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Abstract

Nonlocal damage models are now commonly used. Their ability to make finite element
computations with softening laws robust and mesh independent is well established. There
are nevertheless still a few open questions as the identification of the so-called internal
length lc, as its loading or its boundray independency. One focus in the present note on
the boundary conditions problem and on the feature that points separated by a crack or a
hole should not interact as they do in Pijaudier-Cabot and Bazant initial nonlocal theory.
Instead of defining an internal length one proposes to make the nonlocal weight function
as a function of the information time propagation of an elastic wave normalized by an
internal time τc.

Key-words : nonlocal ; damage ; negative hardening

Résumé

Les modèles d’endommagement nonlocaux sont désormais robustes et couramment utilisés
dans le cadre de calculs numériques sur structures complexes. La question des conditions
aux limites demeure néanmoins non résolue, de même que l’identification et la question
de la dépendance structurelle de la longueur interne habituellement introduite lc. Nous
nous attachons dans la présente note à proposer une théorie nonlocale de type intégral
évitant l’interaction des points de part et d’autre des lèvres d’une fissure, d’entailles ou
de trous, théorie basée sur le temps de propagation d’ondes élastiques. Un temps interne
est considéré en lieu et place de la longueur interne.

Mots-clés : nonlocal ; endommagement ; écrouissage négatif
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Introduction

The effect and the formulation of boundary conditions – such as free edges, notches and
initial cracks – remain an open question for nonlocal models. The main drawback of
the classical nonlocal integral theory [1] consists in the nonphysical interaction, through
the nonlocal averaging process, of points across a crack or a hole. The definition of
natural boundary conditions of vanishing strain normal derivative at a free edge is still
under discussion for gradient formulations [2, 3]. The continuous nucleation of a crack
of zero thickness is not so simple as the thickness of a localization band is more or less
proportional to the internal length introduced. Local behavior along free edges – i.e. with
a vanishing internal length – has been obtained by some authors [4]. The consideration
of an internal length evolving with damage [5, 6] seems a way to properly bridge Damage
Mechanics and Fracture Mechanics as the internal length may then vanish for large values
of damage.

In the present note, one proposes a solution – bringing also questions – to these
main difficulties. The idea is to keep the nonlocal averaging process but to quantify the
distance between points as an effective distance, i.e. as a distance function for instance
of the geometry and the matter encountered beween interacting points. One proposes to
define such an effective distance with respect to a dynamic process: with respect to how
information or wave propagates between interacting points. This can be made through
the introduction of an internal time, constant, instead of a internal length, measured
as evolving. Dynamics is important to define a link between a characteristic time and a
characteristic length, either when viscosity is introduced [7, 9] or when the physical defects
obscuration phenomenon encountered in high speed dynamics and multi-fragmentation is
taken into account [8]. Some authors even introduce the classical nonlocal theory by
comparing the characteristic wavelength of the deformation field to an intrinsic length
of the material [10], still a dynamics vocabulary. Remind also that the physics is often
dynamic at small (discrete) scales as in quantuum mechanics, as in dislocations theories
or as at the scale of the macromolecular chains in elastomers, even if the continuum
macroscopic behavior is quasi-static. Let us then accept then the importance of the
dynamics effects and of wave propagations. But as just mentioned in order to address
quasi-static non-viscous structural failure.

5



6 CONTENTS



Chapter 1

Wave propagation in plain, notched
and damaged media

This part illustrates the wave propagation in different media. It contributes to the un-
derstanding of the differences or similarities between a notched and a damaged zone.

1.1 Finite Element modelling

In this chapter one considers the problem of an impact on a square plate of the Figure 1.1
(1.5 m×1.5 m×0.01 m). An impulse force F (t) according to the out of plane z-axis (close
to a Dirac) is applied to the plate (Figure 1.2) in order to generate a wave propagation
in this plate.

In order to numerically simulate this problem, one uses the Finite Element code
Dyna3D to obtain the transient solution of a wave propagation. The plate is modeled with
3D under-integrated brick elements with an elastic material (E=35 GPa, ν=0,2, ρ=2400
kg/m3). No boundaries conditions are applied in the simulations. The discrete equations
of motion are solved with an explicit scheme so that the time step is directly linked to the
element size (Courant’s condition satisfied). In order to gain a good description of the
wave propagation, one choses to have small elements (0.015 m×0.015 m×0.01 m). One
obtains then approximately 360000 elements with a time step equal to 5.10−4 ms. This
time step will be the accuracy of the different computed times in the problem.

