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Nonparametric estimation for a stochastic volatility model.

Introduction

In this paper, we consider a bivariate process (X t , V t ) t≥0 with dynamics described by the following equations:

dX t = √ V t dB t , X 0 = 0, dV t = b(V t )dt + σ(V t )dW t V 0 = η, V t > 0, for all t ≥ 0, (1) 
where (B t , W t ) t≥0 is a standard bidimensional Brownian motion and η is independent of (B t , W t ) t≥0 . Our aim is to propose and study nonparametric estimators of b(.) and σ 2 (.) on the basis of discrete time observations of the process X only.

Model [START_REF] Aït-Sahalia | Maximum likelihood estimation of stochastic volatility models[END_REF] was introduced by Hull and White (1987) under the name of Stochastic Volatility model. It is often adopted in finance to model stock prices, stock indexes or short term interest rates: see for instance [START_REF] Hull | The pricing of options on assets with stochastic volatility[END_REF], Anderson and Lund (1997), the review of Stochastic Volatility models in [START_REF] Ghysels | Stochastic volatility[END_REF] or the recent book by [START_REF] Shephard | Stochastic volatility. Selected readings. (Advanced texts in Econometrics)[END_REF] and the references therein. See also an econometric analysis of the subject in Barndorff-Nielsen and [START_REF] Barndorff-Nielsen | Econometric analysis of realized volatility and its use in estimating stochastic volatility models[END_REF].

The approach to study model ( 1) is often parametric: the unknown functions are specified up to a few unknown parameters, see the popular examples of [START_REF] Heston | A closed-form solution for options with stochastic volatility with applications to bond and currency options[END_REF] or [START_REF] Cox | A theory of the term structure of interest rates[END_REF]. General statistical parametric approaches of the problem are studied in Genon-Catalot et al. (1999), Hoffmann (2002), [START_REF] Gloter | Efficient estimation of drift parameters in stochastic volatility models[END_REF], Aït-Sahalia and Kimmel (2007). A nonparametric estimation of the stationary density of V t is studied in Comte and Genon-Catalot (2006). A recent proposal for nonparametric estimation of the drift and diffusion coefficients of V can be found in Renó (2006), who studies the empirical performance of a Nadaraya-Watson kernel strategy on two parametric simulated examples. Our approach is new and different, and it is based on a nonparametric mean square strategy. We consider the same probabilistic and sampling settings as [START_REF] Gloter | Efficient estimation of drift parameters in stochastic volatility models[END_REF] and follow the ideas developed in Comte et al. (2006[START_REF] Comte | Penalized nonparametric mean square estimation of the coefficients of diffusion processes[END_REF], where direct or integrated discrete observations of the process (V t ) are considered. Here, our assumptions ensure that (V t ) is stationary and we consider discrete time observations (X ℓδ ) 1≤ℓ≤n+1 of the process (X t ) in the so-called high frequency context: δ is small, n is large and nδ = T , the time interval where observations are taken, is large.

We assume that n = kN and define as it is usual, for i = 0, 1, . . . , N -1, the realized quadratic variation associated with (X ℓδ ) ik+1≤ℓ<(i+1)k :

Vi = 1 kδ k-1 j=0 X (ik+j+1)δ -X (ik+j)δ 2 .
Setting ∆ = kδ, Vi provides an approximation of the integrated volatility:

Vi = 1 ∆ (i+1)∆ i∆ Vsds, (2) 
which in turn may be, for well chosen k, δ, a satisfactory approximation of V i∆ . We have in mind to obtain regression-type equations, for ℓ = 1, 2:

Y (ℓ) i+1 = f (ℓ) ( Vi ) + noise + remainder,
where

f (1) = b, Y (1) i 
= Vi+1 -Vi ∆ and f (2) = σ 2 , Y (2) i 
= 3 2 ( Vi+1 -Vi ) 2 ∆ . (3) 
Choosing a collection of finite dimensional spaces, we use the regression-type equations to construct estimators on these spaces. Then, we propose a data driven procedure to select a relevant estimation space in the collection. As it is usual with these methods, the risk of an estimator f of f = b or σ 2 is measured via

E( f -f 2 N ) where f -f 2 N = (1/N ) N -1 i=0 (f -f ) 2 ( Vi ).
We obtain risk bounds which can be interpreted as n, N tend to infinity, δ, ∆ tend to 0 and T = nδ = N ∆ tends to infinity. These bounds are compared with Hoffmann's (1999) minimax rates in the case of direct observations of V . For what concerns b, our method leads to the best rate that can be expected. For what concerns σ 2 , no benchmark is available in this asymptotic framework. Indeed, [START_REF] Gloter | Estimation of the volatility diffusion coefficient for a stochastic volatility model[END_REF] and Hoffmann (2002) only treat the case of observations within a fixed length time interval, in a parametric setting. As it is always the case, the rates are different for the two functions.

The paper is organized as follows. Section 2 describes the assumptions on the model and the collection of estimation spaces. In Section 3, the estimators are defined and their risks are studied. Section 4 completes the procedure by the data driven selection of the estimation space. Examples of models and simulation results are presented in Section 5. Lastly, proofs are gathered in Section 6.

The assumptions

Model assumptions.

Let (X t , V t ) t≥0 be given by ( 1) and assume that only discrete time observations of X, (X ℓδ ) 1≤ℓ≤n+1 are available. We want to estimate the drift function b and the square of the diffusion coefficient σ 2 when V is stationary and exponentially β-mixing. We assume that the state space of (V t ) is a known open interval (r 0 , r 1 ) of R + and consider the following set of assumptions.

[A1 ] 0 ≤ r 0 < r 1 ≤ +∞,

• I = (r 0 , r 1 ), with σ(v) > 0, for all v ∈ • I . Let I = [r 0 , r 1 ] ∩ R. The function b belongs to C 1 (I), b ′ is bounded on I, σ 2 ∈ C 2 (I), (σ 2 ) ′ σ is Lipschitz on I, (σ 2 ) ′′ is bounded on I and σ 2 (v) ≤ σ 2 1 for all v in I. [A2 ] For all v 0 , v ∈ • I , the scale density s(v) = exp -2 v v0 b(u)/σ 2 (u)du satisfies r0 s(x)dx = +∞ = r1 s(x)dx, and the speed density m(v) = 1/(σ 2 (v)s(v)) satisfies r1 r0 m(v)dv = M < +∞. [A3 ] η ∼ π and ∀i, E(η 2i ) < ∞, where π(v)dv = (m(v)/M )1 I (r0,r1) (v)dv.
[A4 ] The process (V t ) is exponentially β-mixing, i.e., there exist constants K > 0, θ > 0, such that, for all t ≥ 0, β V (t) ≤ Ke -θt .

Under [A1]-[A3], (V t ) is strictly stationary with marginal distribution π, ergodic and β-mixing, i.e. lim t→+∞ β V (t) = 0. Here, β V (t) denotes the β-mixing coefficient of (V t ) and is given by

β V (t) = r1 r0 π(v)dv P t (v, dv ′ ) -π(v ′ )dv ′ T V .
The norm . T V is the total variation norm and P t denotes the transition probability of

(V t ) (see Genon-Catalot et al. ( 2000 
)
). To prove our main result, we need the stronger mixing condition

[A4], which is satisfied in most standard examples. Under [A1]-[A4],
for fixed ∆, ( Vi ) i≥0 is a strictly stationary process. And we have:

Proposition 2.1 Under [A1]-[A4],
for fixed k and δ, ( Vi ) i≥0 is strictly stationary and

β V (i) ≤ cβ V (i∆) for all i ≥ 1.

Spaces of approximation

The functions b and σ 2 are estimated only on a compact subset A of the state space • I . For simplicity and without loss of generality, we assume from now on that A = [0, 1], and we set b

A = b1 A , σ A = σ1 A . (4) 
To estimate f = b, σ 2 , we consider a family Sm, m ∈ Mn of finite dimensional subspaces of L 2 ([0, 1]) and compute a collection of estimators fm where for all m, fm belongs to Sm. Afterwards, a data driven procedure chooses among the collection of estimators the final estimator f m.

