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Abstract Consider discrete time observations (Xℓδ)1≤ℓ≤n+1 of the process X satis-

fying dXt =
√
VtdBt, with Vt a one-dimensional positive diffusion process independent

of the Brownian motion B. For both the drift and the diffusion coefficient of the un-

observed diffusion V , we propose nonparametric least square estimators, and provide

bounds for their risk. Estimators are chosen among a collection of functions belonging

to a finite dimensional space whose dimension is selected by a data driven procedure.
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1 Introduction

In this paper, we consider a bivariate process (Xt, Vt)t≥0 with dynamics described by

the following equations:
{
dXt =

√
VtdBt, X0 = 0,

dVt = b(Vt)dt+ σ(Vt)dWt V0 = η, Vt > 0, for all t ≥ 0,
(1)

where (Bt,Wt)t≥0 is a standard bidimensional Brownian motion and η is independent

of (Bt,Wt)t≥0. Our aim is to propose and study nonparametric estimators of b(.) and

σ2(.) on the basis of discrete time observations of the process X only.

F. Comte E-mail: fabienne.comte@univ-paris5.fr · V. Genon-Catalot E-mail: genon@math-
info.univ-paris5.fr · Y. Rozenholc E-mail: yves.rozenholc@math-info.univ-paris5.fr
MAP5 UMR 8145, University Paris Descartes.
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Model (1) was introduced by Hull and White (1987) under the name of Stochastic

Volatility model. It is often adopted in finance to model stock prices, stock indexes

or short term interest rates: see for instance Hull and White (1987), Anderson and

Lund (1997), the review of Stochastic Volatility models in Ghysels et al. (1996) or the

recent book by Shephard (2005) and the references therein. See also an econometric

analysis of the subject in Barndorff-Nielsen and Shephard (2002).

The approach to study model (1) is often parametric: the unknown functions are

specified up to a few unknown parameters, see the popular examples of Heston (1993)

or Cox, Ingersoll and Ross (1985). General statistical parametric approaches of the

problem are studied in Genon-Catalot et al. (1999), Hoffmann (2002), Gloter (2007),

Aı̈t-Sahalia and Kimmel (2007). A nonparametric estimation of the stationary density

of Vt is studied in Comte and Genon-Catalot (2006). A recent proposal for nonparamet-

ric estimation of the drift and diffusion coefficients of V can be found in Renó (2006),

who studies the empirical performance of a Nadaraya-Watson kernel strategy on two

parametric simulated examples. Our approach is new and different, and it is based on

a nonparametric mean square strategy. We consider the same probabilistic and sam-

pling settings as Gloter (2007) and follow the ideas developed in Comte et al. (2006,

2007), where direct or integrated discrete observations of the process (Vt) are consid-

ered. Here, our assumptions ensure that (Vt) is stationary and we consider discrete

time observations (Xℓδ)1≤ℓ≤n+1 of the process (Xt) in the so-called high frequency

context: δ is small, n is large and nδ = T , the time interval where observations are

taken, is large.

We assume that n = kN and define as it is usual, for i = 0, 1, . . . , N−1, the realized

quadratic variation associated with (Xℓδ)ik+1≤ℓ<(i+1)k :

ˆ̄Vi =
1

kδ

k−1∑

j=0

(
X(ik+j+1)δ −X(ik+j)δ

)2
.

Setting ∆ = kδ, ˆ̄Vi provides an approximation of the integrated volatility:

V̄i =
1

∆

∫ (i+1)∆

i∆
Vsds, (2)

which in turn may be, for well chosen k, δ, a satisfactory approximation of Vi∆. We

have in mind to obtain regression-type equations, for ℓ = 1, 2:

Y
(ℓ)
i+1 = f(ℓ)( ˆ̄Vi) + noise + remainder,

where

f(1) = b, Y
(1)
i =

ˆ̄Vi+1 − ˆ̄Vi

∆
and f(2) = σ2, Y

(2)
i =

3

2

( ˆ̄Vi+1 − ˆ̄Vi)
2

∆
. (3)

