 < z < 0,

w |z=0
= −ζ ′Z[ζ]ψ, ∂zw |z=−1

= 0,

as a consequence of Lemma 3.22 of [26]. The result then follows directly
from the definition of V[ζ]·.
Step 4. The identity

∫ 0

−1
(P ′

I∇X,zΦ + PI [ζ]∇X,zχ)dz = ζ ′
(
∇ψ −Z[ζ]ψ∇ζ

)
.

also holds. To establish this, first compute that

P ′
I∇X,zΦ + PI [ζ]∇X,zχ = ζ ′∂z

(
(z + 1)∇Φ

)
−∇ζ∂z

((z + 1)2

h
ζ ′∂zΦ

)
.
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The result then follows upon integrating with respect to z.
Step 5. It now remains simply to put together the pieces. It is deduced from
Steps 2-4 that

V ′ = ζ ′
(
∇ψ −Z[ζ]ψ∇ζ

)
− V[ζ](ζ ′Z[ζ]ψ).

The result then follows from the observation that if V [ζ]ψ is as defined in
Lemma 1, then V [ζ]ψ = V[−ζ]ψ.

Proof of the Proposition. A second order Taylor expansion reveals that

V µ[εζ]ψ = V µ[0]ψ + d0(V
µ[ε·]ψ)ζ +

∫ 1

0
(1 − z)d2

zζ(V
µ[ε·]ψ)(ζ, ζ)dz.

Lemma 2 therefore implies that

V µ[εζ]ψ = V µ[0]ψ

−εV µ[0](ζGµ[0]ψ) − ε
√
µζ∇ψ +

∫ 1

0
(1 − z)d2

zζ(V
µ[ε·]ψ)(ζ, ζ)dz.

We saw in Example 1 that Gµ[0]ψ = −√
µ|D| tanh(

√
µ|D|)ψ. Similarly,

one can check that V µ[0]ψ =
tanh(

√
µ|D|)

|D| ∇ψ. The proof of the proposition
is now clear after appreciating that

∣∣
∫ 1

0
(1 − z)d2

zζ(V
µ[ε·]ψ)(ζ, ζ)dz

∣∣
Hs ≤ ε2C(

1

H1
, ε
√
µ, |ζ|Hs+3/2 , |∇ψ|Hs+1/2),

a fact which is obtained exactly as in Proposition 3.3 of [2].

2.1.2 Asymptotic Expansion of V µ[εζ]· for Large-Amplitude Waves
and Shallow Depth (ε = O(1) and µ≪ 1)

For larger amplitude waves, the expansion of the Dirichlet-Neuman operator
Gµ[εζ]ψ (and also of V µ[εζ]ψ) around the rest state no longer provides an
accurate approximation. However, if µ ≪ 1, which is what we have earlier
called the shallow water regime for the upper fluid, it is possible to obtain an
expansion of V µ[εζ]ψ (and thus of Gµ[εζ]ψ =

√
µ∇ · V µ[εζ]ψ) with respect

to µ which is uniform with respect to ε ∈ [0, 1].

Proposition 2. Let s > d/2 and ζ ∈ Hs+3/2(Rd). Then for all µ ∈ (0, 1)
and ψ such that ∇ψ ∈ Hs+5/2(Rd), one has

∣∣√µV µ[εζ]ψ − µ(1 − εζ)∇ψ
∣∣
Hs ≤ µ2C(|ζ|Hs+3/2, |∇ψ|Hs+5/2),

uniformly with respect to ε ∈ [0, 1]), where V µ[εζ]ψ is as defined in Lemma
1 (so that Gµ[εζ]ψ =

√
µ∇ · V µ[εζ]ψ).
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Remark 11. As in Prop. 3.8 of [2], one can carry out the expansion explicitly
to second order in µ, thereby obtaining

√
µV µ[εζ]ψ = µ(1 − εζ)∇ψ +

µ2

3
∆∇ψ +O(µ3, εµ2).

Proof. Recall that Gµ[εζ]ψ = −Gµ[−εζ]ψ, where Gµ[εζ]· is defined in (17),
and that Gµ[εζ]ψ = −√

µ∇ · V µ[−εζ]ψ (see the proof of Lemma 2). Propo-
sition 3.8 of [2] shows that

∣∣Gµ[εζ]ψ −∇ · (−µ(1 + εζ)∇ψ)
∣∣
Hs ≤ µ2C(|ζ|Hs+3/2 , |∇ψ|Hs+5/2).

An obvious adaptation of the proof shows that the estimate given in the
statement of the Proposition can be obtained in the same way.

2.2 Asymptotic Expansions of Hµ,δ[εζ ]·
Attention is now turned to the interface operator Hµ,δ[εζ]·.
The boundary-value problem (13) plays a key role in the analysis of the
operator Hµ,δ[εζ]·. The analysis of this problem is easier if we first transform
it into a variable-coefficient, boundary-value problem on the flat strip S :=
Rd × (−1, 0) using the diffeomorphism

σ :
S → Ω2

(X, z) 7→ σ(X, z) := (X, (1 + εδ)z
δ + (−1 + εζ)).

As shown in Proposition 2.7 of [26] (see also §2.2 of [2]), Φ2 solves (13) if
and only if Φ2 := Φ2 ◦ σ solves

{
∇µ2

X,z ·Qµ2 [ε2ζ]∇µ2

X,zΦ2 = 0 in S,
∂nΦ2 |z=0

= 1
δG

µ[εζ]ψ1, ∂nΦ2 |z=−1
= 0,

(19)

with

Qµ2 [ε2ζ] =

(
(1 + ε2ζ)Id×d −√

µ2ε2(z + 1)∇ζ
−√

µ2ε2(z + 1)∇ζT 1+µ2ε2
2(z+1)2|∇ζ|2
1+ε2ζ

)
,

and where, as before, ε2 = εδ, µ2 = µ
δ2 , and ∇µ2

X,z = (
√
µ2∇, ∂z)

T .

Remark 12. As always in the present exposition, ∂nΦ2 stands for the up-
ward conormal derivative associated to the elliptic operator involved in the
boundary-value problem,

∂nΦ2 |z=0 or z=−1
= ez ·Qµ2 [ε2ζ]∇µ2

X,zΦ2 |z=0 or z=−1
,

where ez is the upward-pointing unit vector along the vertical axis.
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An asymptotic expansion of

Hµ,δ[εζ]ψ1 = ∇(Φ2 |z=0
), (20)

is obtained by finding an approximation Φapp to the solution of (19) and then

using the formal relationship Hµ,δ[εζ]ψ1 ∼ ∇(Φapp |z=0
). This procedure is

justified in the following proposition, whose proof is postponed to Appendix
A so as not to interrupt the flow of the development. The proposition is
used in both §2.2.1 and §2.2.2 to give explicit asymptotic expansions of
Hµ,δ[εζ]ψ1. To state the result, it is useful to have in place the spaces

Hs,k(S) = {f ∈ D′(S) : ‖f‖Hs,k <∞}
for s ∈ R and k ∈ N, where ‖f‖Hs,k =

∑k
j=0 ‖Λs−j∂j

z f‖.

Proposition 3. Let s0 > d/2, s ≥ s0 + 1/2, and ζ ∈ Hs+3/2(Rd) be such
that (10) and (12) are satisfied (the interface does not touch the horizontal
boundaries). If h ∈ Hs+1/2,1(S)d+1 and V ∈ Hs+1(Rd)d are given, then the
boundary-value problem

{
∇µ2

X,z ·Qµ2 [ε2ζ]∇µ2

X,zu = ∇µ2

X,z · h in S,
∂nu|z=0

=
√
µ2∇ · V + ez · h|z=0

, ∂nu|z=−1
= ez · h|z=−1

(21)

admits a unique solution u. Moreover, the solution u obeys the inequality

∣∣∇u|z=0

∣∣
Hs ≤ 1√

µ2
C(

1

H2
, εmax

2 , µmax
2 , |ζ|Hs+3/2)

(
‖h‖Hs+1/2,1 + |V |Hs+1

)
,

uniformly with respect to ε2 ∈ [0, εmax
2 ] and µ2 ∈ (0, µmax

2 ).