7
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F(t)

Figure 1.1: Impact on a square plate.
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Figure 1.2: Force vs time for the impact force.

1.2 Propagation in plain media

Figure 1.3 shows the specimen used to model the wave propagation in the plain plate.
Figure 1.4 shows the map of the z-acceleration in the plate at a time t=100 ms. Notice
that one can see the wave reflection on the free faces of the plate (up and left).
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Figure 1.3: Plain specimen.

Figure 1.4: Wave propagation in the plain specimen.

1.3 Propagation in notched media

Figure 1.5 shows the specimen used to model the wave propagation in the notched plate.
The length of the notch is 0.5 m, its width 0.1 m. Figure 1.6 shows the map of the
z-acceleration in the plate at t=100 ms. Notice again that one can see the wave reflection
on the free faces of the plate and in particular the reflection due to the notch (upper lip).
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Figure 1.5: Notched specimen.

Figure 1.6: Wave propagation in the notched specimen.

1.4 Propagation in damaged media

Figure 1.7 shows the specimen used to model the wave propagation in a plate where
previous notch is replaced by a damaged material at a damage level D=0.99. In the
computation one uses for the damaged zone a constant effective Young’s modulus Ẽ =
E(1−D) instead of the initial modulus E. This means here Ẽ = E/100. Figure 1.8 shows
the map of the z-acceleration in the plate at t=100 ms. One sees the wave reflection on
the free edges of the plate as in the previous cases. It is important to see that in this
case, the damaged zone acts almost as a free surface for the wave propagation. This is
due to the large differences in impedance between the initial undamaged material and the
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damaged one.

Figure 1.7: Damaged specimen.

Figure 1.8: Wave propagation in the “damaged” specimen.

1.5 Discussion

These simple examples illustrate the wave propagation without and with notches (nothing
new). First, wave propagation is affected by the free edges (classical reflection). Second,
the comparison between the real notch and the damaged zone allows to conclude that
highly damaged material (low Young’s modulus) behaves as a notch.
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These two properties are the basis of the nonlocal integral formulation proposed next.



Chapter 2

Nonlocal theory with internal time

Softening constitutive equations classically lead to spurious dissipation modes and to mesh
dependency. The need of the definition – and the introduction – of an internal length in
the models is now established. But in which form ? In a gradient form ? In an inegral
form ? From an internal viscosity (delay-damage) combined then with dynamics ? The
main idea of such regularizations is to average the ”engine” – i.e. the thermodynamics
force, denoted next V in the general case or Y or ε̂ for damage – responsible for the strain
localization. The procedure to define a nonlocal variable Vnl from its local expression V
introduces a characteristic length lc considered as a material parameter.

One do not intend here to solve the problem in the general case and focus only on the
nonlocal integral theories.

2.1 Nonlocal integral theories – Boundary effect

The classical nonlocal theory [1] uses the integral

Vnl(xxx) =
1

Vr

∫
Ω

ψ

(
‖xxx− sss‖

lc

)
V(sss)ds Vr(xxx) =

∫
Ω

ψ

(
‖xxx− sss‖

lc

)
ds (2.1)

over the whole domain Ω in order to define a nonlocal quantity Vnl – built from the local
variable V – to be used in thermodynamics state or evolution laws.

In Eq. (2.1) ψ is the nonlocal weight function, positive and decreasing with respect to
the distance ‖xxx− sss‖ between the considered point xxx and all the structure points sss. The
normalizing factor is denoted Vr(xxx) and lc is an internal or characteristic length. Two
classical ψ−functions are

ψ(ξ) = e−
1
2
ξ2 or ψ(ξ) =

〈
1− ξ2

〉2
(2.2)

The expressions (2.1) do then define the same contribution to Vnl of points xxx and sss

13
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• across a crack than any points xxx and sss separated by the same distance ‖xxx− sss‖ (for
instance path xxx1-xxx6 versus path xxx2-xxx5 of figure 2.1),

• across a damaged zone: for example the interaction between points x3-x4 is not
affected by the zone at a damage level D0, i.e. at a Young’s E(1−D0) much lower
than the Young’s modulus of the virgin material.