Choosing a collection of finite dimensional spaces, we use the regression-type equations

to construct estimators on these spaces. Then, we propose a data driven procedure to

select a relevant estimation space in the collection. As it is usual with these methods, the

risk of an estimator f̃ of f = b or σ2 is measured via E(‖f − f̃‖2
N ) where ‖f − f̃‖2

N =

(1/N)
∑N−1

i=0 (f − f̃)2( ˆ̄Vi). We obtain risk bounds which can be interpreted as n,N

tend to infinity, δ,∆ tend to 0 and T = nδ = N∆ tends to infinity. These bounds are

compared with Hoffmann’s (1999) minimax rates in the case of direct observations of
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V . For what concerns b, our method leads to the best rate that can be expected. For

what concerns σ2, no benchmark is available in this asymptotic framework. Indeed,

Gloter (2000) and Hoffmann (2002) only treat the case of observations within a fixed

length time interval, in a parametric setting. As it is always the case, the rates are

different for the two functions.

The paper is organized as follows. Section 2 describes the assumptions on the model

and the collection of estimation spaces. In Section 3, the estimators are defined and

their risks are studied. Section 4 completes the procedure by the data driven selection

of the estimation space. Examples of models and simulation results are presented in

Section 5. Lastly, proofs are gathered in Section 6.

2 The assumptions

2.1 Model assumptions.

Let (Xt, Vt)t≥0 be given by (1) and assume that only discrete time observations of X,

(Xℓδ)1≤ℓ≤n+1 are available. We want to estimate the drift function b and the square

of the diffusion coefficient σ2 when V is stationary and exponentially β-mixing. We

assume that the state space of (Vt) is a known open interval (r0, r1) of R
+ and consider

the following set of assumptions.

[A1 ] 0 ≤ r0 < r1 ≤ +∞,
◦
I = (r0, r1), with σ(v) > 0, for all v ∈

◦
I . Let I = [r0, r1]∩R.

The function b belongs to C1(I), b′ is bounded on I , σ2 ∈ C2(I), (σ2)′σ is Lipschitz

on I, (σ2)′′ is bounded on I and σ2(v) ≤ σ2
1 for all v in I .

[A2 ] For all v0, v ∈
◦
I , the scale density s(v) = exp

[
−2
∫ v
v0
b(u)/σ2(u)du

]
satisfies

∫
r0
s(x)dx = +∞ =

∫ r1 s(x)dx, and the speed density m(v) = 1/(σ2(v)s(v))

satisfies
∫ r1

r0
m(v)dv = M < +∞.

[A3 ] η ∼ π and ∀i,E(η2i) <∞, where π(v)dv = (m(v)/M)1I(r0,r1)(v)dv.

[A4 ] The process (Vt) is exponentially β-mixing, i.e., there exist constantsK > 0, θ > 0,

such that, for all t ≥ 0, βV (t) ≤ Ke−θt.

Under [A1]-[A3], (Vt) is strictly stationary with marginal distribution π, ergodic

and β-mixing, i.e. limt→+∞ βV (t) = 0. Here, βV (t) denotes the β-mixing coefficient of

(Vt) and is given by

βV (t) =

∫ r1

r0

π(v)dv‖Pt(v, dv
′) − π(v′)dv′‖TV .

The norm ‖.‖TV is the total variation norm and Pt denotes the transition probability of

(Vt) (see Genon-Catalot et al. (2000)). To prove our main result, we need the stronger

mixing condition [A4], which is satisfied in most standard examples. Under [A1]-[A4],

for fixed ∆, (V̄i)i≥0 is a strictly stationary process. And we have:

Proposition 2.1 Under [A1]-[A4], for fixed k and δ, ( ˆ̄Vi)i≥0 is strictly stationary and

β ˆ̄V
(i) ≤ cβV (i∆) for all i ≥ 1.
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2.2 Spaces of approximation

The functions b and σ2 are estimated only on a compact subset A of the state space
◦
I . For simplicity and without loss of generality, we assume from now on that

A = [0, 1], and we set bA = b1A, σA = σ1A. (4)

To estimate f = b, σ2, we consider a family Sm,m ∈ Mn of finite dimensional

subspaces of L2([0, 1]) and compute a collection of estimators f̂m where for all m, f̂m

belongs to Sm. Afterwards, a data driven procedure chooses among the collection of

estimators the final estimator f̂m̂.