Remark 13. In the case of a flat interface (ζ = 0), Example 1 shows that
1
δG

µ[0]ψ1 =
√
µ2∇ · V with V = ∇

|D| tanh(
√
µ|D|)ψ1. Consequently, (19),

(20) and Proposition 3 (with h = 0) show that

∣∣Hµ,δ[0]ψ1

∣∣
Hs .

∣∣tanh(
√
µ|D|)

√
µ2|D| ∇ψ1

∣∣
Hs+1 . δ|∇ψ1|Hs+1 ,

which is exactly the estimate one could have deduced from the explicit ex-
pression for Hµ,δ[0]· given in Example 1 (except that using the latter ap-
proach gives an estimate in Hs rather than in Hs+1. The Hs-type result
does not in fact carry over to the general case of non-flat interfaces).

Remark 14. Suppose we take h = 0 and V = V µ[εζ]ψ in Proposition 3.
By Lemma 1, one has Gµ[εζ]ψ =

√
µ∇ · V µ[εζ]ψ, and so it follows that

∇u|z=0
= Hµ,δ[εζ]ψ. The Proposition thus provides an estimate of the

operator norm of Hµ,δ[εζ].
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2.2.1 The Small-Amplitude/Small-Amplitude Regime: ε ≪ 1,
ε2 ≪ 1

In this regime, it is assumed that the interface deformations are of small
amplitude for both the upper and lower fluids. The asymptotic expansion
of the operator Hµ,δ[εζ] is thus made in terms of ε and ε2 = εδ. We proceed
by first constructing formally an approximate solution Φapp to (19) in the
form

Φapp = Φ(0) + ε2Φ
(1).

This formal approximation is then justified rigorously in Corollary 1 below.
We may write from the expression for Qµ2 [ε2ζ],

∇µ2

X,z ·Qµ2 [ε2ζ]∇µ2

X,z = ∆µ2

X,z + ε2∇µ2

X,z ·Q1∇µ2

X,z + ε22∇µ2

X,z ·Q2∇µ2

X,z,

with

Q1 =

(
ζId×d −√

µ2(z + 1)∇ζ
−√

µ2(z + 1)∇ζT −ζ

)

and

Q2 =

(
0 0

0 ζ2+µ2(z+1)2|∇ζ|2
1+ε2ζ

)
.

It follows that

∇µ2

X,z ·Qµ2 [ε2ζ]∇µ2

X,zΦapp = ∆µ2

X,zΦ
(0)

+ ε2(∆
µ2

X,z · Φ(1) + ∇µ2

X,z ·Q1∇µ2

X,zΦ
(0)) +O(ε22).

Similarly, we obtain

∂nΦapp |z=0/−1
= ∂zΦ

(0)
|z=0/−1

+ ε2
(
ez ·Q1∇µ2

X,zΦ
(0) +∂zΦ

(1)
)
|z=0/−1

+O(ε22).

Since it is known from Proposition 1 that

1

δ
Gµ[εζ]ψ1 =

√
µ2∇ · (T0,µ∇ψ1) + ε2µ2∇ · (−ζ + T1,µ[ζ])∇ψ1 +O(

1

δ2
ε22µ2),

one therefore deduces that Φapp solves (19) up to order O(ε22 + 1
δ2 ε

2
2µ2)

provided that Φ(0) and Φ(1) solve

{
∆µ2

X,zΦ
(0) = 0,

∂zΦ
(0)

|z=0
=

√
µ2∇ · (T0,µ∇ψ1), ∂zΦ

(0)
|z=−1

= 0,
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which is obviously solved by Φ(0)(X, z) = − cosh(
√

µ2(z+1)|D|)
cosh(

√
µ2|D|)

tanh(
√

µ|D|)
tanh(

√
µ2|D|)ψ1,

and {
∆µ2

X,zΦ
(1) = −∇µ2

X,z ·Q1∇µ2

X,zΦ
(0),

∂zΦ
(1)

|z=0
= A, ∂zΦ

(1)
|z=−1

= 0,

with A = µ2∇ · (−ζ + T1,µ[ζ])∇ψ1 − ez · Q1∇µ2

X,zΦ
(0)

|z=0
. Because −∇µ2

X,z ·
Q1∇µ2

X,zΦ
(0) = ∆µ2

X,z

[
(z + 1)ζ∂zΦ

(0)
]

and

A = µ2∇ ·
[
− ζ + T1,µ[ζ]∇ψ1

]
+ µ2∇ · (ζ∇Φ(0)) + ∂z

(
(z + 1)ζ∂zΦ

(0)
)
|z=0

,

it results that Φ(1) = (z+ 1)ζ∂zΦ
(0) + u, where u solves the boundary-value

problem

{
∆µ2

X,zu = 0,

∂zu |z=0
= µ2∇ ·

[
− ζ + T1,µ[ζ]∇ψ1

]
+ µ2∇ · (ζ∇Φ(0)) ∂zu |z=−1

= 0.

This latter boundary-value problem can be explicitly solved by taking the
Fourier transform in the horizontal variables and solving the resulting ordi-
nary differential equation in the variable z. One obtains from this calculation
that

∇u|z=0
=

√
µ2

|D|
tanh(

√
µ2|D|)Π

[
ζ(1 +

tanh(
√
µ|D|)

tanh(
√
µ2|D|))∇ψ1

]

+
√
µ2∇

[ tanh(
√
µ|D|)

tanh(
√
µ2|D|) (ζ

tanh(
√
µ|D|)

|D| ∆ψ1)
]
.

Since Φ(1) = u+ (z + 1)ζ∂zΦ
(0) and

∇[(z + 1)ζ∂zΦ
(0)]|z=0

=
√
µ2∇

(
ζ
tanh(

√
µ|D|)

|D| ∆ψ1

)
,

it is deduced immediately that ∇Φ(1)
|z=0

= B(ζ,∇ψ1), where

B(ζ,∇ψ1) =
√
µ2

|D|
tanh(

√
µ2|D|)Π

[
ζ(1 +

tanh(
√
µ|D|)

tanh(
√
µ2|D|) )∇ψ1

]

+
√
µ2∇

[(
1 +

tanh(
√
µ|D|)

tanh(
√
µ2|D|)

)
(ζ

tanh(
√
µ|D|)

|D| ∆ψ1)
]
. (22)

The rigorous result concerning the asymptotic expansion of the operator
Hµ,δ[εζ] in the present regime, which is a corollary of Proposition 3, may
now be stated and proved.
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Corollary 1 (Full dispersion/Full dispersion regime). Let t0 > d/2,
s ≥ t0 + 1/2, and ζ ∈ Hs+3/2(Rd) be such that (10) and (12) are satisfied.
Then, for all ψ1 such that ∇ψ1 ∈ Hs+5/2(Rd),

∣∣Hµ,δ[εζ]ψ1 −
(
− tanh(

√
µ|D|)

tanh(
√
µ2|D|)∇ψ1 + ε2B(ζ,∇ψ1)

)∣∣
Hs

≤ ε22 + ε2√
µ2

C(
1

H1
,

1

H2
, δmax, µmax, µmax

2 , |ζ|Hs+3/2)|∇ψ1|Hs+5/2 ,

where the bilinear mapping B(·, ·) is defined in (22). This estimate is uni-
form with respect to ε ∈ [0, 1], µ ∈ (0, µmax) and δ ∈ (0, δmax) such that
µ2 = µ

δ2 ∈ (0, µmax
2 ).