We consider here simple projection spaces, namely trigonometric spaces, Sm, m ∈ Mn. The space Sm is linearly spanned in

L 2 ([0, 1]) by ϕ 1 , . . . , ϕ 2m+1 with ϕ 1 (x) = 1 [0,1] (x), ϕ j (x) = √ 2 cos(2πjx)1 [0,1] (x)
for even j's and ϕ j (x) = √ 2 sin(2πjx)1 [0,1] (x) for odd j's larger than 1. We have Dm = 2m + 1 = dim(Sm) ≤ Dn and Mn = {1, 3, . . . , Dn}. The largest space in the collection has maximal dimension Dn, which is subject to constraints appearing later.

Actually, the theory requires smooth bases and regular wavelet bases would also be adequate.

In connection with the collection of spaces Sm, we need an additional assumption on the marginal density of the stationary process ( Vi ) i≥0 :

[A5 ] The process ( Vi ) i≥0 admits a stationary density π * and there exist two positive constants π * 0 and π * 1 (independent of n, δ) such that ∀m ∈ Mn, ∀t ∈ Sm,

π * 0 t 2 ≤ E(t 2 ( V0 )) ≤ π * 1 t 2 . ( 5 
)
The existence of the density π * is easy to obtain. The checking of ( 5) is more technical. See the discussion on [A5] in Section 6.2. Below, we use the notations:

t 2 π * = t 2 (x)π * (x)dx, t 2 = 1 0 t 2 (x)dx and t ∞ = sup x∈[0,1] |t(x)|. ( 6 
)
3 Mean squares estimators of the drift and volatility

Regression equations

Reminding of (3), we first prove the developments, for ℓ = 1, 2:

Y (ℓ) i+1 = f (ℓ) ( Vi ) + Z (ℓ) i+1 + R (ℓ) (i + 1), (7) 
where the Z (ℓ) i 's are noise terms (with martingale properties) and the R (ℓ) (i)'s are negligible residual terms given in Section 6. For the noise terms, we have, for ℓ = 1 (f (1) = b):

Z (1) i = 1 ∆ 2 (i+2)∆ i∆ ψ i∆ (u)σ(Vu)dWu + (u i+1,k -u i,k )/∆, with ψ i∆ (u) = (u -i∆)1 I [i∆,(i+1)∆[ (u) + [(i + 2)∆ -u]1 I [(i+1)∆,(i+2)∆[ (u). ( 8 
)
and

u i,k = 1 ∆ k-1 j=0   (ik+j+1)δ (ik+j)δ √ VsdBs 2 - (ik+j+1)δ (ik+j)δ Vsds   .
Note that Vi = Vi + u i,k .

On the other hand, for ℓ = 2 (f (2) = σ 2 ), we have Z

(2) i = Z (2,1) i + Z (2,2) i + Z (2,3) i with Z (2,1) i = 3 2∆ 3   (i+2)∆ i∆ ψ i∆ (s)σ(Vs)dWs 2 - (i+2)∆ i∆ ψ 2 i∆ (s)σ 2 (Vs)ds   , Z (2,2) i = 3 ∆ b(V i∆ ) (i+2)∆ i∆ ψ i∆ (s)σ(Vs)dWs + 3 ∆ 3 (i+2)∆ i∆ (i+2)∆ s ψ 2 i∆ (u)du [(σ 2 ) ′ σ](Vs)dWs,
where ψ i∆ is given in [START_REF] Comte | A new algorithm for fixed design regression and denoising[END_REF], and

Z (2,3) i = 3 ∆ ( Vi+1 -Vi )(u i+1,k -u i,k ).

Mean squares contrast

Equation [START_REF] Comte | Nonparametric estimation for a discretely observed integrated diffusion model[END_REF] gives a natural regression equation to estimate f (ℓ) . In light of this, we consider the following contrast, for a function t ∈ Sm where Sm is a space of the collection and for ℓ = 1, 2:

γ (ℓ) N (t) = 1 N N -1 i=0 [Y (ℓ) i+1 -t( Vi )] 2 . (9) 
Then the estimators are defined as

f (ℓ) m = arg min t∈Sm γ (ℓ) N (t). ( 10 
)
The minimization of γ (ℓ)

N over Sm usually leads to several solutions. In contrast, the random R N -vector ( f (ℓ) m ( V0 ), . . . , f (ℓ) m ( VN-1 )) ′ is always uniquely defined. Indeed, let us denote by Πm the orthogonal projection (with respect to the inner product of R N ) onto the subspace of R N , {(t( V0 ), . . . , t( VN-1 )) ′ , t ∈ Sm}, then (

f (ℓ) m ( V0 ), . . . , f (ℓ) 
m ( VN-1 )) ′ = ΠmY (ℓ) where

Y (ℓ) = ( Ȳ (ℓ) 1 , . . . , Y (ℓ) 
N ) ′ . This is the reason why we consider a properly defined risk for f (ℓ) m based on the design points, i.e.

E 1 N N -1 i=0 ( f (ℓ) m ( Vi ) -f ( Vi )) 2 .
Thus, the error is measured via the risk E(

f (ℓ) m -f (ℓ) 2 N )
where

t 2 N = 1 N N -1 i=0 t 2 ( Vi ).
Let us mention that for a deterministic function E( t 2 N ) = t 2 π * = t 2 (x)π * (x)dx. Moreover, under Assumption [A5], the norms . and . π * are equivalent for functions in Sm (see notations [START_REF] Comte | Penalized nonparametric mean square estimation of the coefficients of diffusion processes[END_REF]).

The following decomposition of the contrast holds:

γ (ℓ) N (t) -γ (ℓ) N (f (ℓ) ) = t -f (ℓ) 2 N - 2 N N -1 i=0 (Y (ℓ) i+1 -f (ℓ) ( Vi ))(f (ℓ) -t)( Vi )
In view of [START_REF] Comte | Nonparametric estimation for a discretely observed integrated diffusion model[END_REF], we define the centered empirical processes, for ℓ = 1, 2:

ν (ℓ) N (t) = 1 N N -1 i=0 t( V (ℓ) i )Z (ℓ) i+1 ,
and the residual process:

R (ℓ) N (t) = 1 N N -1 i=0 t( Vi )R (ℓ) (i + 1).
Then we obtain that γ (ℓ)

N (t) -γ (ℓ) N (f (ℓ) ) = t -f (ℓ) 2 N -2ν (ℓ) N (t -f (ℓ) ) -2R (ℓ) N (t -f (ℓ) ). Let f (ℓ)
m be the orthogonal projection of f (ℓ) on Sm. Write simply that γ (ℓ)

N ( f (ℓ) m ) ≤ γ (ℓ) N (f (ℓ)
m ) by definition of the estimator, and therefore that γ

(ℓ) N ( f (ℓ) m ) -γ (ℓ) N (f (ℓ) ) ≤ γ (ℓ) N (f (ℓ) m ) -γ (ℓ) N (f (ℓ) ). This yields f (ℓ) m -f (ℓ) 2 N ≤ f (ℓ) m -f (ℓ) 2 N + 2ν (ℓ) N ( f (ℓ) m -f (ℓ) m ) + 2R (ℓ) N ( f (ℓ) m -f (ℓ) m ).
The functions f (ℓ) m and f

(ℓ)

m being A-supported, we can cancel the terms f 1 I A c 2 N that appears in both sides of the inequality. Therefore, we get

f (ℓ) m -f (ℓ) A 2 N ≤ f (ℓ) m -f (ℓ) A 2 N + 2ν (ℓ) N ( f (ℓ) m -f (ℓ) m ) + 2R (ℓ) N ( f (ℓ) m -f (ℓ) m ). ( 11 
)
Taking expectations and finding upper bounds for

E( sup t∈Sm, t =1 [ν (ℓ) N (t)] 2
) and E( sup

t∈Sm, t =1 [R (ℓ) N (t) 2 )
will give the rates for the risks of the estimators.