We consider here simple projection spaces, namely trigonometric spaces, Sm,m ∈
Mn. The space Sm is linearly spanned in L2([0, 1]) by ϕ1, . . . , ϕ2m+1 with ϕ1(x) =

1[0,1](x), ϕj(x) =
√

2 cos(2πjx)1[0,1](x) for even j’s and ϕj(x) =
√

2 sin(2πjx)1[0,1](x)

for odd j’s larger than 1. We have Dm = 2m + 1 = dim(Sm) ≤ Dn and Mn =

{1, 3, . . . ,Dn}. The largest space in the collection has maximal dimension Dn, which

is subject to constraints appearing later.

Actually, the theory requires smooth bases and regular wavelet bases would also

be adequate.

In connection with the collection of spaces Sm, we need an additional assumption

on the marginal density of the stationary process ( ˆ̄Vi)i≥0:

[A5 ] The process ( ˆ̄Vi)i≥0 admits a stationary density π∗ and there exist two positive

constants π∗0 and π∗1 (independent of n, δ) such that ∀m ∈ Mn, ∀t ∈ Sm,

π∗0‖t‖2 ≤ E(t2( ˆ̄V0)) ≤ π∗1‖t‖2. (5)

The existence of the density π∗ is easy to obtain. The checking of (5) is more

technical. See the discussion on [A5] in Section 6.2. Below, we use the notations:

‖t‖2
π∗ =

∫
t2(x)π∗(x)dx, ‖t‖2 =

∫ 1

0
t2(x)dx and ‖t‖∞ = sup

x∈[0,1]
|t(x)|. (6)

3 Mean squares estimators of the drift and volatility

3.1 Regression equations

Reminding of (3), we first prove the developments, for ℓ = 1, 2:

Y
(ℓ)
i+1 = f(ℓ)( ˆ̄Vi) + Z

(ℓ)
i+1 +R(ℓ)(i+ 1), (7)

where the Z
(ℓ)
i ’s are noise terms (with martingale properties) and the R(ℓ)(i)’s are

negligible residual terms given in Section 6. For the noise terms, we have, for ℓ = 1

(f(1) = b):

Z
(1)
i =

1

∆2

∫ (i+2)∆

i∆
ψi∆(u)σ(Vu)dWu + (ui+1,k − ui,k)/∆,

with

ψi∆(u) = (u− i∆)1I[i∆,(i+1)∆[(u) + [(i+ 2)∆ − u]1I[(i+1)∆,(i+2)∆[(u). (8)
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and

ui,k =
1

∆

k−1∑

j=0



(∫ (ik+j+1)δ

(ik+j)δ

√
VsdBs

)2

−
∫ (ik+j+1)δ

(ik+j)δ
Vsds


 .

Note that ˆ̄Vi = V̄i + ui,k.

On the other hand, for ℓ = 2 (f(2) = σ2), we have Z
(2)
i = Z

(2,1)
i +Z

(2,2)
i +Z

(2,3)
i with

Z
(2,1)
i =

3

2∆3



(∫ (i+2)∆

i∆
ψi∆(s)σ(Vs)dWs

)2

−
∫ (i+2)∆

i∆
ψ2

i∆(s)σ2(Vs)ds


 ,

Z
(2,2)
i =

3

∆
b(Vi∆)

∫ (i+2)∆

i∆
ψi∆(s)σ(Vs)dWs

+
3

∆3

∫ (i+2)∆

i∆

(∫ (i+2)∆

s
ψ2

i∆(u)du

)
[(σ2)′σ](Vs)dWs,

where ψi∆ is given in (8), and

Z
(2,3)
i =

3

∆
(V̄i+1 − V̄i)(ui+1,k − ui,k).