Proof. The computations above show that

∇µ2

X,z ·Qµ2 [ε2ζ]∇µ2

X,zΦapp = ε22∇µ2

X,z · h,

with h = Q1∇µ2

X,zΦ
(1) +Q2∇µ2

X,z(Φ
(0) + ε2Φ

(1)). It is also easy to check that

∂nΦapp |z=0
=

√
µ2∇ · (T0,µ∇ψ1) + ε2µ2∇ · (−ζ + T1,µ[ζ])∇ψ1 + ε22ez · h|z=0

,

∂nΦapp |z=−1
= ε22ez · h|z=−1

.

Therefore, the difference v = Φapp−Φ2 satisfies the boundary-value problem

{ ∇µ2

X,z ·Qµ2 [ε2ζ]∇µ2

X,zv = ε22∇µ2

X,z · h,
∂nv |z=0

=
√
µ2∇ · V + ε22ez · h|z=0

, ∂nv |z=−1
= ε22ez · h|z=−1

,

with V = (T0,µ∇ψ1) + ε2
√
µ2(−ζ + T1,µ[ζ])∇ψ1 − V µ[εζ]ψ1, and where

V µ[εζ]ψ1 is given by Lemma 1. Applying Proposition 3 in this situation, it
is immediately deduced that |∇v|z=0

|Hs is bounded from above by

C(
1

H2
, δmax, µmax

2 , |ζ|Hs+3/2)
( ε22√

µ2
‖h‖Hs+1/2,1 +

1√
µ2

|V |Hs+1

)
.

The stated result is thus a direct consequence of Proposition 1 and the
observation that ‖h‖Hs+1/2,1 ≤ C( 1

H2
, δmax, µmax

2 , |ζ|Hs+3/2)|∇ψ1|Hs+3/2 .

This section concludes with two specializations of Corollary 1 that obtain
when additional smallness assumptions are made on the parameters µ, µ2

or on δ. These simple consequences of Corollary 1 will be useful presently.
The two additional regimes we have in mind are the following.
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1. The Boussinesq/Full dispersion regime. This regime is obtained by
assuming that µ ∼ ε and µ2 ∼ 1 (and thus δ ∼ ε1/2) in addition to
the assumptions ε ≪ 1 and ε2 ≪ 1 which are required if one wants
Corollary 1 to provide a good approximation.

2. The Boussinesq/Boussinesq regime. Here, it is assumed in addition to
ε≪ 1 and ε2 ≪ 1 that µ ∼ ε and µ2 ∼ ε2 (and thus δ ∼ 1).

Corollary 2 (Boussinesq/Full dispersion regime). Let t0 > d/2, s ≥
t0 +1/2, and ζ ∈ Hs+3/2(Rd) be such that (10) and (12) are satisfied. Then,
for all ψ1 such that ∇ψ1 ∈ Hs+5/2(Rd), the inequality
∣∣Hµ,δ[εζ]ψ1 −

√
µ|D| coth(

√
µ2|D|)

[
−∇ψ1 −

µ

3
∆∇ψ1 + εΠ

(
ζ∇ψ1

)]∣∣
Hs

≤ (
ε22 + ε2√

µ2
+ εµ+ εµ1/2δ)C(

1

H1
,

1

H2
, δmax, µmax, µmax

2 , |ζ|Hs+3/2)|∇ψ1|Hs+5/2 ,

where Π = −∇∇T

|D|2 , holds uniformly with respect to ε ∈ [0, 1], µ ∈ (0, µmax)

and δ ∈ (0, δmax) such that µ2 = µ
δ2 ∈ (0, µmax

2 ).

Remark 15. When ε ≪ 1, µ ∼ ε, µ2 ∼ 1 (and thus δ ∼ ε1/2), the three
components of the error estimate are all of the same size O(ε2).

Proof. The result is obtained by using tanh(
√
µ|D|) ∼ √

µ|D| − µ
√
µ1

3 |D|3
when µ is small in Corollary 1.

Similarly, one may also deduce from Corollary 1 the following result in the
Boussinesq-Boussinesq regime.

Corollary 3 (Boussinesq/Boussinesq regime). Let t0 > d/2, s ≥ t0 +
1/2, and ζ ∈ Hs+3/2(Rd) be such that (10) and (12) are satisfied. Then, for
all ψ1 such that ∇ψ1 ∈ Hs+5/2(Rd), we have

∣∣Hµ,δ[εζ]ψ1 −
(
− δ∇ψ1 −

δ

3
µ(1 − 1

δ2
)∆∇ψ1 + ε2(1 + δ)Π(ζ∇ψ1)

)∣∣
Hs

≤ (
ε22 + ε2√

µ2
+ µ2 + ε2)C(

1

H1
,

1

H2
,

1

δmin
, δmax, µmax, |ζ|Hs+3/2)|∇ψ1|Hs+5/2 ,

where Π = −∇∇T

|D|2 . Moreover, this estimate is uniform with respect to ε ∈
[0, 1], µ ∈ (0, µmax) and δ ∈ (δmin, δmax).

Remark 16. When ε ∼ ε2 ∼ µ ∼ µ2 ≪ 1 (and thus δ ∼ 1), the last two
components of the error estimate are of size O(ε2), but the first is of size
O(ε3/2). This loss of precision is not seen at the formal level. It comes from
the 1/

√
µ2 term in the elliptic estimate provided by Proposition 3.
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2.2.2 The Shallow-Water/Shallow-Water Regime: µ≪ 1, µ2 ≪ 1

In this regime, large amplitude waves are allowed for the upper fluid (ε =
O(1)) and for the lower fluid (ε2 = O(1)). Assuming that µ ≪ 1 and
µ2 ≪ 1 raises the prospect of making asymptotic expansions of shallow-
water type, in terms of µ and µ2. As before, the plan is to formally construct
an approximate solution Φapp to (19) having the form

Φapp = Φ(0) + µ2Φ
(1).

The formal approximation is then rigorously justified (Corollary 4 below)
and the desired expansion results. From the expression for Qµ2 [ε2ζ], we may
write

∇µ2

X,z ·Qµ2 [ε2ζ]∇µ2

X,z =
1

h2
∂2

z + µ2∇X,z ·Q1∇X,z,

with h2 = 1 + ε2ζ and

Q1 =

(
h2Id×d −ε2(z + 1)∇ζ

−ε2(z + 1)∇ζT ε2
2(z+1)2|∇ζ|2

h2

)
.

It follows readily that

∇µ2

X,z·Qµ2 [ε2ζ]∇µ2

X,zΦapp =
1

h2
∂2

zΦ(0)+µ2

(
∇X,z·Q1∇X,zΦ

(0)+
1

h2
∂2

zΦ(1)
)
+O(µ2

2).

Similarly, one infers that at z = 0 and z = −1,

∂nΦapp =
1

h2
∂zΦ

(0) + µ2

(
ez ·Q1∇X,zΦ

(0) +
1

h2
∂zΦ

(1)
)

+O(µ2
2).

Since it is known from Proposition 2 that

1

δ
Gµ[εζ]ψ1 = δµ2∇ · (h1∇ψ1) +O(

µ2

δ
)

(with h1 = 1 − εζ), it is clearly the case that Φapp solves (19) up to order

O(µ2
2 + µ2

δ ) provided that Φ(0) and Φ(1) solve

{
∂2

zΦ(0) = 0,

∂zΦ
(0)

|z=0
= 0, ∂zΦ

(0)
|z=−1

= 0,

which is obviously solved by any Φ(0)(X, z) = Φ(0)(X) independent of z,
and
{
∂2

zΦ(1) = −h2
2∆Φ(0),

∂zΦ
(1)

|z=0
= h2

(
ε2∇ζ · ∇Φ(0) + δ∇ · (h1∇ψ1)

)
, ∂zΦ

(1)
|z=−1

= 0,
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where we have used the fact that Φ(0) does not depend on z. Solving this
second order ordinary differential equation in the variable z with the bound-
ary condition at z = 0 yields (up to a function independent of z which we
take equal to 0 for the sake of simplicity),

Φ(1) = −z
2

2
h2

2∆Φ(0) + z(∂zΦ1 |z=0
).