Risk for the collection of drift estimators

For the estimation of b, we obtain the following result.

Proposition 3.1 Assume that N ∆ ≥ 1 and 1/k ≤ ∆. Assume that [A1]-[A5]
hold and consider a model Sm in the collection of models with

Dn ≤ O( √ N ∆/ ln(N ))
where Dn is the maximal dimension (see Section 2.2). Then the estimator

f (1) m = bm of f (1) = b is such that E( bm -b A 2 n ) ≤ 7 bm -b A 2 π * + K E(σ 2 (V 0 ))Dm N ∆ + K ′ ∆, (12) 
where b A = b1 I [0,1] and K, K ′ and K" are some positive constants.

Note that the condition on Dn implies that √ N ∆/ ln(N ) must be large enough. It follows from [START_REF] Ghysels | Stochastic volatility[END_REF] that it is natural to select the dimension Dm that leads to the best compromise between the squared bias term bmb A 2 π * (which decreases when Dm increases) and the variance term of order Dm/(N ∆). Now, let us consider the classical high frequency data setting: let ∆ = ∆n, k = kn and N = Nn be, in addition, such that ∆n → 0, N = Nn → +∞, Nn∆n/ ln 2 (Nn) → +∞ when n → +∞ and that 1/(kn∆n) ≤ 1. Assume for instance that b A belongs to a ball of some Besov space, b [START_REF] Barron | Risk bounds for model selection via penalization[END_REF]). Therefore, if we choose Dm = (Nn∆n) 1/(2α+1) , we obtain

A ∈ B α,2,∞ ([0, 1]), α ≥ 1, and that bm -b A 2 π * ≤ π * 1 bm -b A 2 , then b A -bm 2 π * ≤ C(α, L, π * 1 )D -2α m , for b A α,2,∞ ≤ L (see Lemma 12 in
E( bm -b A 2 n ) ≤ C(α, L)(Nn∆n) -2α/(2α+1) + K ′ ∆n. ( 13 
)
The first term (Nn∆n)

-2α/(2α+1) = T -2α/(2α+1) n
is the optimal nonparametric rate proved by [START_REF] Hoffmann | Adaptive estimation in diffusion processes[END_REF] for direct observation of V . Now, let us find conditions under which the last term is negligible. For instance, under the standard condition ∆n = O(1/(Nn∆n)), the term ∆n is negligible with respect to (Nn∆n) -2α/(2α+1) . Now, consider the choices kn = 1/∆n and δn = n -c . Let us see if there are possible choices of c for which all our constraints are fulfilled. To have nδn → +∞ requires 0 < c < 1. As ∆n = knδn = δn/∆n, we have ∆n = √ δn = n -c/2 and Nn = n/kn = n 1-c/2 . Thus, ∆n → 0 and Nn, Nn∆n → +∞. Finally, the last constraint to fulfill is that Nn∆

2 n = n 1-3c/2 = O(1)
. Thus for 2/3 ≤ c < 1, the dominating term in ( 13) is (Nn∆n) -2α/(2α+1) , i.e. the minimax optimal rate. We have obtained a possible "bandwidth" of steps δn.

Risk for the collection of volatility estimators

For the collection of volatility estimators, we have the result 

f (2) m = σ2 m of f (2) = σ 2 is such that E( σ2 m -σ 2 A 2 N ) ≤ 7 σ 2 m -σ 2 A 2 π * + K E(σ 4 (V 0 ))Dm N + K ′ Res(Dm, k, ∆), (14) 
where the residual term is given by

Res(Dm, k, ∆) = D 2 m ∆ 2 + D 5 m ∆ 3 + D 3 m k 2 + 1 k 2 ∆ 2 , ( 15 
)
where

σ 2 A = σ 2 1 I [0,1]
, and K, K ′ are some positive constants. The discussion on rates is much more tedious. Consider the asymptotic setting described for b. Assume that σ 2

A belongs to a ball of some Besov space,

σ 2 A ∈ B α,2,∞ ([0, 1]), and that σ 2 m -σ 2 A 2 π * ≤ π * 1 σ 2 m -σ 2 A 2 , then σ 2 A -σ 2 m 2 π * ≤ C(α, L, π * 1 )D -2α m , for σ 2 A α,2,∞ ≤ L. Therefore, if we choose Dm = N 1/(2α+1) n
, and kn ≤ 1/∆n, we obtain

E( σ2 m -σ 2 A 2 N ) ≤ C(α, L, π * 1 )N -2α/(2α+1) n + K ′ Res(N 1/(2α+1) n , kn, ∆n). (16) 
The first term N -2α/(2α+1) n

is the optimal nonparametric rate proved by Hoffmann (1999) when Nn discrete time observations of V are available.

For the second term, let us set kn = n a , ∆n = n -b , δn = n -c , and recall that nδn = Nn∆n and n/Nn = kn, so that Nn = n 1-a and a + b = c. We look for a, b such that Res(N

1/(2α+1) n , kn, ∆n) ≤ N -2α/(2α+1) n .
For this, we take 1/(k

2 n ∆ 2 n ) = N -2α/(2α+1) n which implies 2(a-b)/(1-a) = 2α/(2α+1). We get a = (2α + 1)c + α 5α + 2 , b = (3α + 1)c -α 5α + 2 .
Then we impose

N 2/(2α+1) n ∆ 2 n ≤ N -2α/(2α+1) n which is equivalent to 2b ≥ [(2α + 2)/(2α + 1)](1 -a) ⇒ c ≥ (3α + 2)[2(2α + 1)]. Next N 5/(2α+1) n ∆ 3 n ≤ N -2α/(2α+1) n leads to 3b ≥ [(2α + 5)/(2α + 1)](1 -a) ⇒ c ≥ (7α + 5)/(11α + 8).
Lastly

N 3/(2α+1) n /k 2 n ≤ N -2α/(2α+1) n holds for -2a ≤ -[(3 + 2α)/(2α + 1)](1 -a), i.e. c ≥ 2(α + 3)/(6α + 5).
The optimal dimension has also to fulfill

N 1/(2α+1) n ≤ Dn ≤ √ Nn∆n i.e. -[(2α - 1)/[2(2α + 1)]](1 -a) ≤ -b/2 which implies c ≤ (5α -2)/(5α). Finally, we must have c ∈ 3α + 2 2(2α + 1) , 5α -2 5α → α→+∞ 3 4 , 1 .
This interval is nonempty as soon as α > 2.

In terms of the initial number n of observations, the rate is now (n 1-a ) -2α/(2α+1) where 1a is at most 1/2, when α → +∞. This is consistent with [START_REF] Gloter | Estimation of the volatility diffusion coefficient for a stochastic volatility model[END_REF] result: in the parametric case, he obtains n -1/2 instead of n -1 for the quadratic risk.

Data driven estimator of the coefficients

The second step is to ensure an automatic selection of Dm, which does not use any knowledge on f (ℓ) , and in particular which does not require to know the regularity α. This selection is standardly done by setting

m(ℓ) = arg min m∈Mn γ (ℓ) n ( f (ℓ) m ) + pen (ℓ) (m) , (17) 
with pen (ℓ) (m) a penalty to be properly chosen. We denote by f (ℓ) = f (ℓ) m(ℓ) the resulting estimator and we need to determine pen such that, ideally,

E( f (ℓ) -f (ℓ) A 2 n ) ≤ C inf m∈Mn f (ℓ) A -f (ℓ) m 2 + E(σ 2ℓ (V 0 ))Dm N ∆ 2-ℓ + negligible terms,
with C a constant which should not be too large.

Result for the data driven estimator of b

We almost reach this aim for the estimation of b. 1) is defined by [START_REF] Hoffmann | Rate of convergence for parametric estimation in a stochastic volatility model[END_REF] with

pen (1) (m) ≥ κσ 2 1 Dm N ∆ , ( 18 
)
where κ is a universal constant, is such that

E( b -b A 2 n ) ≤ C inf m∈Mn bm -b A 2 π * + pen (1) (m) +K ∆ + 1 N ∆ + 1 ln 2 (N )k∆ . ( 19 
)
For comments on the practical calibration of the penalty, see Section 5.2. It follows from ( 19) that the adaptive estimator automatically realizes the biasvariance compromise, provided that the last terms can be neglected as discussed above.