3.2 Mean squares contrast

Equation (7) gives a natural regression equation to estimate f(ℓ). In light of this, we

consider the following contrast, for a function t ∈ Sm where Sm is a space of the

collection and for ℓ = 1, 2:

γ
(ℓ)
N (t) =

1

N

N−1∑

i=0

[Y
(ℓ)
i+1 − t( ˆ̄Vi)]

2. (9)

Then the estimators are defined as

f̂
(ℓ)
m = arg min

t∈Sm

γ
(ℓ)
N (t). (10)

The minimization of γ
(ℓ)
N over Sm usually leads to several solutions. In contrast, the ran-

dom R
N -vector (f̂

(ℓ)
m ( ˆ̄V0), . . . , f̂

(ℓ)
m ( ˆ̄VN−1))

′ is always uniquely defined. Indeed, let us

denote byΠm the orthogonal projection (with respect to the inner product of R
N ) onto

the subspace of R
N , {(t( ˆ̄V0), . . . , t(

ˆ̄VN−1))
′, t ∈ Sm}, then (f̂

(ℓ)
m ( ˆ̄V0), . . . , f

(ℓ)
m ( ˆ̄VN−1))

′ =

ΠmY
(ℓ) where Y (ℓ) = (Ȳ

(ℓ)
1 , . . . , Y

(ℓ)
N )′. This is the reason why we consider a properly

defined risk for f̂
(ℓ)
m based on the design points, i.e.

E

[
1

N

N−1∑

i=0

(f̂
(ℓ)
m ( ˆ̄Vi) − f( ˆ̄Vi))

2

]
.

Thus, the error is measured via the risk E(‖f̂(ℓ)
m − f(ℓ)‖2

N ) where

‖t‖2
N =

1

N

N−1∑

i=0

t2( ˆ̄Vi).
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Let us mention that for a deterministic function E(‖t‖2
N ) = ‖t‖2

π∗ =
∫
t2(x)π∗(x)dx.

Moreover, under Assumption [A5], the norms ‖.‖ and ‖.‖π∗ are equivalent for functions

in Sm (see notations (6)).

The following decomposition of the contrast holds:

γ
(ℓ)
N (t) − γ

(ℓ)
N (f(ℓ)) = ‖t− f(ℓ)‖2

N − 2

N

N−1∑

i=0

(Y
(ℓ)
i+1 − f(ℓ)( ˆ̄Vi))(f

(ℓ) − t)( ˆ̄Vi)

In view of (7), we define the centered empirical processes, for ℓ = 1, 2:

ν
(ℓ)
N (t) =

1

N

N−1∑

i=0

t( ˆ̄V
(ℓ)
i )Z

(ℓ)
i+1,

and the residual process:

R
(ℓ)
N (t) =

1

N

N−1∑

i=0

t( ˆ̄Vi)R
(ℓ)(i+ 1).

Then we obtain that

γ
(ℓ)
N (t) − γ

(ℓ)
N (f(ℓ)) = ‖t− f(ℓ)‖2

N − 2ν
(ℓ)
N (t− f(ℓ)) − 2R

(ℓ)
N (t− f(ℓ)).

Let f
(ℓ)
m be the orthogonal projection of f(ℓ) on Sm. Write simply that γ

(ℓ)
N (f̂

(ℓ)
m ) ≤

γ
(ℓ)
N (f

(ℓ)
m ) by definition of the estimator, and therefore that γ

(ℓ)
N (f̂

(ℓ)
m ) − γ

(ℓ)
N (f(ℓ)) ≤

γ
(ℓ)
N (f

(ℓ)
m ) − γ

(ℓ)
N (f(ℓ)). This yields

‖f̂(ℓ)
m − f(ℓ)‖2

N ≤ ‖f(ℓ)
m − f(ℓ)‖2

N + 2ν
(ℓ)
N (f̂

(ℓ)
m − f

(ℓ)
m ) + 2R

(ℓ)
N (f̂

(ℓ)
m − f

(ℓ)
m ).

The functions f̂
(ℓ)
m and f

(ℓ)
m being A-supported, we can cancel the terms ‖f1IAc‖2

N that

appears in both sides of the inequality. Therefore, we get

‖f̂(ℓ)
m − f

(ℓ)
A ‖2

N ≤ ‖f(ℓ)
m − f

(ℓ)
A ‖2

N + 2ν
(ℓ)
N (f̂

(ℓ)
m − f

(ℓ)
m ) + 2R

(ℓ)
N (f̂

(ℓ)
m − f

(ℓ)
m ). (11)

Taking expectations and finding upper bounds for

E( sup
t∈Sm,‖t‖=1

[ν
(ℓ)
N (t)]2) and E( sup

t∈Sm,‖t‖=1
[R

(ℓ)
N (t)2)

will give the rates for the risks of the estimators.