Matching the boundary condition at z = −1 leads to the restriction

∇ · (h2∇Φ(0)) = −δ∇ · (h1∇ψ1),

which implies that Π(h2∇Φ(0)) = Π(−δh1∇ψ1), where Π = −∇∇T

|D|2 is the or-

thogonal projector onto the gradient vector fields of L2(Rd)d defined earlier.
We will solve this equation thanks to the following lemma.

Lemma 3. Assume that ζ ∈ L∞(Rd) is such that |ε2ζ|∞ < 1. Let also
W ∈ L2(Rd)d. Then
i. One can define the mapping Q[ε2ζ] as

Q[ε2ζ] :

L2(Rd)d → L2(Rd)d

U 7→
∞∑

n=0

(−1)n(Π(ε2ζΠ·))n(ΠU)

ii. There exists a unique solution V ∈ L2(Rd)d to the equation

∇ · (h2V ) = ∇ ·W, (h2 = 1 + ε2ζ)

such that ΠV = V and one has V = Q[ε2ζ]W ;
iii- If moreover ζ ∈ Hs(Rd) and W ∈ Hs(Rd)d (s > d/2+1) then Q[ε2ζ]W ∈
Hs(Rd)d and

|Q[ε2ζ]W |Hs ≤ C(|ε2ζ|Hs ,
1

1 − |ε2ζ|∞
)|W |Hs .

Remark 17. In dimension d = 1, one has Π = 1 and the first point of the
lemma simplifies into V = 1

h2
W so that the proof is trivial.

Proof. i. The result follows from the observation that under the assumptions
of the lemma, one has

‖Π(ε2ζΠ·)‖L2→L2 ≤ |ε2ζ|∞ < 1, (23)
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so that the series used to define Q[ε2ζ]U converges in L2(Rd)d.
ii. Let us first check that V = Q[ε2ζ]W is indeed a solution of the equation
stated in the lemma. Since V = ΠV , one can remark that

∇ · (ε2ζV ) = ∇ · (Π(ε2ζΠV ))

= −∇ ·
∞∑

n=1

(−1)n(Π(ε2ζΠ·))n(ΠW )

= −∇ · (V − ΠW ),

from which one deduces easily that ∇ · (h2V ) = ∇ ·W .
Let us now turn to prove uniqueness of the solution by proving that one has
necessarily V = 0 if W=0. To check that this is the case, just remark that
from the equation ∇· (h2V ) = 0 and the requirement that ΠV = V , one has

V = −Π(ε2ζΠV );

since ‖Π(ε2ζΠV )‖L2→L2 ≤ |ε2ζ|∞ < 1, it follows easily that V = 0.
iii. It is clear from (23) that |Q[ε2ζ]W |2 ≤ 1

1−|ε2ζ|∞ . Now, applying Λs to
the equations, one gets

∇ · (h2Λ
sV ) = ∇ · W̃ ,

with W̃ = ΛsW + [Λs, ε2ζ]V . The result follows therefore from the L2

estimate, a standard commutator estimate and a simple induction.

If Lemma 3 is applied with V = ∇Φ(0), W = −δh1∇ψ1, there results
the equation

∇Φ(0) = −δ Q[ε2ζ](h1∇ψ1).

Note that when d = 1, this reduces to

∂xΦ(0) = −δh1

h2
∂xψ1.

The following corollary of Proposition 3, which gives the needed asymptotic
expansion of the operator Hµ,δ[εζ] in the present regime, now comes into
view.

Corollary 4 (Shallow water/Shallow water regime). Let t0 > d/2,
s ≥ t0 + 1/2, and ζ ∈ Hs+3/2(Rd) be such that (10) and (12) are satisfied.
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Let h1 = 1−εζ and h2 = 1+ε2ζ and let ψ1 be such that ∇ψ1 ∈ Hs+5/2(Rd).
Then it follows that

|Hµ,δ[εζ]ψ1 + δ Q[ε2ζ](h1∇ψ1)|Hs

≤ δ(µ + µ2)C
(
(1 − δ(1 −H1))

−1,
1

H2
, εmax

2 , µmax
2 , |ζ|Hs+3/2

)
|∇ψ1|Hs+5/2 ,

uniformly with respect to ε ∈ [0, 1], µ ∈ (0, 1) and δ < 1
1−H1

such that
ε2 = εδ ∈ [0, εmax

2 ] and µ2 = µ
δ2 ∈ (0, µmax

2 ).

Remark 18. When ε ∼ ε2 ∼ µ ∼ µ2 ≪ 1 (and thus δ ∼ 1), one deduces from
the above corollary that Hµ,δ[εζ]ψ1 = −δ∇ψ1 + O(ε), which is consistent
with the asymptotic expansion provided by Corollary 3. A similar matching
would have been observed for the next order terms if we had computed them
in Corollary 4.

Remark 19. When d = 1, one has δ Q[ε2ζ](h1∇ψ1) = δ h1
h2
∂xψ1.

Proof. Since (10), (12) and the condition δ(1−H1) < 1 imply that |ε2ζ|∞ <
1, one can use Lemma 3 and the computations above indicate that

∇µ2

X,z ·Qµ2 [ε2ζ]∇µ2

X,zΦapp = µ2
2∇X,z ·Q1∇X,zΦ1

= µ
3/2
2 ∇µ2

X,z · h,

with

h =

(
Id×d 0

0
√
µ2

)
Q1∇X,zΦ1.

It is also easy to check that

∂nΦapp |z=0
= δµ2∇ · (h1∇ψ1) + µ

3/2
2 ez · h|z=0

,

∂nΦapp |z=−1
= µ

3/2
2 ez · h|z=−1

.

Thus, the difference u = Φapp − Φ2 satisfies the boundary-value problem

{
∇µ2

X,z ·Qµ2 [ε2ζ]∇µ2

X,zu = µ
3/2
2 ∇µ2

X,z · h,
∂nu |z=0

=
√
µ2∇ · V + µ

3/2
2 ez · h|z=0

, ∂nu |z=−1
= µ

3/2
2 ez · h|z=−1

.

with V = h1δ
√
µ2∇ψ1 − V µ[εζ]ψ1, where V µ[εζ]ψ1 is given by Lemma 1.

One concludes from Proposition 3 that |∇u|z=0
|Hs is bounded from above

by the quantity

C
( 1

H2
, εmax

2 , µmax
2 , |ζ|Hs+3/2

)(
µ2‖h‖Hs+1/2,1+δ|h1∇ψ1−

1√
µ
V µ[εζ]ψ1|Hs+1

)
.
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The result is a direct consequence of Proposition 2 since

‖h‖Hs+1/2,1 ≤ δC(
1

H2
, εmax

2 , µmax
2 , |ζ|Hs+3/2)|∇ψ1|Hs+3/2

.

2.2.3 The Shallow-Water/Small-Amplitude Regime: µ≪1, ε2≪1

It is now presumed that both µ and ε2 are small, but no such restriction is
laid upon ε nor µ2. So, this regime is not a subcase of the regimes inves-
tigated in Sections 2.2.1 and 2.2.2. We construct an approximate solution
Φapp to (19) exactly as in §2.2.1, but only a first-order approximation of the
form

Φapp = Φ(0);

will be required. Since µ≪ 1 here, Proposition 1 may be utilized to write

1

δ
Gµ[εζ]ψ1 =

µ

δ
∇ ·
(
h1∇ψ1

)
+O(

µ2

δ
).