This illustrates the need to deal with such a boudary condition effect but also to make
equivalent a real crack and a highly damaged zone.

Specimen (a) Specimen (b)

x1 x2 x3

x6 x5 x4

x1 x2 x3

x6 x5 x4

Specimen (c)

x1 x2 x3

x6 x5 x4

D=D0

Figure 2.1: Notched and damaged specimens.

2.2 Time instead of distance

In order to solve the problem, one proposes in this work to keep the nonlocal integral
framework and to consider the information time propagation τxs between points xxx and sss
instead of the classical distance ‖xxx− sss‖.

A nonlocal theory with internal time is then simply defined by replacing Eq. (2.1) by:

Vnl(xxx) =
1

Vr

∫
Ω

ψ

(
τxs
τc

)
V(sss)ds Vr(xxx) =

∫
Ω

ψ

(
τxs
τc

)
ds (2.3)

with τxs the information propagation time taken next as the time for a wave to propagate
from point xxx to point sss and τc a material parameter. As the wave time propagation
τsx from point sss to point xxx is identical to τxs the nonlocal weight function thus built is
symmetric.

Such a nonlocal averaging process applies to physical laws of different nature.
Concerning continuum mechanics and elasticity, plasticity and/or damage, the vari-

ables V are often equivalent strains, accumulated plastic strains or strain energy densities.
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2.3 Example: nonlocal damage models

For example, local isotropic damage theories for quasi-brittle materials define

• the damage as a loss of stiffness D = 1− Ẽ/E with Ẽ (resp. E) the damaged (resp.
initial) Young modulus, equation also rewritten in 3D as the elasticity law coupled
with isotropic damage

σσσ = EEE(1−D) : εεε (2.4)

with σσσ, εεε and EEE respectively the stress, the strain and the Hooke tensors.

• the damage evolution as a function of a local variable V either equal to the ther-
modynamics force Y = 1

2
εεε : EEE : εεε associated with damage (Marigo model) or to an

equivalent strain as Mazars strain ε̂ =
√
〈εεε〉+ : 〈εεε〉+,

D = g(V) (2.5)

with g a nonlinear function.

The non local damage law is simply written

D = g(Vnl) (2.6)

instead of Eq. (2.5) with the nonlocal averaging process (2.3).

For concrete, the microcracks due to tension are mainly orthogonal to the loading
direction, when the microcracks due to compression are mainly parallel to the loading
direction. The damage state has then to be represented by a tensorial variable DDD either
a fourth rank tensor or a second rank tensor. The use of a second order damage tensor is
more convenient for practical applications (as well as for the material parameters identi-
fication) and this is the choice which has been made. The damage anisotropy induced by
either tension or compression is simply modeled by the consideration of damage evolution
laws ensuring a damage rate proportional to the positive part of the strain tensor, i.e. a
damage governed by the principal extensions [11].

The full set of constitutive equations for the local anisotropic damage model reads
[12, 13]

• Elasticity,

εεε =
1 + ν

E
σ̃σσ − ν

E
tr σ̃σσ 111 (2.7)

with E the Young modulus and ν the Poisson ratio.
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• Effective stress,

σ̃σσ =
(
(111−DDD)−1/2σσσD(111−DDD)−1/2

)D
+

1

3

[
〈tr σσσ〉

1− tr DDD
− 〈−tr σσσ〉

]
111 (2.8)

where(.)D stands for the deviatoric part and 〈.〉 for the positive part of a scalar.

• Damage criterion,
f = ε̂− κ(trDDD) (2.9)

so that the condition f < 0→ elastic loading or unloading, f = 0, ḟ = 0→ damage
growth, where ε̂ =

√
〈εεε〉+ : 〈εεε〉+ is Mazars equivalent strain built from the positive

part 〈εεε〉+ of the strain tensor and where

κ(tr DDD) = a · tan

[
tr DDD

aA
+ arctan

(κ0

a

)]
(2.10)

• Induced damage anisotropy governed by the positive extensions,

D = λ̇〈εεε〉2+ (2.11)

In the rate independent formulation, the damage multiplier λ̇ is determined from
the consistency condition f = 0, ḟ = 0.