3.3 Risk for the collection of drift estimators

For the estimation of b, we obtain the following result.

Proposition 3.1 Assume that N∆ ≥ 1 and 1/k ≤ ∆. Assume that [A1]-[A5] hold and

consider a model Sm in the collection of models with Dn ≤ O(
√
N∆/ ln(N)) where Dn

is the maximal dimension (see Section 2.2). Then the estimator f̂
(1)
m = b̂m of f(1) = b

is such that

E(‖b̂m − bA‖2
n) ≤ 7‖bm − bA‖2

π∗ +K
E(σ2(V0))Dm

N∆
+K′∆, (12)

where bA = b1I[0,1] and K,K′ and K” are some positive constants.
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Note that the condition on Dn implies that
√
N∆/ ln(N) must be large enough.

It follows from (12) that it is natural to select the dimension Dm that leads to the

best compromise between the squared bias term ‖bm − bA‖2
π∗ (which decreases when

Dm increases) and the variance term of order Dm/(N∆).

Now, let us consider the classical high frequency data setting: let ∆ = ∆n, k = kn

and N = Nn be, in addition, such that ∆n → 0, N = Nn → +∞, Nn∆n/ ln2(Nn) →
+∞ when n → +∞ and that 1/(kn∆n) ≤ 1. Assume for instance that bA belongs

to a ball of some Besov space, bA ∈ Bα,2,∞([0, 1]), α ≥ 1, and that ‖bm − bA‖2
π∗ ≤

π∗1‖bm − bA‖2, then ‖bA − bm‖2
π∗ ≤ C(α,L, π∗1)D−2α

m , for ‖bA‖α,2,∞ ≤ L (see Lemma

12 in Barron et al. (1999)). Therefore, if we choose Dm = (Nn∆n)1/(2α+1), we obtain

E(‖b̂m − bA‖2
n) ≤ C(α,L)(Nn∆n)−2α/(2α+1) +K′∆n. (13)

The first term (Nn∆n)−2α/(2α+1) = T
−2α/(2α+1)
n is the optimal nonparametric rate

proved by Hoffmann (1999) for direct observation of V .

Now, let us find conditions under which the last term is negligible. For instance,

under the standard condition ∆n = O(1/(Nn∆n)), the term ∆n is negligible with

respect to (Nn∆n)−2α/(2α+1).

Now, consider the choices kn = 1/∆n and δn = n−c. Let us see if there are possible

choices of c for which all our constraints are fulfilled. To have nδn → +∞ requires

0 < c < 1. As ∆n = knδn = δn/∆n, we have ∆n =
√
δn = n−c/2 and Nn = n/kn =

n1−c/2. Thus, ∆n → 0 and Nn, Nn∆n → +∞. Finally, the last constraint to fulfill is

that Nn∆
2
n = n1−3c/2 = O(1). Thus for 2/3 ≤ c < 1, the dominating term in (13)

is (Nn∆n)−2α/(2α+1), i.e. the minimax optimal rate. We have obtained a possible

“bandwidth” of steps δn.

3.4 Risk for the collection of volatility estimators

For the collection of volatility estimators, we have the result

Proposition 3.2 Assume that [A1]-[A5] hold and consider a model Sm in the col-

lection of models with maximal dimension Dn ≤ O(
√
N∆/ ln(N)). Assume also that

1/k ≤ ∆ and N∆ ≥ 1, ∆ ≤ 1. Then the estimator f̂
(2)
m = σ̂2

m of f(2) = σ2 is such that

E(‖σ̂2
m − σ2

A‖2
N ) ≤ 7‖σ2

m − σ2
A‖2

π∗ +K
E(σ4(V0))Dm

N
+K′Res(Dm, k, ∆), (14)

where the residual term is given by

Res(Dm, k,∆) = D2
m∆

2 +D5
m∆

3 +
D3

m

k2 +
1

k2∆2 , (15)

where σ2
A = σ21I[0,1], and K, K′ are some positive constants.