Just as in §2.2.1, it can be shown that Φ(0) must solve the boundary-value
problem

{
∆µ2

X,zΦ
(0) = 0,

∂zΦ
(0)

|z=0
= µ

δ ∇ ·
(
h1∇ψ1

)
, ∂zΦ

(0)
|z=−1

= 0,

which is to say that

Φ(0)(X, z) =
√
µ

cosh(
√
µ2(z + 1)|D|)

cosh(
√
µ2|D|)

1

|D| tanh(
√
µ2|D|)∇ ·

(
h1∇ψ1

)
.

The following result is proved exactly as was Corollary 1.

Corollary 5 (Shallow water/Small amplitude regime). Let t0 > d/2,
s ≥ t0 + 1/2, and ζ ∈ Hs+3/2(Rd) be such that (10) and (12) are satisfied.
Then, for all ψ1 such that ∇ψ1 ∈ Hs+5/2(Rd), it is the case that

∣∣Hµ,δ[εζ]ψ1 +
√
µ|D| coth(

√
µ2|D|)Π

(
h1∇ψ1

)∣∣
Hs

≤ µ3/2 + ε2
√
µ

√
µ2

C(
1

H1
,

1

H2
, δmax, µmax

2 , |ζ|Hs+3/2)|∇ψ1|Hs+5/2 ,

where h1 = 1 − εζ and Π = −∇∇T

|D|2 is given by (22). This estimate is

uniform with respect to ε ∈ [0, 1], µ ∈ (0, 1) and δ ∈ (0, δmax) such that
µ2 = µ

δ2 ∈ (0, µmax
2 ).
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Remark 20. Several regimes fall within the range of Corollary 5.

• The SW/FD regime: when µ ≪ 1, ε2 ≪ 1 and ε ∼ µ2 ∼ 1 (and thus
δ2 ∼ µ ∼ ε22); the precision of the approximation is O(µ).

• The ILW regime: if µ ∼ ε2 ≪ 1 and µ2 ∼ 1 (and thus δ2 ∼ µ ∼ ε2);
in this case, the estimate in the corollary can be simplified without
adverse effects on the precision of the approximation to simply

Hµ,δ[εζ]ψ1 = −√
µ|D| coth(

√
µ2|D|)∇ψ1 +O(µ). (24)

• The BO regime: if µ ≪ 1 and δ = 0 (and thus µ2 = ∞, ε2 = 0), one
gets formally from (24) that

Hµ,δ[εζ]ψ1 ∼ −√
µ|D|∇ψ1. (25)

3 Asymptotic Models for Internal Waves

The preliminary analysis in Section 2 allows us to derive the various asymp-
totic models referred to in the Introduction.

3.1 The small amplitude/small amplitude regime: ε ≪ 1,
ε2 ≪ 1

Derived first are various models corresponding to the case wherein the in-
terface deformation are small for both fluids. Different systems of equations
obtain, depending on the sizes of the paramaters ε, µ and δ (and thus ε2
and µ2).

3.1.1 The Full Dispersion/Full Dispersion Regime: ε ∼ ε2 ≪ 1
and µ ∼ µ2 = O(1)

An asymptotic model can be derived from (14) by replacing the operators
Gµ[εζ] and Hµ,δ[εζ] by their asymptotic expansions, provided by Proposition
1 and Corollary 1 in the present regime. The following theorem shows that in
the present regime, the internal wave equations are consistent with following
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FD/FD system;





∂tζ + 1√
µ

∇
|D| ·

( TµTµ2
γTµ2+Tµ

v
)

+ ε2√
µ

∇
|D| ·

( TµTµ2
γTµ2+Tµ

B(ζ,
Tµ2

γTµ2+Tµ
v)
)

− ε∇ · (ζ Tµ2
γTµ2+Tµ

v) + ε|D|Tµ

(
ζ ∇
|D| · (

TµTµ2
γTµ2+Tµ

v)
)

= 0

∂tv + (1 − γ)∇ζ
+ ε

2∇
(∣∣ Tµ

γTµ2+Tµ
v
∣∣2 − γ

∣∣ Tµ2
γTµ2+Tµ

v
∣∣2)+ εγ−1

2 ∇
( ∇
|D| · (

TµTµ2
γTµ2+Tµ

v)
)2

= 0,

(26)
where as before, Tµ = tanh(

√
µ|D|), Tµ2 = tanh(

√
µ2|D|) and the bilinear

mapping B(·, ·) is given by (22).

Theorem 1. Let 0 < δmin < δmax. The internal waves equations (14) are
consistent with the FD/FD equations (26) in the sense of Definition 3, with
a precision O(ε2), and uniformly with respect to ε ∈ [0, 1], µ ∈ (0, µmax) and
δ ∈ [δmin, δmax].

Remark 21. One can give a more precise estimate of the precision, as in
Corollary 1 for instance. It simplifies the exposition to use the notation
O(ε2) and the associated rough estimate of the precision. We follow this
policy throughout the discussion.

Remark 22. It is straightforward to check that the dispersion relation of
(26) is exactly the same as (15), which is the reason we refer to (26) as a
“full dispersion” model. In particular, (26) is linearly well-posed provided
that γ < 1.

Proof. First, notice that with the range of parameters considered in the
theorem, one has ε ∼ ε2 when ε → 0, while µ ∼ µ2 = O(1). By the
definition (16) of v and using Proposition 1 and Corollary 1, one deduces
from (14) that





∂tζ − 1√
µ

∇
|D| · (Tµ∇ψ1) + ε∇ · (ζ∇ψ1) − ε|D|Tµ

(
ζ ∇
|D| · (Tµ∇ψ1)

)
= O(ε2)

∂tv + (1 − γ)∇ζ
+ ε

2∇(|Hµ,δ[εζ]ψ1|2 − γ|∇ψ1|2) + εγ−1
2 ∇

( ∇
|D| · (Tµ∇ψ1)

)2
= O(ε2).

It follows from Corollary 1 and the relation Hµ,δ[εζ]ψ1 = v + γ∇ψ1 that

∇ψ1 = − Tµ2

γTµ2 + Tµ

(
v + ε2B(ζ,

Tµ2

γTµ2 + Tµ
v)
)

+O(ε2).

The result is view is now apparent.
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3.1.2 The Boussinesq/Full Dispersion Regime µ ∼ ε≪ 1, µ2 ∼ 1

We show here that in this regime (for which one also has δ2 ∼ ε and thus
ε2 ∼ ε3/2 ≪ 1), the internal waves equations (14) are consistent with the
three-parameter family of Boussinesq/FD systems





(
1 − µb∆

)
∂tζ +

1

γ
∇ ·
(
(1 − εζ)vβ

)

−
√
µ

γ2
|D| coth(

√
µ2|D|)∇ · vβ +

µ

γ

(
a− 1

γ2
coth2(

√
µ2|D|)

)
∆∇ · vβ = 0

(1 − µd∆)∂tvβ + (1 − γ)∇ζ − ε

2γ
∇|vβ |2 + µc(1 − γ)∆∇ζ = 0,

(27)
where vβ = (1 − µβ∆)−1v and the constants a, b, c and d are defined now.

Theorem 2. Let 0 < cmin < cmax, 0 < µmin
2 < µmax

2 , and set

a =
1

3
(1 − α1 − 3β), b =

1

3
α1, c = βα2, d = β(1 − α2),

with α1 ≥ 0, β ≥ 0 and α2 ≤ 1. With these choices of parameters, the in-
ternal wave equations (14) are consistent with the Boussinesq/FD equations
(27) in the sense of Definition 3, with a precision O(ε3/2), and uniformly
with respect to ε ∈ [0, 1], µ ∈ (0, 1) and δ ∈ (0, 1) satisfying the conditions

cmin ≤ ε

µ
≤ cmax and µmin

2 ≤ µ

δ2
≤ µmax

2 .