There are 5 material parameters introduced: E, ν for elasticity, κ0 as damage threshold
and A and a as damage parameters.

The model is simply made nonlocal, either from the classical integral theory or from
the new integral nonlocal with internal time theory, by replacing Mazars equivalent strain
ε̂ by its nonlocal form in the damage criterion function, becoming

f = ε̂nl − κ(trDDD) (2.12)

instead of Eq. (2.9) with the nonlocal averaging process (2.3).

2.4 Effective or ”dynamic” distance – Vanishing in-

ternal length

In a plain and uncracked medium the internal length and internal time concepts are
equivalent as

‖xxx− sss‖ = c τxs (2.13)
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with c the information celerity taken as the wave speed. Then, if the internal time is
related to the internal length as lc = c τc the weight functions are equal,

ψ

(
‖xxx− sss‖

lc

)
= ψ

(
τxs
τc

)
(2.14)

In a homogeneously damaged medium at D = D0, the wave speed is proportional to
the square root of the damaged Young’s modulus and depends on the damage level as

c̃ = c
√

1−D0 (2.15)

One has in this case

τxs =
‖xxx− sss‖

c̃
(2.16)

and
τxs
τc

=
‖xxx− sss‖
c̃ τc

=
‖xxx− sss‖
lc
√

1−D0

>
‖xxx− sss‖

lc
(2.17)

which shows that the effective or ”dynamic” distance

‖xxx− sss‖eff =
‖xxx− sss‖√

1−D0

(2.18)

between two points increases, as expected, with damage. Eq. (2.17) defines in an equiv-
alent manner an effective internal length

l̃c = lc
√

1−D0 (2.19)

which tends to zero when D0 tends to unity in accordance with Pijaudier-Cabot et al.
results [4] of a material behavior becoming local on free edges (at least in the direction
normal to the edge).

In 1D and in the non uniform case, the effective distance is defined as the integral over
the path [s, x] as

∣∣∫ x
s

(1−D(x′))−1/2dx′
∣∣, in 3D as c τxs
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Chapter 3

Equivalence between a crack and a
damaged zone

In order to illustrate the formulation ability, consider the specimens of figure 3.1: (a) a
square plate, (b) a notched specimen and (c) a specimen with a damaged zone at D = D0.
Vertical z-acceleration fields are also plotted at the same instant for the 3 specimens. It
is clearly noticed that the information initiated as an impulse at xxx = xxx1 takes longer
to reach point xxx6 for both notched and damaged specimens (the wave generated in the
example has to turn around the notch). Note the waves reflexion on upper notch and
on upper damaged zone sides. When the damage D0 becomes large (0.99 in the figure),
notched and damaged specimens are found equivalent.

X1 X2 X3

X6 X5 X4

Specimen (a)

X1 X2 X3

X6 X5 X4

Specimen (b)

X1 X2 X3

X6 X5 X4

Specimen (c)

y

x
z Damage zone at D=D0

0.5 m 0.5 m

0.
5 

m

0.
1 

m

Figure 3.1: Square plate, notched and damaged specimens. Geometry and pictures of
wave propagation at the same instant.
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3.1 Connectivity matrices

To quantify the approach, consider six points xxxp in these specimens. The distances be-
tween these points, used in the classical nonlocal theory, are calculated in table 1 for the
plate (a) (with l = 0.5 m).

‖xxxp−xxxq‖
lc

xxx1 xxx2 xxx3 xxx4 xxx5 xxx6

xxx1 0 l/lc 2l/lc l
√

5/lc l
√

2/lc l/lc
xxx2 l/lc 0 l/lc l

√
2/lc l/lc l

√
2/lc

xxx3 2l/lc l/lc 0 l/lc l
√

2/lc l
√

5/lc
xxx4 l

√
5/lc l

√
2/lc l/lc 0 l/lc 2l/lc

xxx5 l
√

2/lc l/lc l
√

2/lc l/lc 0 l/lc
xxx6 l/lc l

√
2/lc l

√
5/lc 2l/lc l/lc 0

Table 3.1: Connectivity table built from the classical distances ‖xxx− sss‖ = ‖xxxp − xxxq‖
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The connectivity table is rewritten in a matrix form as a connectivity matrix (
√

2 and√
5 replaced by their numerical values to simplify further comparisons),

CCC =
l

lc
·


0 1 2 2.236 1.414 1
1 0 1 1.414 1 1.414
2 1 0 1 1.414 2.236

2.236 1.414 1 0 1 2
1.414 1 1.414 1 0 1

1 1.414 2.236 2 1 0

 (3.1)

The classical connectivity matrix CCC is the same (and is symmetric) for the 3 structures
(a), (b) and (c). It does not take into account the presence of notches nor the occurence
of damage as C16 = C25 = C34 = l/lc.