The discussion on rates is much more tedious. Consider the asymptotic setting de-

scribed for b. Assume that σ2
A belongs to a ball of some Besov space, σ2

A ∈ Bα,2,∞([0, 1]),

and that ‖σ2
m − σ2

A‖2
π∗ ≤ π∗1‖σ2

m − σ2
A‖2, then ‖σ2

A − σ2
m‖2

π∗ ≤ C(α,L, π∗1)D−2α
m , for

‖σ2
A‖α,2,∞ ≤ L. Therefore, if we choose Dm = N

1/(2α+1)
n , and kn ≤ 1/∆n, we obtain

E(‖σ̂2
m − σ2

A‖2
N ) ≤ C(α, L, π∗1)N

−2α/(2α+1)
n +K′Res(N

1/(2α+1)
n , kn,∆n). (16)
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The first termN
−2α/(2α+1)
n is the optimal nonparametric rate proved by Hoffmann (1999)

when Nn discrete time observations of V are available.

For the second term, let us set kn = na, ∆n = n−b, δn = n−c, and recall that

nδn = Nn∆n and n/Nn = kn, so that Nn = n1−a and a+ b = c. We look for a, b such

that

Res(N
1/(2α+1)
n , kn,∆n) ≤ N

−2α/(2α+1)
n .

For this, we take 1/(k2
n∆

2
n) = N

−2α/(2α+1)
n which implies 2(a−b)/(1−a) = 2α/(2α+1).

We get

a =
(2α+ 1)c+ α

5α+ 2
, b =

(3α+ 1)c− α

5α+ 2
.

Then we impose N
2/(2α+1)
n ∆2

n ≤ N
−2α/(2α+1)
n which is equivalent to

2b ≥ [(2α+ 2)/(2α+ 1)](1 − a) ⇒ c ≥ (3α+ 2)[2(2α+ 1)].

Next N
5/(2α+1)
n ∆3

n ≤ N
−2α/(2α+1)
n leads to

3b ≥ [(2α+ 5)/(2α+ 1)](1 − a) ⇒ c ≥ (7α+ 5)/(11α + 8).

Lastly N
3/(2α+1)
n /k2

n ≤ N
−2α/(2α+1)
n holds for −2a ≤ −[(3+2α)/(2α+1)](1−a), i.e.

c ≥ 2(α+ 3)/(6α+ 5).

The optimal dimension has also to fulfill N
1/(2α+1)
n ≤ Dn ≤

√
Nn∆n i.e. −[(2α−

1)/[2(2α + 1)]](1 − a) ≤ −b/2 which implies c ≤ (5α− 2)/(5α). Finally, we must have

c ∈
[

3α+ 2

2(2α+ 1)
,
5α− 2

5α

]
→α→+∞

]
3

4
, 1

[
.

This interval is nonempty as soon as α > 2.

In terms of the initial number n of observations, the rate is now (n1−a)−2α/(2α+1)

where 1 − a is at most 1/2, when α → +∞. This is consistent with Gloter’s (2000)

result: in the parametric case, he obtains n−1/2 instead of n−1 for the quadratic risk.

4 Data driven estimator of the coefficients

The second step is to ensure an automatic selection of Dm, which does not use any

knowledge on f(ℓ), and in particular which does not require to know the regularity α.

This selection is standardly done by setting

m̂(ℓ) = arg min
m∈Mn

[
γ
(ℓ)
n (f̂

(ℓ)
m ) + pen(ℓ)(m)

]
, (17)

with pen(ℓ)(m) a penalty to be properly chosen. We denote by f̃(ℓ) = f̂
(ℓ)

m̂(ℓ) the resulting

estimator and we need to determine pen such that, ideally,

E(‖f̃(ℓ) − f
(ℓ)
A ‖2

n) ≤ C inf
m∈Mn

(
‖f(ℓ)

A − f
(ℓ)
m ‖2 +

E(σ2ℓ(V0))Dm

N∆2−ℓ

)
+ negligible terms,

with C a constant which should not be too large.
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4.1 Result for the data driven estimator of b

We almost reach this aim for the estimation of b.