Remark 23. The dispersion relation associated to (27) is

ω2 =
1 − γ

γ
|k|2(1−µc|k|2)

1 −
√

µ
γ |k| coth(

√
µ2|k|) − µ|k|2

(
a− 1

γ2 coth2(
√
µ2|k|)

)

(1 + µb|k|2)(1 + µd|k|2) ,

and (27) is therefore linearly well-posed when b, d ≥ 0 and a, c ≤ 0. Notice
that in the case α1 = α2 = β = 0, one has a = 1

3 and b = c = d = 0 and
the corresponding system is thus linearly ill-posed. The freedom to choose a
well-posed model is just one of the advantages of a three-parameter family
of formally equivalent systems. The same remark has already been made
about the Boussinesq systems for wave propagation in the case of surface
gravity waves [8, 10]).

Proof. The proof is made in several steps, corresponding to particular as-
sumptions about the parameters α1, α2 and β. Throughout, use will be
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freely made of the relations µ ∼ ε and µ2 ∼ 1.

Step 1. The case α1 = 0, β = 0, α2 = 0. From the expansion of the
Dirichlet-Neumann operator, see Remark 11, it follows as in the previous
section that

{
∂tζ −∇ · ((1 − εζ)∇ψ1 ) − µ

3∇ · ∆∇ψ1 = O(ε2)
∂tv + (1 − γ)∇ζ + ε

2∇(|Hµ,δ[εζ]ψ1|2 − γ|∇ψ1|2) = O(ε2),

where the fact thatO(µ) = O(ε) has been used. From the relation Hµ,δ[εζ]ψ1 =
v + γ∇ψ1, and Corollary 2, it is seen that

∇ψ1 = −1

γ
v −

√
µ

γ

|D|
Tµ2

[
1 +

µ

3
∆ − εΠ(ζ·)

]
∇ψ1 +O(ε2).

Again using the fact that O(µ) = O(ε), one concludes that

∇ψ1 = −1

γ
v +

√
µ

γ2

|D|
Tµ2

v +
µ

γ3

∆

T2
µ2

v +O(ε
3
2 )

and the result follows.
Step 2. The case α1 ≥ 0, β = 0, α2 = 0. We use here the the classical
BBM trick [7]. It is clear from the first equation that

∂tζ = −1

γ
∇ · v +O(ε1/2),

from which it is inferred that

∇ · v = (1 − α1)∇ · v − α1γ∂tζ +O(ε1/2).

Replacing ∇ · v by this expression in the component µ
3γ ∆∇ · v of the first

equation of the system derived in Step 1, leads to the desired result.
Step 3. The case α1 ≥ 0, β ≥ 0, α2 = 0. Replacing v by (1 − µβ∆)vβ in
the system of equations derived in Step 2, and neglecting the O(ε3/2) terms
is all that is required in this case.
Step 4. The case α1 ≥ 0, β ≥ 0, α2 ≤ 1. We use once again the BBM trick.
From the second equation in the system derived in Step 3, one obtains that
for all α2 ≤ 1,

∂tvβ = (1 − α2)∂tvβ − α2(1 − γ)∇ζ +O(ε).

If this relationship is substituted into the system derived in Step 3, the result
follows.
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3.1.3 The Boussinesq/Boussinesq Regime ε ∼ µ ∼ ε2 ∼ µ2 ≪ 1

In this regime, the nonlinear and dispersive effects are of the same size for
both fluids; the systems of equations that are derived from the internal waves
equations (14) in this situation are the following three-parameter family of
Boussinesq/Boussinesq systems, viz.





(
1 − µb∆

)
∂tζ +

1

γ + δ
∇ · vβ + ε

δ2 − γ

(γ + δ)2
∇ · (ζvβ) + µa∇ · ∆vβ = 0

(
1 − µd∆

)
∂tvβ + (1 − γ)∇ζ +

ε

2

δ2 − γ

(δ + γ)2
∇|vβ |2 + µc∆∇ζ = 0,

(28)
where vβ = (1 − µβ∆)−1v, and where the coefficients a, b, c, d are provided
in the statement of the next theorem.

Theorem 3. Let 0 < cmin < cmax, 0 < δmin < δmax, and set

a =
(1 − α1)(1 + γδ) − 3δβ(γ + δ)

3δ(γ + δ)2
, b = α1

1+γδ
3δ(γ+δ) ,

c = βα2, d = β(1 − α2),

with α1 ≥ 0, β ≥ 0 and α2 ≤ 1. With this specification of the param-
eters, The internal wave equations (14) are consistent with the Boussi-
nesq/Boussinesq equations (28) in the sense of Definition 3, with a precision
O(ε2), and uniformly with respect to ε ∈ [0, 1], µ ∈ (0, 1) and δ ∈ [δmin, δmax]
such that cmin < ε

µ < cmax.

Remark 24. Taking γ = 0 and δ = 1 in the Boussinesq/Boussinesq equations
(28), reduces them to the system





(
1 − µ

α1

3
∆
)
∂tζ + ∇ · ((1 + εζ)v) + µ

1 − α1 − 3β

3
∇ · ∆v = 0

(
1 − µβ(1 − α2)∆

)
∂tv + ∇ζ +

ε

2
∇|v|2 + µβα2∆∇ζ = 0,

which is exactly the family of formally equivalent Boussinesq systems derived
in [8, 10].

Remark 25. The dispersion relation associated to (28) is

ω2 = |k|2
( 1

γ+δ − µa|k|2)(1 − γ − µc|k|2)
(1 + µb|k|2)(1 + µd|k|2) .

It follows that (28) is linearly well-posed when a, c ≤ 0 and b, d ≥ 0. The
system corresponding to α1 = α2 = β = 0 is ill-posed (one can check
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that a = 1+γδ
3δ(γ+δ)2

> 0). This system corresponds to a Hamiltonian system

derived in [17] (see their formula (5.10)). As mentioned before, the present,
three-parameter family of systems allows one to circumvent the problem of
ill-posedness without the need of taking into account higher-order terms in
the expansion, as in [17]).

Proof. The proof is again made based on various possibilities for the param-
eters in the problem. For this regime, we have that ε ∼ µ ∼ ε2 ∼ µ2 as
ε→ 0. The overall idea of the argument is the same as evinced in the proof
of Theorem 1.
Step 1. The case α1 = 0, β = 0, α2 = 0. Using Remark 11 and Corollary 3
(instead of Proposition 1 and Corollary 1 as in the last theorem) one checks
immediately that

∇ψ1 = − 1

γ + δ

[
1 + µ

1

3δ

1 − δ2

γ + δ
∆ + ε2

1 + δ

γ + δ
Π(ζ·)

]
v +O(ε2)

(the nonlocal operator Π does not appear in the final equations because of
the identity ∇ · ΠV = ∇ · V for all V ∈ H1(Rd)d).
Step 2. The case α1 ≥ 0, β = 0, α2 = 0. To use the BBM-trick, remark
that for all α1 ≥ 0,

∇ · v = (1 − α1)∇ · v − α1(γ + δ)∂tζ +O(ε).

Substitute this relation into the third-derivative term of the first equation
of the system derived in Step 1.
Step 3. The case α1 ≥ 0, β ≥ 0, α2 = 0. It suffices to replace v by
(1 − µβ∆)vβ in the system of equations derived in Step 2.
Step 4. The case α1 ≥ 0, β ≥ 0, α2 ≤ 1. This is exactly as in Step 4 of
Theorem 2.

3.2 The Shallow Water/Shallow Water Regime: µ ∼ µ2 ≪ 1

Contrary to the regimes investigated above, large amplitude interfacial de-
formations are allowed for both fluids, as ε ∼ ε2 = O(1). As in the previous
section, an asymptotic model can be derived from (14) by replacing the
operators Gµ[εζ] and Hµ,δ[εζ] by their asymptotic expansions, provided by
Proposition 2 and Corollary 4 in the present regime. The following theorem
shows that the internal wave equations are consistent in this regime with
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the Shallow water/Shallow water system,




∂tζ + 1
γ+δ∇ ·

(
h1Q[γ−1

γ+δ εδζ](h2v)
)

= 0,

∂tv + (1 − γ)∇ζ
+ ε

2∇
(∣∣v − γ

γ+δQ[γ−1
γ+δ εδζ](h2v)

∣∣2 − γ
(γ+δ)2

∣∣Q[γ−1
γ+δ εδζ](h2v)

∣∣2
)

= 0,

(29)
where h1 = 1− εζ, h2 = 1+ εδζ, and the operator Q is defined in Lemma 3.