Here, the bandwidth for the choices of δn is slightly narrowed because of a stronger constraint. More precisely, we choose 1/(kn∆n) = ∆n (instead of 1 previously), that is

kn = ∆ -2 n , so that ∆n = knδn = ∆ -2 n δ -1 n . Therefore ∆n = δ 1/3 n and if δn = n -c , then ∆n = n -c/3 . Also, Nn = n/kn = n 1-2c/3 , Nn∆n = nδn = n 1-c , Nn∆ 2 n = n 1-4c/3
. Hence if 3/4 < c < 1, we have altogether: Nn, Nn∆n/ ln 2 (Nn) tend to infinity with n, ∆n, Nn∆ 2 n tend to zero. In that case, whenever b A belongs to some Besov ball (see ( 13)), and if bm -

b A 2 π * ≤ π * 1 bm -b A 2
, then b achieves the optimal corresponding nonparametric rate.

Note that, in the parametric framework, Gloter (2007) obtains an efficient estimation of b in the same asymptotic context.

Result for the data driven estimator of the volatility

We can prove the following Theorem. 2) is defined by [START_REF] Hoffmann | Rate of convergence for parametric estimation in a stochastic volatility model[END_REF] with

pen (2) (m) ≥ κσ 4 1 Dm N , ( 20 
)
where κ is a universal constant, is such that

E( σ2 -σ 2 A 2 N ) ≤ C inf m∈Mn σ 2 m -σ 2 A 2 π * + pen (2) (m) + C ′ Res(N, k, ∆), (21) 
where

Res(N, k, ∆) = N ∆ 3 + N 5/2 ∆ 11/2 + (N ∆) 3/2 k 2 + 1 k 2 ∆ 2 . ( 22 
)
Now, if σ 2 A belongs to a ball of some Besov space,

σ 2 A ∈ B α,2,∞ ([0, 1]), then auto- matically, inf m∈Mn σ 2 m -σ 2 A 2 π * + pen (2) (m) = O(N -2α/(2α+1) n )
without requiring the knowledge of α. Therefore,

E( σ2 m -σ 2 A 2 N ) ≤ C(α, L)N -2α/(2α+1) n + C ′ Res(Nn, kn, ∆n).
It remains to study the residual term. Notice that we do not know the optimal minimax rate for estimating σ 2 , under our set of assumptions on the models and on the asymptotic framework. However, [START_REF] Gloter | Estimation of the volatility diffusion coefficient for a stochastic volatility model[END_REF] and Hoffmann (2002), with observations within a fixed length time interval, obtain the parametric rate n -1/2 (in variance). Taking this as a benchmark, we try to make the residual less than O(n -1/2 ).

Let us set kn = n a , ∆n = n -b , hence Nn = n/kn = n 1-a and Nn∆n = n 1-(a+b) . This yields that 1a -3b, (5 -5a -11b)/2, (3 -7a -3b)/2, 2(ba) must all be less than or equal to -1/2, in association with a + b < 1 and

N 1/(2α+1) n ≤ √
Nn∆n. This set of constraint is not empty (e.g. a = 9/16, b = 5/16 fits).

Examples and numerical simulation results

In this section, we consider examples of diffusions and implement the estimation algorithm on simulated data for the stochastic volatility model X given by (1).

Simulated paths

We consider the processes V (i) t for i = 1, . . . , 4 specified by the couples of functions b i , σ 2 i , i = 1, . . . , 4:

1. b 1 (x) = x -θ ln(x) + 1 2 c 2 , σ 2 1 (x) = c 2
x 2 which corresponds to exp(U t ) for U t an Ornstein-Uhlenbeck process, dU t = -θU t dt + cdW t . Whatever the chosen step, U t is exactly simulated as an autoregressive process of order 1. We took θ = 1 and

c = 0.75. 2. b 2 (x) = b 0 (x -2), σ 2 2 (x) = σ 2 0 (x -2), where b 0 (x) = -(1 -x 2 ) c 2 x + θ 2 ln 1+x 1-x
and σ 2 0 (x) = c(1x 2 ) are the diffusion coefficients of the process th(U t ) (th(x) = (e xe -x )/(e x + e -x ), with the same parameters as for case 1). The process V

(2) t corresponds to th(U t ) + 2 which is a positive bounded process. 

how ŝ2

2 is obtained. We run once the estimation algorithm of σ 2 with the basis [T] and with a preliminary penalty where ŝ2

2 is taken equal to 2 maxm(γ

n (σ 2 m )). This gives a preliminary estimator σ2 0 . Afterwards, we take ŝ2 equal to twice the 99.5%-quantile of σ2

0 . The use of the quantile is here to avoid extreme values. We get σ2 . We use this estimate and set ŝ2 1 = max 0≤k≤N -1 (σ 2 ( Vk ))/∆ for the penalty of b. The results given by our algorithm are described in Figure 1 and2. We plot in Figure 1 the true function (thick curve) and 20 estimated functions (thin curves) in the case b and σ 2 when using first the basis [T] and then the basis [GP], in the case of the CIR process. We can see that the trigonometric basis finds the right slope in the central part of the interval, whereas the basis [GP] in general selects only one bin and a straight curve, but with a slightly too small slope. The same type of result holds in Figure 2 for the exponential Orsntein Uhlenbeck process. For comparison with direct or integrated observations of V , we refer to Comte et al. (2006[START_REF] Comte | Penalized nonparametric mean square estimation of the coefficients of diffusion processes[END_REF]. It is not surprising that in the case of a stochastic volatility model, empirical results are less satisfactory and require a large number of observations. We also give in Tables 1 and2 results of Monte-Carlo type experiments. In Table 1, we show the results of the estimation procedure with the basis [T] and the CIR process when choosing different values of k for building the quadratic variation. Clearly, there is an optimal value. If k is too large, there are not enough observations left for the estimation algorithm. If k is too small, bias phenomena appear, related to the violation of the theoretical assumptions (mainly 1/k ≤ ∆). We repeated the experiment for the other processes and obtained analogous results. In general, for this sample size, the choice k = 250 seems to be relevant. In Table 2, we can see from the last two columns that the basis [GP] seems to be better than [T], at least for the CIR process. The errors are computed as the mean over 100 simulated paths of the empirical errors (e.g.

(1/N N -1 i=0 [b( Vi ) -b( Vi )] 2 for b).
6 Discussion on the assumptions and proofs

Proof of Proposition 2.1

We start with some preliminaries. Let I t = t 0 Vsds. The joint process (V t , I t ) t≥0 is a two dimensional diffusion satisfying:

dV t = b(V t )dt + σ(V t )dW t , V 0 = η, dI t = V t dt, I 0 = 0
Under regularity assumptions on b and σ, this process admits a transition density, say q t (v 0 , i 0 , ; v, i) for the conditional density of (V t , I t ) given V 0 = v 0 , I 0 = i 0 . This density is w.r.t. the Lebesgue measure on (0, +∞) 2 (see [START_REF] Rogers | Diffusions, Markov processes, and martingales[END_REF]). We assume that these assumptions hold. Now, let us set

J ℓδ = ℓδ (ℓ-1)δ Vsds, ℓ ≥ 1. ( 23 
)
The discrete time process (V ℓδ , J ℓδ ) ℓ≥1 is strictly stationary and Markov. Its one step transition operator is given by the density:

(v, j) → q δ (v 0 , 0; v, j) := q δ (v 0 ; v, j).
Its stationary density is given by π(v 0 )dv 0 q δ (v 0 ; v, j)

:= π δ (v, j). Let us set, for ℓ ≥ 1, Z ℓ = X ℓδ -X (ℓ-1)δ (24) 
and define ε ℓ by the relation:

Z ℓ = J 1/2
ℓδ ε ℓ . Conditionally on (V t ) t≥0 , the random variables (r.v.) Z ℓ , ℓ ≥ 1 are independent and Z ℓ has distribution N (0, J ℓδ ). Consequently, the r.v (ε ℓ , ℓ ≥ 1) are i.i.d. with distribution N (0, 1) and the sequence (ε ℓ , ℓ ≥ 1) is independent of (V t ) t≥0 . Hence (Z ℓ ) ℓ≥1 and ( Vi ) i≥0 are strictly stationary processes. From the preliminaries and the above remarks, we deduce that the process (V ℓδ , J ℓδ , ε ℓ ) ℓ≥1 is stationary Markov. Its ℓ-step transition operator is given by:

Q δ ℓ (v 0 ; dv, dj, du) = q (ℓ) δ (v 0 ; v, j)n(u)dvdjdu
where q (ℓ) δ (v 0 ; v, j) is the ℓ-step transition density of (V ℓδ , J ℓδ ) and n(u) is the standard gaussian density. The stationary density of (V ℓδ , J ℓδ , ε ℓ ) ℓ≥1 is π δ (v, j)n(u). Hence

Q (ℓ) δ (v 0 ; dv, dj, du) -π δ (v, j)n(u)dvdjdu T V = |q (ℓ) δ (v 0 , v j ) -π δ (v, j))|n(u)dvdjdu = |q (ℓ) δ (v 0 ; v, j) -π δ (v, j))|dvdj.
We may now use the representation of the β-mixing coefficient of strictly stationary Markov processes (see e.g. Genon-Catalot et al. ( 2000)) to compute we see that V0 has a conditional density given (V t , t ≥ 0). Integrating this density w.r.t. the distribution of (J ℓδ , ℓ = 1, . . . , k), we get that V0 has a density π * . However the formula for π * is untractable.

β V .δ ,J .δ ,ε (ℓ) = π δ (v 0 , j 0 )n(u 0 )du 0 dv 0 dj 0 Q (ℓ) δ (v 0 ; dv, dj, du) -π δ (v, j)n(u)dvdjdu T V = β V .δ ,J .δ (ℓ). Now, we have β Z (ℓ) ≤ β V .δ ,J .δ ,ε (ℓ) = β V .δ ,J .δ (ℓ) ≤ β V ((ℓ -1)δ). Finally, β V (i) ≤ β Z (ik) ≤ β V ((ik -1)δ) ≤ cβ V (i∆).
On the other hand, we can obtain (5) by another approach. We have

t 2 ( V0 ) = t 2 (V 0 ) + ( V0 -V 0 )(t 2 ) ′ (V 0 ) + 1 2 ( V0 -V 0 ) 2 1 0 (t 2 )"(V 0 + u( V0 -V 0 ))du.
Now we use that, for any t ∈ Sm, there exists some constant C such that

(t 2 ) ′ ∞ ≤ CD 2 m t 2 and (t 2 )" ∞ ≤ CD 3 m t 2 . Noting that |E V0 -V 0 |F 0 | = O(∆), we get |E[( V0 -V 0 )(t 2 ) ′ (V 0 )]| ≤ CD 2 m ∆ t 2 = O(D 2 m ∆).
On the other hand,

E ( V0 -V 0 ) 2 1 0 (t 2 )"(V 0 + u( V0 -V 0 ))du ≤ (t 2 )" ∞E[( V0 -V 0 ) 2 ] ≤ CD 3 m ∆ t 2 . It follows that |E(t 2 ( V0 ) -t 2 (V 0 ))| ≤ C∆D 3 m t 2 . Next, t 2 ( V0 ) = t 2 ( V0 ) + ( V0 -V0 )(t 2 ) ′ (V 0 ) + ( V0 -V0 )[(t 2 ) ′ ( V0 ) -(t 2 ) ′ (V 0 )] + 1 2 ( V0 -V0 ) 2 1 0 (t 2 )"( V0 + u( V0 -V0 ))du. By Gloter's (2007) Proposition 3.1, we have |E[( V0 -V0 )|V 0 ]| ≤ cδ(1 + V 0 ) c and E[| V0 - V0 | 2 ] ≤ c/k. Hence |E(t 2 ( V0 ) -t 2 ( V0 ))| ≤ C t 2 (∆D 2 m + √ ∆D 3 m √ k + D 3 m k ). Since 1/k ≤ ∆ |E(t 2 ( V0 ) -t 2 (V 0 ))| ≤ C t 2 ∆D 3 m . As there exist two positive constants π 0 , π 1 such that ∀v ∈ A, π 0 ≤ π(v) ≤ π 1 , we obtain (π 0 -C∆D 3 n ) t 2 ≤ t 2 π * ≤ (π 1 + C∆D 3 n ) t 2 .
Under the constraint that ∆D 3 n = o(1), we get [START_REF] Comte | Penalized projection estimator for volatility density[END_REF] for n large enough. This constraint is compatible with the other ones, see the discussion after Theorem 4.1.

Definition of the residuals and their properties

We have R (1) 

(i + 1) = b( Vi ) -b( Vi ) + R (1) * ((i + 1)∆)
where R 

((i + 1)∆) = b(V (i+1)∆ ) -b( Vi ) + 1 ∆ 2 (i+3)∆ (i+1)∆ ψ (i+1)∆ (s)(b(Vs) -b(V (i+1)∆ ))ds.
On the other hand, 

R (2) (i + 1) = 3 2 (u i+1,k -u i,k ) 2 ∆ + [σ 2 (V (i+1)∆ -σ 2 ( Vi )] + R ( 
(i∆) = 3 2∆ 3 (i+2)∆ i∆ ψ i∆ (s)b(Vs)ds 2 R (2,2) * (i∆) = 3 ∆ 3 (i+2)∆ i∆ ψ i∆ (u)(b(Vu) -b(V i∆ ))du (i+2)∆ i∆ ψ i∆ (u)σ(Vu)dWu R (2,3) * (i∆) = 3 2∆ 3 (i+2)∆ i∆ (i+2)∆ s ψ 2 i∆ (u)du τ b,σ (Vs)ds,
where 

τ b,σ = (σ 2 /2)(σ 2 )" + b(σ 2 ) ′ .
Lemma 6.1 Under Assumptions [A1]-[A2]-[A3], 1. For ℓ = 1, 2, for m = 1, 2, for all i, E{[R (ℓ) * (i∆)] 2m } ≤ c∆ 2mℓ where c is a constant. 2. Let Z (1) * (i) = (1/∆ 2 ) (i+2)∆ i∆ ψ i∆ (s)σ(Vs)dWs. For all i, E([Z (1) * (i)] 2 ) ≤ (2/3∆)E(σ 2 (V 0 )). 3. For all i, E([Z (2,1) i ] 2 ) ≤ c 1 E(σ 4 (V 0 )) and E([Z (2,2) i ] 2 ) ≤ c 2 σ 2
1 ∆. We also need the following result: For sake of brevity, we give both proofs at the same time. The main difference lies in the orders of the expectations and in the appearance of a specific term in the study of the estimator of σ 2 . Let us thus define R (ℓ) * * for ℓ = 1, 2 as R (1) * * = R (1) and

Lemma 6.2 Under assumptions [A1]-[A3], for any integer i, E[( Vi -Vi ) 2 ] = E(u 2 i,k ) ≤ 2E(V 2 0 )/k and E[( Vi -Vi ) 4 ] = E(u 4 i,k ) ≤ 56E(V 4 0 )/k 2 . Proof of Lemma 6.
R (2) * * (i + 1) = R (2) (i + 1) -[σ 2 (V (i+1)∆ -σ 2 ( Vi )].