Theorem 4.1 Assume that [A1]-[A5] hold, 1/k ≤ ∆, ∆ ≤ 1 and N∆ ≥ 1. Consider

the collection of models with maximal dimension Dn ≤ O(
√
N∆/ ln(N)). Then the

estimator b̃ = f̂
(1)

m̂(1) of b where m̂(1) is defined by (17) with

pen(1)(m) ≥ κσ2
1
Dm

N∆
, (18)

where κ is a universal constant, is such that

E(‖b̃− bA‖2
n) ≤ C inf

m∈Mn

(
‖bm − bA‖2

π∗ + pen(1)(m)
)

+K

(
∆+

1

N∆
+

1

ln2(N)k∆

)
. (19)

For comments on the practical calibration of the penalty, see Section 5.2.

It follows from (19) that the adaptive estimator automatically realizes the bias-

variance compromise, provided that the last terms can be neglected as discussed above.

Here, the bandwidth for the choices of δn is slightly narrowed because of a stronger

constraint. More precisely, we choose 1/(kn∆n) = ∆n (instead of 1 previously), that is

kn = ∆−2
n , so that ∆n = knδn = ∆−2

n δ−1
n . Therefore ∆n = δ

1/3
n and if δn = n−c, then

∆n = n−c/3. Also, Nn = n/kn = n1−2c/3, Nn∆n = nδn = n1−c, Nn∆
2
n = n1−4c/3.

Hence if 3/4 < c < 1, we have altogether: Nn, Nn∆n/ ln2(Nn) tend to infinity with n,

∆n, Nn∆
2
n tend to zero.

In that case, whenever bA belongs to some Besov ball (see (13)), and if ‖bm −
bA‖2

π∗ ≤ π∗1‖bm−bA‖2, then b̃ achieves the optimal corresponding nonparametric rate.

Note that, in the parametric framework, Gloter (2007) obtains an efficient estimation

of b in the same asymptotic context.

4.2 Result for the data driven estimator of the volatility

We can prove the following Theorem.

Theorem 4.2 Assume that [A1]-[A5] hold, 1/k ≤ ∆, ∆ ≤ 1 and N∆ ≥ 1. Con-

sider the collection of models with maximal dimension Dn ≤
√
N∆/ ln(N). Then the

estimator σ̃2 = f̂
(2)

m̂(2) of σ2 where m̂(2) is defined by (17) with

pen(2)(m) ≥ κσ4
1
Dm

N
, (20)

where κ is a universal constant, is such that

E(‖σ̃2 − σ2
A‖2

N ) ≤ C inf
m∈Mn

(
‖σ2

m − σ2
A‖2

π∗ + pen(2)(m)
)

+C′R̃es(N, k,∆), (21)

where

R̃es(N, k,∆) = N∆3 +N5/2∆11/2 +
(N∆)3/2

k2
+

1

k2∆2
. (22)
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Now, if σ2
A belongs to a ball of some Besov space, σ2

A ∈ Bα,2,∞([0, 1]), then auto-

matically,

inf
m∈Mn

(
‖σ2

m − σ2
A‖2

π∗ + pen(2)(m)
)

= O(N
−2α/(2α+1)
n )

without requiring the knowledge of α. Therefore,

E(‖σ̆2
m̆ − σ2

A‖2
N ) ≤ C(α, L)N

−2α/(2α+1)
n +C′R̃es(Nn, kn,∆n).

It remains to study the residual term. Notice that we do not know the optimal min-

imax rate for estimating σ2, under our set of assumptions on the models and on the

asymptotic framework. However, Gloter (2000) and Hoffmann (2002), with observa-

tions within a fixed length time interval, obtain the parametric rate n−1/2 (in vari-

ance). Taking this as a benchmark, we try to make the residual less than O(n−1/2).

Let us set kn = na, ∆n = n−b, hence Nn = n/kn = n1−a and Nn∆n = n1−(a+b).

This yields that 1 − a − 3b, (5 − 5a − 11b)/2, (3 − 7a − 3b)/2, 2(b − a) must all be less

than or equal to −1/2, in association with a + b < 1 and N
1/(2α+1)
n ≤

√
Nn∆n. This

set of constraint is not empty (e.g. a = 9/16, b = 5/16 fits).