Theorem 4. Let 0 < δmin < δmax ≤ (1− δ(1−H1))
−1. The internal waves

equations (14) are consistent with the SW/SW equations (29) in the sense of
Definition 3, with a precision O(µ), and uniformly with respect to ε ∈ [0, 1],
µ ∈ (0, 1) and δ ∈ [δmin, δmax].

Remark 26. Taking γ = 0 and δ = 1 in the SW/SW equations (29) yields
the usual shallow water equations for surface water waves (recall that it
follows from Lemma 3 that ∇· [(1−εζ)Q[−εζ]((1+εζ)v)] = ∇·((1+εζ)v)).

Remark 27. In the one-dimensional case d = 1, one has

1

γ + δ
Q[
γ − 1

γ + δ
εδζ](h2v) =

h2

δh1 + γh2

and the equations (29) take the simpler form




∂tζ + ∂x

(
h1h2

δh1+γh2
v
)

= 0,

∂tv + (1 − γ)∂xζ + ε
2∂x

( (δh1)2−γh2
2

(δh1+γh2)2
|v|2

)
= 0,

which coincides of course with the system (5.26) of [17]. The presence of
the nonlocal operator Q, which does not seem to have been noticed before,
appears to be a purely two dimensional effect.

Proof. First remark that with the range of parameters considered in the
theorem, one has µ ∼ µ2 as µ→ 0 while ε ∼ ε2 = O(1).
By the definition (16) of v and using Proposition 2 and Corollary 4, one
deduces from (14) that

{
∂tζ −∇ · ((1 − εζ)∇ψ1) = O(µ),
∂tv + (1 − γ)∇ζ + ε

2∇(|Hµ,δ[εζ]ψ1|2 − γ|∇ψ1|2) = O(µ).
(30)

Recall now that Hµ,δ[εζ]ψ1 = v + γ∇ψ1; since moreover one also gets from
Corollary 4 that Hµ,δ[εζ]ψ1 = −δQ[ε2ζ](h1∇ψ1)+O(µ), it is straightforward
to deduce that

v + γ∇ψ1 = −δQ[ε2ζ](h1∇ψ1) +O(µ)
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Multiplying this relation by h2 and taking the divergence, one gets

∇ · (h2v) + γ∇ · (h2∇ψ1) = −δ∇ · (h2Q[ε2ζ](h1∇ψ1)) + ∇ ·O(µ)

= −δ∇ · (h1∇ψ1) + ∇ ·O(µ),

where the second equality comes from the definition of the operator Q[ε2ζ].
We thus have

∇ · ((1 +
γ − 1

γ + δ
ε2ζ)∇ψ1) = − 1

γ + δ
∇ · (h2v) + ∇ ·O(µ),

and we can therefore use Lemma 3 to conclude that

∇ψ1 = − 1

γ + δ
Q[
γ − 1

γ + δ
ε2ζ](h2v) +O(µ)

and consequently,

Hµ,δ[εζ]ψ1 = v + γ∇ψ1

= v − γ

γ + δ
Q[
γ − 1

γ + δ
ε2ζ](h2v) +O(µ).

Replacing ∇ψ1 and Hµ,δ[εζ]ψ1 by these two expressions in (30) yields the
result.

3.3 The Shallow Water/Small Amplitude Regime: µ ≪ 1,
ε2 ≪ 1

Derived here are various models corresponding to the case when the upper
fluid layer is shallow, but this restriction is not required of the lower layer.
The interfacial deviations are thus not necessarily small relative to the the
upper fluid depth, but they are small relative to the undistrubed depth of
the lower layer. Different systems of equations obtain, depending on the
sizes of the paramaters ε, µ and δ (and thus ε2 and µ2).

3.3.1 The Shallow Water/Full Dispersion Regime: µ ∼ ε22 ≪ 1,
ε ∼ µ2 ∼ 1

In this regime, the internal waves equations are consistent with the Shallow
Water/Full Dispersion system,




∂tζ +
1

γ
∇ · (h1v) −

√
µ

γ2
∇ ·
(
h1|D| coth(

√
µ2|D|)Π(h1v)

)
= 0,

∂tv + (1 − γ)∇ζ − ε

2γ
∇
[
|v|2 − 2

√
µ

γ
v ·
(
|D| coth(

√
µ2|D|)Π(h1v)

)]
= 0,

(31)
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where h1 = 1 − εζ and Π = −∇∇T

∆ .

Theorem 5. Let 0 < cmin < cmax and µmin
2 < µ2 < µmax

2 . The internal
waves equations (14) are consistent with the SW/FD equations (31) in the
sense of Definition 3, with a precision O(µ), and uniformly with respect to
ε ∈ [0, 1], µ ∈ (0, 1) and δ ∈ (0, 1) satisfying the conditions

cmin <
µ

ε2δ2
< cmax and µmin

2 <
µ

δ2
< µmax

2 .

Remark 28. The SW/FD system (31), which as far as we know is new, is a
generalization of the results of §5.4 of [17] to the two-dimensional case d = 2
and to the case of a lower layer of finite depth (the case of an infinite lower
layer is formally recovered here by taking Tµ2 = 1 in (31)).

Proof. First remark that with the range of parameters considered in the
theorem, one has ε22 ∼ µ and ε ∼ µ2 ∼ 1 as µ→ 0.
Proposition 2 implies that 1

µG
µ[εζ]ψ1 = ∇ · (h1∇ψ1) +O(µ) while it follows

from the definition of v and Corollary 5 that

∇ψ1 = −1

γ
v +

√
µ

γ2

|D|
Tµ2

Π(h1v) +O(µ).

One then concludes the proof exactly as in the previous sections.

3.3.2 The Intermediate Long Wave Regime: µ ∼ ε2 ∼ ε2 ≪ 1,
µ2 ∼ 1

In this regime, a one-parameter family of intermediate long wave systems
may be derived from the internal waves equations. These depend upon the
parameter α and have the form





[1 +
√
µ
α

γ
|D| coth(

√
µ2|D|)]∂tζ +

1

γ
∇ · ((1 − εζ)v)

− (1 − α)

√
µ

γ2
|D| coth(

√
µ2|D|)∇ · v = 0,

∂tv + (1 − γ)∇ζ − ε

2γ
∇|v|2 = 0.

(32)

Theorem 6. Let 0 < cmin < cmax, µmin
2 < µ2 < µmax

2 . The internal
wave equations (14) are consistent with the ILW system (32) in the sense of
Definition 3, with a precision O(µ), and uniformly with respect to ε ∈ [0, 1],
µ ∈ (0, 1) and δ ∈ (0, 1) satisfying the conditions

cmin <
µ

ε2
< cmax and µmin

2 <
µ

δ2
< µmax

2 .
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Remark 29. In dimension d = 1 and with α = 0, (32) corresponds to (5.47)
of [17]. However this system is not linearly well-posed. It is straightforward
to ascertain that the condition α ≥ 1 insures that (32) is linearly well-posed
for either d = 1 or d = 2.

Remark 30. The ILW equation derived in [23, 25] is obtained as the uni-
directional limit of the one dimensional (d = 1) version of (32) – see for
instance §5.5 of [17].

Proof. Step 1. The case α = 0. We are working with the regime µ ∼ ε2 ∼
ε2 ≪ 1 and µ2 ∼ 1 as µ → 0. In this situation, Proposition 2 allows us
to write 1

µG
µ[εζ]ψ1 = ∇ · ((1 − εζ)∇ψ1) + O(µ) while it follows from the

definition of v and (24) that

∇ψ1 = −1

γ
v +

√
µ

γ2

|D|
Tµ2

v +O(µ).