Moreover let T

(1)

N (t) = 0 and T (2) N (t) = 1 N N -1 i=0 (σ 2 (V (i+1)∆ -σ 2 ( Vi ))t( Vi ).
Let us consider the set

Ω N = ω/ t 2 N t 2 π * -1 ≤ 1 2 , ∀t ∈ ∪ m,m ′ ∈Mn (Sm + S m ′ )/{0} . (25) 
On

Ω N , t π * ≤ √ 2 t N . From (11), we deduce f (ℓ) m -f (ℓ) A 2 N ≤ f (ℓ) m -f (ℓ) A 2 N + 1 8 f (ℓ) m -f (ℓ) m 2 π * + 16 sup t∈Sm, t π * =1 [ν (ℓ) N ] 2 (t) +16 sup t∈Sm, t π * =1 [T (ℓ) N (t)] 2 + 1 8 f (ℓ) m -f (ℓ) m 2 N + 8 N N -1 i=0 [R (ℓ) * * (i + 1)] 2 ≤ f (ℓ) m -f (ℓ) A 2 N + 3 8 f (ℓ) m -f (ℓ) m 2 N + 16 sup t∈Sm, t π * =1 [ν (ℓ) N ] 2 (t) + 16 π * 0 sup t∈Sm, t =1 [T (ℓ) N (t)] 2 + 8 N N -1 i=0 [R (ℓ) * * (i + 1)] 2 .
In the last line above, we use the lower bound π * 0 introduced in [A5]. Setting Bm(0, 1) = {t ∈ Sm, t = 1} and B π * m (0, 1) = {t ∈ Sm, t π * = 1}, the following holds on the set Ω N :

1 4 f (ℓ) m -f (ℓ) A 2 N ≤ 7 4 f (ℓ) m -f (ℓ) A 2 N +16 sup t∈B π * m (0,1) [ν (ℓ) N ] 2 (t)+ 16 π * 0 sup t∈Bm(0,1) [T (ℓ) N (t)] 2 + 8 N N -1 i=0 [R (ℓ) * * (i+1)] 2 .
We have the following result:

Lemma 6.3 Under assumptions [A1]-[A3] and [A5], if 1/k ≤ ∆, we have, for ℓ = 1, 2 E sup t∈B π * m (0,1) [ν (ℓ) N ] 2 (t) ≤ K C ℓ Dm N ∆ 2-ℓ , with C ℓ = E(σ 2ℓ (V 0 )).
The Lipschitz condition on b and Lemma 6.2 imply that

E[(b( Vi ) -b( Vi )) 2 ] ≤ c b E[( Vi -Vi ) 2 ] ≤ 2c b E(V 2 0 )/k.
Consequently, there exists a constant c such that

E 8 N N -1 i=0 [R (1) * * (i + 1)] 2 ≤ c(∆ + k -1 )
.

Thus

E( bm -b A 2 N 1 I ΩN ) ≤ 7 bm -b 2 π * + 32 π * 0 E sup t∈Sm, t =1 [ν (1) 
N (t)] 2 + c"(∆ + k -1 ).
By gathering all bounds, we find

E( bm -b 2 N 1 I ΩN ) ≤ 7 bm -b 2 π * + K E(σ 2 (V 0 ))Dm N ∆ (1 + 1 k∆ ) + K ′ (∆ + k -1 ).
On the other hand, Lemma 6.1 and Lemma 6.2 imply that

E( 1 N N -1 i=0 [R (2) * * (i + 1)] 2 ≤ 2E 1 N N -1 i=0 [R (2) 
* (i + 1)] 2 + 9 4 (u i+1,k -u i,k ) 4 ∆ 2 ≤ 2c∆ 2 + 36 ∆ 2 E(u 4 1,k ) ≤ C(∆ 2 + 1 k 2 ∆ 2 ).
Next we need to bound E sup t∈Sm, t =1 [T 

N (t)] 2 ≤ C(D 2 m ∆ 2 + D 5 m ∆ 3 + D 3 m /k 2 + Dm/(N k)). (2) 
We can use Lemma 6.1 in Comte et al. (2005) to obtain that, if Dn ≤ C √ N ∆/ ln(N ), then

P(Ω c N ) ≤ c N 4 .
This enables to check that E(

f (ℓ) m -f (ℓ) 2 N 1 I Ω c n )
≤ c/N using the same lines as the analogous proof given p.532 in [START_REF] Comte | Penalized nonparametric mean square estimation of the coefficients of diffusion processes[END_REF]. For this reason, details are omitted. 2 6.5 Proof of Lemma 6.3.

Case ℓ = 1. Next, let us define F t = σ((Ws, Bs), 0 ≤ s ≤ t, η). We can use martingale properties to see that, ∀t ∈ Sm,

E(t( Vi )Z (1) i+1 ) = E(E(t( Vi )Z (1) i+1 |F (i+1)∆ )) = E(t( Vi )E(Z (1)
i+1 |F (i+1)∆ )) = 0 because the last conditional expectation is zero. Moreover, the same tool shows that the covariance term E(t( Vi )t( Vℓ )Z

(1) i+1 Z

(1) ℓ+1 ) for ℓ ≥ i + 2 is also null by inserting a conditional expectation given F (ℓ+1)∆ . Consequently, it is now easy to see that

E sup t∈Sm, t =1 [ν (1) 
N (t)] 2 ≤ Dm j=1 E[ν 2 N (ϕ j )] ≤ Dm j=1 Var 1 N N -1 i=0 ϕ j ( Vi )Z (1) i+1 ≤ 2 N Dm j=1 Var ϕ j ( V1 )Z (1) 2 ≤ 2 N Dm j=1 E(ϕ 2 j ( V1 )Z (1) 2 ) 2 ) ≤ 2DmE[(Z (1) 2 ) 2 ] N . Now, Lemma 6.2 implies that E[(u i+2,k -u i+1,k ) 2 /∆ 2 = E[(u 2 i+2,k + u 2 i+1,k )/∆ 2 ≤ c/(k∆ 2 )
. Then, applying also Lemma 6.1 (ii), it follows that, with

E sup t∈Sm, t =1 [ν (1) 
N (t)] 2 ≤ K Dm N ∆ 1 + 1 k∆ .
Case ℓ = 2. Next, for the martingale terms, we write

E( sup t∈B π * m (0,1) [ν (2) 
N (t)] 2 ) ≤ 1 π * 0 E( sup t∈Bm(0,1) [ν (2) 
N (t)] 2 ) ≤ 1 π * 0 Dm j=1 E([ν (2) 
n (ϕ j )] 2 ) = 1 π * 0 Dm j=1 E 1 N N -1 i=0 ϕ j ( Vi )Z (2) i+1 2 ≤ 2 π * 0 Dm j=1 E   1 N N -1 i=0 ϕ j ( Vi )(Z (2,1) i+1 + Z (2,2) i+1 ) 2 + 9 N ∆ N -1 i=0 ϕ j ( Vi )( Vi+2 -Vi )(u i+2,k -u i+1,k ) 2  
Both terms are bounded separately. For the first one, we use that, for r = 1, 2 cov(ϕ j ( Vi )Z

(2,r) i+1 , ϕ j ( Vℓ )Z

(2,r)

ℓ+1 ) = 0 if ℓ ≥ i + 2
, by inserting a conditional expectation with respect to F (ℓ+1)∆ . Now, for r = 1, 2,

Dm j=1 E   1 N N -1 i=0 ϕ j ( Vi )Z (2,r) i+1 2   ≤ 1 N 2 Dm j=1 E   0≤i,ℓ≤N -1 ϕ j ( Vi )Z (2,r) i+1 ϕ j ( Vℓ )Z (2,r) ℓ+1   = 1 N 2 j=1 DmE N -1 i=0 ϕ 2 j ( Vi )[Z (2,r) i+1 ] 2 + ϕ j ( Vi )Z (2,r) i+1 ϕ j ( Vi+1 )Z (2,r) i+2 ≤ 2 N Dm j=1 ϕ 2 j ∞E[(Z (2,r) 2 ) 2 ] ≤ 2 Dm N [c 1 E(σ 4 (V 0 )) + c2 ∆]
by using Lemma 6.1.

For the second part, let us define the filtration generated by B and the whole path of V , i.e.