In order to determine the connectivity matrix with the new internal time formulation,
one proceeds as follows:

• an impulse force according to the out of plane z-axis (close to a Dirac) is applied
at each point xxx = xxxp in a dynamic finite element analysis of a 3D model of a plate
(thickness of 0.1 m, 720000 nodes and 360000 elements, free boundary conditions),

• the times τxs at which the first pic of the z-acceleration information arrives at point
sss = xxxq are recorded. Divided by τc they are put in the form of connectivity matrices
CCCτ ,

• the expressions for τxs/τc are synthesized by use of the relation lc = c τc in the form
CCCτ = l

lc
·AAA and compared to table 1 results for the different specimens.

For the concrete square plate and notched specimen one ends up to (E = 35000 MPa,
ν = 0.2, ρ = 2400 kg/m3):

CCC(a)
τ =

l

lc
·


0 1 2.008 2.233 1.420 1
1 0 1 1.420 1 1.420

2.008 1 0 1 1.420 2.233
2.233 1.420 1 0 1 2.008
1.420 1 1.420 1 0 1

1 1.420 2.233 2.008 1 0

 (3.2)

CCC(b)
τ =

l

lc
·


0 1 2.008 2.233 1.420 1.494
1 0 1 1.420 1 1.420

2.008 1 0 1 1.420 2.233
2.233 1.420 1 0 1 2.008
1.420 1 1.420 1 0 1

1.494 1.420 2.233 2.008 1 0

 (3.3)
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where the notch presence is taken into account (boxed terms), leading for the notched

specimen to C
(b)
τ 16 = τ

(b)
16 /τc = 1.494 l/lc intead of C

(a)
τ 16 = τ

(a)
16 /τc = l/lc for the plate with

no notch.
For the specimen with the damaged zone at D = D0 = 0.99, the connectivity matrix

corresponding to the nonlocal internal time analysis reads

CCC(c)
τ =

l

lc
·


0 1 2.008 2.233 1.420 1.500
1 0 1 1.420 1 1.420

2.008 1 0 1 1.420 2.233
2.233 1.420 1 0 1 2.008
1.420 1 1.420 1 0 1

1.500 1.420 2.233 2.008 1 0

 (3.4)

Again ony the terms 16 and 61 of the connectivity matrices are changed and found close
to the value 1.494 l/lc obtained with reals notches: the damaged zone behaves as a notch,
damage and notch being both taken into account by the proposed nonlocal with internal
time analysis.

3.2 Straight 1D wave propagation

For a better understanding, focus on times τ16, τ25, τ34 wave propagation in specimen (c)
from xxx1 to xxx6, from xxx2 to xxx5, from xxx3 to xxx4. The corresponding distances are equal in the
3 cases (equal to l). Due to the presence of the notch the time τ16 is of course larger than
the time τ25 correspnding to a straight path with no notch (and τ25/τc = l/lc).

A wave propagating along the path xxx1−xxx6 in specimen (c) slows down to the celerity
c̃ when meeting the damaged zone. If one only consider the straight path xxx1 −xxx6 for the
wave propagation, one has

τ16 =
l

c
+
e

c
· 1−

√
1−D0√

1−D0

or
τ16

τc
=

l

lc

[
1 +

e

l
· 1−

√
1−D0√

1−D0

]
(3.5)

where e is the thickness of the damaged zone at D = D0.
The figure 3.2 shows the normalized increase of time τ34 = τ