Substituting these two relations into the internal wave equations (14) leads
to the advertised result with α = 0.
Step 2. The case α ≥ 0. This result follows from Step 1 and the observation
that

∇ · v = (1 − α)∇ · v − αγ∂tζ +O(ε,
√
µ).

As mentioned already, the restriction on α is not to obtain consistency, but
rather to ensure linear well-posedness.

3.3.3 The Benjamin-Ono Regime: µ ∼ ε2 ≪ 1, µ2 = ∞
For completeness, we investigate the Benjamin-Ono regime, characterized by
the asumption δ = 0 (the lower layer is of infinite depth). Taking µ2 = ∞ in
(32) leads one to replace coth(

√
µ2|D|) by 1. The following two-dimensional

generalization of the system (5.31) in [17] emerges in this situation.
{

[1 +
√
µα

γ |D|]∂tζ + 1
γ∇ · ((1 − εζ)v) − (1 − α)

√
µ

γ2 |D|∇ · v = 0,

∂tv + (1 − γ)∇ζ − ε
2γ∇|v|2 = 0.

(33)

Neglecting the O(
√
µ) = O(ε) terms, one finds that ζ must solve a wave

equation (with speed
√

1−γ
γ ). Thus, in the case of horizontal dimension

d = 1, any interfacial perturbation splits up at first approximation into two
counter-propagating waves. If one includes the O(

√
µ, ε) terms, one obtains

the one-parameter family

(1 +
√
µ
α

γ
|∂x|)∂tζ + c∂xζ − ε

3

4
c∂xζ

2 −
√
µ

2γ
c(1 − 2α)|∂x|∂xζ = 0, (34)
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of regularized Benjamin-Ono equations (see ??). Here, c =
√

1−γ
γ . The

usual Benjamin-Ono equation is recovered by taking α = 0.

A Proof of Proposition 3

The proof is made in five steps.
Step 1. Coercivity of the operator ∇µ2

X,z ·Qµ2 [ε2ζ]∇µ2

X,z. Exactly as in Prop.
2.3 of [2], one may check that

∀Θ ∈ R
d+1, Θ ·Qµ2 [ε2ζ]Θ ≥ 1

k
|Θ|2,

with k = k( 1
H2
, ε
√
µ, ε2|ζ|W 1,∞) > 0.

Step 2. Existence of a unique solution to (21). Owing to Step 1, existence of
a solution and uniqueness up to a constant is provided by classical theorems
(e.g. Section V.7 of [34]), provided that the source terms and Neumann
conditions satisfy the compatibility condition

∫

S
∇µ2

X,z · h =

∫

{z=0}
(
√
µ2∇ · V + ez · h) −

∫

{z=−1}
ez · h.

This latter restriction is valid in the present circumstances on account of the
divergence theorem.
Step 3. L2-estimate on ∇µ2

X,zu. Multiplying (21) by u, integrating by parts
on both sides, and using the Neumann conditions leads to

∫

S
∇µ2

X,zu ·Qµ2 [ε2ζ]∇µ2

X,zu = −
∫

{z=0}
V · √µ2∇u+

∫

S
h · ∇µ2

X,zu.

A direct consequence of Step 1 and the Cauchy-Schwarz inequality is the
inequality

‖∇µ2

X,zu‖2 ≤ k
(
‖h‖ ‖∇µ2

X,zu‖ + |V |H1/2 |√µ2∇u|H−1/2).

It follows from the trace theorem that

|√µ2∇u|H−1/2 ≤ Cst
(
‖√µ2∇u‖ + ‖Λ−1√µ2∂z∇u‖

)

≤ Cst
(
‖∇µ2

X,zu‖ +
√
µ2‖∇µ2

X,zu‖
)
.

It is concluded that

‖∇µ2

X,zu‖ ≤ C(
1

H2
, εmax

2 , µmax
2 , |ζ|W 1,∞)

(
‖h‖ + |V |H1/2

)
.
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Step 4. Hs-estimate (s ≥ 0) on ∇µ2

X,zu. Let v = Λsu. Multiplying (21) by
Λs on both sides, it results that v solves the system

{
∇µ2

X,z ·Qµ2 [ε2ζ]∇µ2

X,zv = ∇µ2

X,z · h̃, in S,
∂nv|z=0

=
√
µ2∇ · ΛsV + ez · h̃|z=0

, ∂nv|z=−1
= ez · h̃|z=−1

,

with h̃ = Λsh + [Qµ2 [ε2ζ],Λ
s]∇µ2

X,zu. From Step 3 and the definition of v, it

is thus deduced that ‖Λs∇µ2

X,zu‖ is bounded from above by

C(
1

H2
, εmax

2 , µmax
2 , |ζ|W 1,∞)

(
‖Λsh‖ + |V |Hs+1/2 + ‖[Qµ2 [ε2ζ],Λ

s]∇µ2

X,zu‖
)
.

Using the expression for Qµ2 [ε2ζ] and the commutator estimate

|[Λs, f ]g|2 ≤ C|∇f |Hmax{t0,s−1} |g|Hs−1 ,

which holds for some constant C which depends upon s > −d
2 and t0 >

d
2

(see Th. 6 of [27]), we obtain

‖[Qµ2 [ε2ζ],Λ
s]∇µ2

X,zu‖ ≤ C(
1

H2
, εmax

2 , µmax
2 , |ζ|Hmax{t0+2,s+1})‖Λs−1∇µ2

X,zu‖
)
.

We thus get an estimate on ‖Λs∇µ2

X,zu‖ in terms of ‖Λs−1∇µ2

X,zu‖ which,
together with Step 3 (i.e. s = 0) allows us to derive the following relation
by induction (and interpolation when s ∈ (0, 1)):

∀s ≥ 0, ‖Λs∇µ2

X,zu‖ ≤ C(
1

H2
, εmax

2 , µmax
2 , |ζ|Hmax{t0+2,s+1})(‖Λsh‖+|V |Hs+1/2).

Step 5. Hs-estimate (s ≥ 0) on ∂z∇µ2

X,zu. First remark that using the
equation yields

1 + µε2(z + 1)2|∇ζ|2
1 + ε2ζ

∂2
zu = ∇µ2

X,z · h

−√
µ2∇ ·

(
(1 + ε2ζ)

√
µ2∇u−√

µε(z + 1)∇ζ∂zu
)

+
√
εµ∇ζ · (√µ2∇u) − 2µε2(z + 1)

|∇ζ|2
1 + ε2ζ

∂zu,

from which one obtains the estimate

‖Λs∂2
zu‖ ≤ C(εmax

2 , µmax
2 , |ζ|Hmax{t0+2,s+1})(‖Λs∇µ2

X,zh‖+
√
µ2‖Λs+1∇µ2

X,zu‖).
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Use this to write

‖Λs∂z∇µ2

X,zu‖ ≤ √
µ2‖Λs∂z∇u‖ + ‖Λs∂2

zu‖
≤ C(εmax

2 , µmax
2 , |ζ|Hmax{t0+2,s+1})(‖Λs∇µ2

X,zh‖ +
√
µ2‖Λs+1∇µ2

X,zu‖).

With the help of Step 4, one obtains the inequality

‖Λs∂z∇µ2

X,zu‖ ≤ C(
1

H2
, εmax

2 , µmax
2 , |ζ|Hmax{t0+2,s+1})(‖h‖Hs+1,1 + |V |Hs+3/2).

Step 6. Conclusion. By the trace theorem we may assert that for all s ≥ 0,

|∇u|z=0
|Hs ≤ Cst ‖∇u‖Hs+1/2,1 ≤ Cst√

µ2
‖∇µ2

X,zu‖Hs+1/2,1 .

The desired result now follows from Steps 4 and 5.
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