G V t = σ(Vs, s ∈ R + , Bs, s ≤ t) = σ(Ws, s ∈ R + , Bs, s ≤ t, η).
Now we observe that

E(t( Vi )( Vi+2 -Vi+1 )u i+1,k ) = E E(t( Vi )( Vi+2 -Vi+1 )u i+1,k )|G V (i+1)∆ ) = E t( Vi )( Vi+2 -Vi+1 )E(u i+1,k )|G V (i+1)∆ ) = 0 as E(u i+1,k )|G V (i+1)∆ ) = 0. Moreover for any ℓ > i, E(t( Vi )( Vi+2 -Vi+1 )u i+1,k t( Vℓ )( Vℓ+2 -Vℓ+1 )u ℓ+1,k )) = 0
by inserting a conditional expectation with respect to G V (ℓ+1)∆ . The last remark is that one can easilty see that

E[( Vi+1 -Vi ) 4 ] ≤ 1 ∆ 4 E   (i+2)∆ (i+1)∆ (Vs -V s-∆ )ds 4   ≤ C∆ 2 .

Now we have

Dm j=1

E 1 N ∆ N -1 i=0 ϕ j ( Vi )( Vi+2 -Vi )u i+1,k 2 = 1 N 2 ∆ 2 Dm j=1 N -1 i=0 E ϕ 2 j ( Vi )( Vi+2 -Vi ) 2 u 2 i+1,k ≤ Dm N ∆ 2 E 1/2 [( V2 -V1 ) 4 ]E 1/2 [u 4 2,k ] ≤ C Dm N 1 k∆ .
The second part of this term can be treated in the same way, and it follows that if 

T * N (t) = 1 N N -1 i=0 (σ 2 (V (i+1)∆ -σ 2 ( Vi ))t( Vi ) is such that E( sup t∈Bm(0,1) [T * N (t)] 2 ) ≤ C(D 2 m ∆ 2 + D 5 m ∆ 3 ).
Here, we write that T

(2)

N (t) = T (2,1) N (t) + T (2,2) N (t) + T (2,3) N (t) + T * N (t) with T (2,1) N (t) = 1 N N -1 i=0 [t( Vi )-t( Vi )][σ 2 ( Vi )-σ 2 ( Vi )], T (2,2) N (t) = 1 N N -1 i=0 t( Vi )[σ 2 ( Vi )-σ 2 ( Vi )], T (2,3) N (t) = 1 N N -1 i=0 [t( Vi ) -t( Vi )][σ 2 ( Vi ) -σ 2 (V (i+1)∆ )].
We shall use the following decompositions obtained by the Taylor formula:

σ 2 ( Vi ) -σ 2 ( Vi ) = ( Vi -Vi )(σ 2 ) ′ ( Vi ) + R i , t( Vi ) -t( Vi ) = ( Vi -Vi )t ′ ( Vi ) + S i (t) with E(R 2 i ) ≤ C/k 2 and E(R 4 i ) ≤ C/k 4 if (σ 2 )" is bounded, and E sup t∈Bm(0,1) S i (t) 2 ≤ CD 5 m /k 2 , E 1/2 sup t∈Bm(0,1) S i (t) 4 ≤ CD 5 m /k 2 because t" 2 ∞ ≤ CD 5 m t 2
. Now, the three terms can be studied as follows. First

T (2,1) N (t) = 1 N N -1 i=0 ( Vi -Vi ) 2 (t ′ )( Vi )(σ 2 ) ′ ( Vi ) + 1 N N -1 i=0 ( Vi -Vi )t ′ ( Vi )R i + 1 N N -1 i=0 ( Vi -Vi )(σ 2 ) ′ ( Vi )S i (t) + 1 N N -1 i=0 R i S i (t) := T (2,1,1) N (t) + T (2,1,2) N (t) + T (2,1,3) N (t) + T (2,1,4) N (t),
and we bound each term successively. Clearly by Schwarz inequality applied to each term, we find,

E( sup t∈Bm(0,1) [T (2,1,1) N (t)] 2 ) ≤ CE 1/2 ( V 4 1 ) D 3 m k 2 using that t ′ 2 ∞ ≤ CD 3 m t 2 , E( sup t∈Bm(0,1) [T (2,1,2) N (t)] 2 ) ≤ C D 3 m k 3 , E( sup t∈Bm(0,1) [T (2,1,3) N (t)] 2 ) ≤ CE 1/2 ( V 4 1 ) D 5 m k 3 , and 
E( sup t∈Bm(0,1) [T (2,1,4) N (t)] 2 ) ≤ C D 5 m k 4 . Therefore, if 1/k ≤ ∆, E(sup t∈Bm(0,1) [T (2,1) N (t)] 2 ) ≤ C(D 3 m /k 2 + D 5 m /k 3 ).
Next, we write that

T (2,2) N (t) = 1 N N -1 i=0 t( Vi )(σ 2 ) ′ ( Vi )( Vi ) -Vi ) + 1 N N -1 i=0 t( Vi )R i = T (2,2,1) N (t) + T (2,2,2) N (t).
We obtain easily that

E( sup t∈Bm(0,1) [T (2,2,2) N (t)] 2 ) ≤ E( sup t∈Bm(0,1) t 2 ∞ 1 N N i=1 R 2 i ) ≤ Φ 2 0 DmE(R 2 1 ) ≤ CDm/k 2 ,
a term which is negligible with respect to the previous ones. Then ( Vi -Vi )ψ( Vi ) is a martingale increment with respect to the filtration (G V t ), for any measurable function ψ. In particular,

E[( Vi -Vi )ψ( Vi )] = E[E[( Vi -Vi )ψ( Vi )|G V i∆ ]] = E[ψ( Vi )E[( Vi -Vi )|G V i∆ ]] = 0 since E( Vi |G V i∆ ) = Vi .
In the same way, for i < ℓ,

E ( Vi -Vi )ψ( Vi )( Vℓ -Vℓ )ψ( Vℓ ) = 0
by inserting a conditional expectation with respect to G V ℓ∆ . Therefore

E( sup t∈Bm(0,1) [T (2,2,1) N (t)] 2 ) ≤ Dm j=1 E 1 N N -1 i=0 ϕ j ( Vi )(σ 2 ) ′ ( Vi )( Vi -Vi ) 2 = Dm j=1 1 N E ϕ j ( V1 )(σ 2 ) ′ ( V1 )( V1 -V1 2 ≤ 1 N E   ( Dm j=1 ϕ 2 j ( V1 ))[(σ 2 ) ′ ( V1 )] 2 ( V1 -V1 ) 2   ≤ Dm N E 1/2 [(σ 2 ) ′ ( V1 ) 4 ]E 1/2 [u 4 1,k ] ≤ CE 1/2 ( V 4 1 ) 
Dm N k .

For the last term, we write T

(2,3) N (t) = T (2,3,1) N (t) + T (2,3,2) N (t) where T (2,3,1) N (t) = (1/N ) N -1 i=0 ( Vi -Vi )t ′ ( Vi )(σ 2 ( Vi ) -σ 2 (V (i+1)∆ )), T (2,3,2) N (t) = (1/N ) N -1 i=0 S i (t)(σ 2 ( Vi ) -σ 2 (V (i+1)∆ )).
Moreover, we know from Comte et al. The difficulty here is to control the supremum of ν

(2006) that E[(σ 2 ( Vi ) -σ 2 (V (i+1)∆ )) 2 ] ≤ E 1/2 [(σ 2 ( Vi ) -σ 2 (V (i+1)∆ )) 4 ] ≤ C∆. Now,
N (t) on a random ball (which depends on the random m). This is done by setting ν 

(t) = 1 N N -1 i=0 Z (1) 
(i+1)∆ t( Vi ), ν

(1,2)

N (t) = 1 N N -1 i=0 t( Vi ) u i+2,k -u i+1,k ∆ .
We use the martingale property of ν Then pen is chosen such that 32p(m, m ′ ) ≤ pen(m)+pen(m ′ ). More precisely, the next Proposition determines the choice of p(m, m ′ ) which in turn will fix the penalty. 