(c)
34 with respect to the

damage value D0 and for different ratios e/l. The ratio (τ34/τc)/(l/lc) in case (c) is equal
(resp. close) to unity for a zero (resp. small) damage, the nonlocal theory with internal
time recovering then the classical nonlocal theory. The very large increase obtained for
large values of the damage, enhanced by a large damaged zone thickness, proves that both
a real crack and a highly damaged zone are equivalent in the proposed nonlocal framework.
This property is emphasized when the ratio of the weight functions ψ(τ34/τc)/ψ(l/lc) is
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drawn (figures 3.3 to fig:ratioexp02) for l/lc = 5, 1 and 0.2 and for the Gaussian weight

function ψ(ξ) = e−
1
2
ξ2 : the nonlocal spatial interaction between points across a damaged

zone strongly diminishes with damage increase, the larger the points distance l with
respect to the internal length lc, the stronger the effect.
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Chapter 4

Bar with a damaged zone

As an example emphasizing how a damaged zone is taken into account, consider a bar in
tension at a stress level σ. The length of the bar is 2L, a damaged zone at large D = D0

corresponds to x ∈ [−l, l]. The non local analyses perform the integrals (2.1) over the
whole bar,

εnl(x) =
1

Vr

∫ L

−L
ψ · ε(s)ds Vr(x) =

∫ L

−L
ψ ds (4.1)

with as strain ε(x) = σ/E if |x| > l, ε(x) = σ/E(1−D0) else and where ψ = ψ
(
|x−s|
lc

)
for

the classical nonlocal analysis, ψ = ψ
(
τxs

τc

)
for the nonlocal analysis with internal time.

The Gaussian weight function ψ(ξ) = e−
1
2
ξ2 is considered. The normalizing factors Vr(x)

are compared for both analyses in figure 4.1a where D0 = 0.99, l = 2.5 cm, L = 50 cm and
where the characteristic length is taken as lc = 10 cm (twice the size 2l of the damaged
zone). The classical normalization does not ”see” the damaged zone and averages across it
when the new nonlocal with internal time approach behaves for the undamaged domains
almost as for two independent bars, as expected. The nonlocal strains obtained with both
approaches are compared in figure 4.1b. In this particular piecewise constant strain field,
the formulation with internal time gives as expected a nonlocal strain field closer to the
local strain field than the classical nonlocal approach for which too much importance is
given to points over the damaged zone when performing the integral (4.1). Note that
in case of structural failure, strain localization leads to non homogeneous fields. The
proposed nonlocal averaging then fully acts and makes the solution regular.
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Conclusion

A new nonlocal integral formulation is proposed. An internal time is introduced leading to
the equivalent definition of an effective or ”dynamic” distance and of an evolving internal
length. The important feature is that the distance bewteen points is not the argument
of the averaging weight function anymore. It is replaced by the information or wave time
propagation between these points. The nonlocal weight function build is then symmetric,
even in non homogeneous bodies. Pre-computations of wave propagation in the considered
structure allow to build the corresponding nonlocal connectivity matrix, with of course
the open question of the wave type.

The cracks and notches presence – and if necessary their closure – are naturally taken
into account within the wave propagation study and Pijaudier-Cabot and Bazant nonlocal
theory is recovered far from the boundaries. The proposed approach makes equivalent a
crack and a highly damaged zone, as points across a notch have a small contribution in
the nonlocal averaging.

Important point, no assumption on the medium isotropy is made. The proposed
nonlocal framework includes anisotropy, either initial or induced.

Last, when no damage is considered as in plasticity with negative hardening models,
the internal time concept may still be used, for example by making nonlocal – through
Eq. (2.3) – the accumulated plastic strain. The presence of existing notches and cracks
will be naturally taken into account if propagation of elastic waves defines the time τxs
but the equivalence between a localized zone and a crack will not be obtained. To gain
this last feature, two possibilities are:

• to consider an elasticity coupled with damage even if the plasticity part of the model
remain not affected by damage,

• to define τxs from plastic waves propagation (no need of damage then).
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[6] Pijaudier-Cabot G., Haidar K., Dubé J.-F., Int. J. Num. Anal. Meth. Geomech., 28,
pp. 633-652, 2004.

[7] Needleman A., Comp. Meth. Mech. Engng, 67, 69-85, 1988.

[8] Denoual C. and Hild F., Comp. Meth. Appl. Mech. Eng., 183 (3-4), pp. 247-258,
2000.
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