Proposition 3 . 2

 32 Assume that [A1]-[A5] hold and consider a model Sm in the collection of models with maximal dimension Dn ≤ O( √ N ∆/ ln(N )). Assume also that 1/k ≤ ∆ and N ∆ ≥ 1, ∆ ≤ 1. Then the estimator

Theorem 4 . 1

 41 Assume that [A1]-[A5] hold, 1/k ≤ ∆, ∆ ≤ 1 and N ∆ ≥ 1. Consider the collection of models with maximal dimension Dn ≤ O( √ N ∆/ ln(N )). Then the estimator b = f (1) m(1) of b where m(

Theorem 4 . 2

 42 Assume that [A1]-[A5] hold, 1/k ≤ ∆, ∆ ≤ 1 and N ∆ ≥ 1. Consider the collection of models with maximal dimension Dn ≤ √ N ∆/ ln(N ). Then the estimator σ2 = f (2) m(2) of σ 2 where m(

3 .Fig. 1

 31 Fig. 1 Estimation of b (left) and σ 2 (right) for 20 paths of the CIR process with the trigonometric basis (top) and the piecewise polynomial basis (bottom), k = 250.

Fig. 2

 2 Fig. 2 Estimation of b (left) and σ 2 (right) for 20 paths of the process V (1) t (exponential Ornstein Uhlenbeck) with the trigonometric basis, k = 250.

2 6. 2

 22 Discussion on the assumptions Actually, Assumption [A3] is too strong. We only need the existence of moments up to a certain order. Let us now discuss [A5]. Using the representation

( 1 )

 1 * is the residual term for b studied in Comte et al. (2006, Proposition 3.1) and defined by R (1) *

2 )( 2 )( 2 )

 222 * ((i + 1)∆) where R * is the residual term for σ 2 studied in Comte et al. (2006, Propositions 4.1, 4.2 and 4.3) defined by R

2 . 2 6. 4

 224 This follows from Proposition 3.1 p.504 in[START_REF] Gloter | Efficient estimation of drift parameters in stochastic volatility models[END_REF].Proof of Propositions 3.1 and 3.2

( 2 )

 2 N (t)]2 . This is obtained in the following Lemma: Lemma 6.4 Under the Assumptions of Proposition 3.2 and if 1/k ≤ ∆, there exists a constant C such that E sup t∈Sm, t =1 [T

E 2 ≤ CD 3 mN E 1 / 2 CDm∆ 3 .Lemma 6 . 5 ∆ǫ 2 2σ 2 1 v 2 . 2 N 2 N 1 I 2 N 1 I 2 N 1 I

 231236522212121 )( Vi -Vi )(σ 2 ( Vi )σ 2 (V (i+1)∆ )) (ϕ ′ j ) 2 ( V1 )( V1 -V1 ) 2 (σ 2 ( V1 )σ 2 (V 2∆ )) (u 4 1,k )E 1/2 [(σ 2 ( V1 )σ 2 (V 2∆ )) 4 ] j (ϕ ′ j ) 2 (x) ≤ CD 3 m . Using D 2 m ≤ N ∆ and 1/k ≤ ∆ implies E(sup t∈Bm(0,1)On the other hand, E(sup t∈Bm(0,1) [T(2,3,2) N (t)] 2 ) ≤ CD 5 m ∆/k 2 ≤ CD 5 m ∆ 3 , as 1/k ≤ ∆.By gathering and comparing all terms and assuming that 1/k ≤ ∆, we obtain the bound given in Lemma 6.4.2 6.7 Proof of Theorem 4.1The proof of this theorem relies on the following Bernstein-type Inequality: Under the assumptions of Theorem 4.1, for any positive numbers ǫ and v, we haveP ∆ ≥ N ǫ, t 2 N ≤ v 2 ≤ exp -N Proof ofLemma 6.5: Noting that W is a Brownian motion with respect to the augmented filtration Fs = σ((Bu, Wu), u ≤ s, η), the proof is obtained as the analogous proof in Comte et al. (2007), Lemma 2 p.533. 2 Now we turn to the proof of Theorem 4.1. As in the proof of Proposition 3.1, we have to split bb A = bb A ΩN + bb A Ω c N . For the study on Ω c N , the end of the proof of Proposition 3.1 can be used. Now, we focus on what happens on Ω N . From the definition of b, we have, ∀m ∈ Mn, γ N ( b m) + pen( m) ≤ γ N (bm) + pen(m). We proceed as in the proof of Proposition 3.1 with some additional penalty terms and obtain E( b mb A ΩN ) ≤ 7 bmb A 2 π * + pen(m) + 32E sup t∈Sm+S m, t π * =1 [ν (1) N (t)] 2 1 I ΩN -E(pen( m)) + 32c ′ ∆.

  the quantity to be studied. Introducing a function p(m, m ′ ), we first writeG 2 m ( m)1 I ΩN ≤ [(G 2 m ( m)p(m, m))1 I ΩN ] + + p(m, m) ≤ m ′ ∈Mn [(G 2 m (m ′ )p(m, m ′ ))1 I ΩN ] + + p(m, m).
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 61128 Under the assumptions of Theorem 4.1, there exists a numerical constant κ 1 such that, for p(m, m ′ ) = κ 1 σ 2 1 (Dm + D m ′ )/(n∆), we haveE[(G 2 m (m ′ )p(m, m ′ ))1 I ΩN ] + ≤ cσ 2 -D m ′ N ∆ .Proof of Proposition 6.1. The result of Proposition 6.1 follows from the inequality of Lemma 6.5 by the L 2 -chaining technique used in Baraud et al. (2001b) (see Section 7 p.44-47, Lemma 7.1, with s 2 = σ 2 1 /∆). 2 It is easy to see that the result of Theorem 4.1 follows from Proposition 6.1 with pen(m) = κσ 2 1 Dm/(N ∆). Proof of Theorem 4.2 The lines of the proof are the same as the ones of Theorem 4.1. Moreover, they follow closely the analogous proof of Theorem 2 p.524 in Comte et al. (2007), see also Comte et al. (2006). Therefore, we omit it.

  1/k ≤ ∆, then this term is less than C ′ Dm/N . 2 6.6 Proof of Lemma 6.4. Let us recall that we know from Comte et al. (2006) that

  for T

	(2,3,1) N since both have the same martingale property w.r.t. G V (t), we proceed as for T s . We get	(2,2,1) N	(t)
	E( sup		
	t∈Bm(0,1)		

Table 1 Mean squared errors (with standard deviations in parenthesis) for the estimation of b and σ 2 , 100 paths of the CIR process, different values of k for the quadratic variation, when using the trigonometric basis.

Process t , i = 1, . . . , 4 when using the trigonometric basis (except the last column, piecewise polynomial basis), k = 250. with (ε ℓ ) i.i.d. N (0, 1) independent of (Vs, s ≥ 0). Approximations of the integrated processes are computed by discrete integration (with a trapeze method).

The generated

jδ ′ , i = 1, . . . , 4 samples have length N ′ = 5.10 6 , for a step δ ′ = 1000/5.10 6 = 2.10 -4 , and the integrated process is computed using 10 data, therefore, we obtain n = 5.10 5 and δ = 2.10 -3 , for T = nδ = 1000. Different values of k are used, but the best value, k = 250, corresponds to ∆ = kδ = 0.5 and N = 2000 data for the same T .

Estimation algorithms and numerical results

We use the algorithm of [START_REF] Comte | A new algorithm for fixed design regression and denoising[END_REF]. The precise calibration of penalties is difficult and done for the trigonometric basis but also for a general piecewise polynomial basis, described in detail in Comte et al (2006). Additive correcting terms are involved in the penalty. Such terms avoid under-penalization and are in accordance with the fact that the theorems provide lower bounds for the penalty. The correcting terms are asymptotically negligible and do not affect the rate of convergence. For the trigonometric polynomial collection (denoted by [T]), the drift penalty (i = 1) and the diffusion penalty (i = 2) are given by