5 Examples and numerical simulation results

In this section, we consider examples of diffusions and implement the estimation algo-

rithm on simulated data for the stochastic volatility model X given by (1).

5.1 Simulated paths

We consider the processes V
(i)
t for i = 1, . . . , 4 specified by the couples of functions

bi, σ
2
i , i = 1, . . . , 4:

1. b1(x) = x
(
−θ ln(x) + 1

2c
2
)
, σ2

1(x) = c2x2 which corresponds to exp(Ut) for Ut an

Ornstein-Uhlenbeck process, dUt = −θUtdt+ cdWt. Whatever the chosen step, Ut

is exactly simulated as an autoregressive process of order 1. We took θ = 1 and

c = 0.75.

2. b2(x) = b0(x− 2), σ2
2(x) = σ2

0(x− 2), where b0(x) = −(1− x2)
[
c2x+ θ

2 ln
(

1+x
1−x

)]

and σ2
0(x) = c(1 − x2) are the diffusion coefficients of the process th(Ut) (th(x) =

(ex − e−x)/(ex + e−x), with the same parameters as for case 1). The process V
(2)
t

corresponds to th(Ut) + 2 which is a positive bounded process.

3. b3(x) = x(b0(ln(x)) + 1
2σ

2
0(ln(x))) and σ2

3(x) = x2σ2
0(ln(x)) which corresponds to

the process V
(3)
t = exp(th(Ut)).

4. b4(x) = dc2/4 − θx, σ2
4(x) = c2x which corresponds to the Cox-Ingersoll-Ross

process. A discrete time sample is obtained in an exact way by taking the Euclidean

norm of a d-dimensional Ornstein-Uhlenbeck process with parameters −θ/2 and

c/2. We took d = 9, θ = 0.75 and c = 1/3.

We obtain samples of discrete observations of the processes (V
(j)
ℓδ′ )1≤ℓ≤N ′ for j =

1, . . . , 4 with δ′ = δ/10, N ′δ′ = T , from which we generate (X
(j)
ℓδ )1≤ℓ≤n, by using that

Xℓδ −X(ℓ−1)δ =

√∫ ℓδ

(ℓ−1)δ
Vsds εℓ,
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k = 150 k = 200 k = 250 k = 300 k = 500

b mean 1, 70.10−3 1, 87.10−3 1, 95.10−3 2, 1.10−3 2, 91.10−3

(std) (5, 38.10−4) (5, 06.10−4) (4, 93.10−4) (4, 92.10−4) (4, 68.10−4)

σ2 mean 14, 8.10−5 6, 23.10−5 8, 77.10−5 15, 3.10−5 28, 6.10−5

(std) (3, 26.10−5) (2, 26.10−5) (3, 74.10−5) (4, 0.10−5) (3, 39.10−5)

Table 1 Mean squared errors (with standard deviations in parenthesis) for the estimation of
b and σ2, 100 paths of the CIR process, different values of k for the quadratic variation, when
using the trigonometric basis.

Process V
(1)
t

[T] V
(2)
t

[T] V
(3)
t

[T] V
(4)
t

[T] V
(4)
t

[GP]

b mean 4, 08.10−2 7, 51.10−2 7, 05.10−2 1, 95.10−3 1, 04.10−3

(std) (6, 89.10−3) (8, 56.10−3) (8, 12.10−3) (4, 93.10−4) (2, 89.10−4)

σ2 mean 1, 42.10−1 1, 89.10−2 8, 32.10−2 8, 77.10−5 4, 61.10−5

(std) (3, 47.10−2) (1, 54.10−3) (1, 61.10−2) (3, 74.10−5) (3, 19.10−5)

Table 2 Mean squared errors (with standard deviations in parenthesis) for the estimation of

b and σ2, 100 paths of the processes V
(i)
t

, i = 1, . . . , 4 when using the trigonometric basis
(except the last column, piecewise polynomial basis), k = 250.

with (εℓ) i.i.d. N (0, 1) independent of (Vs, s ≥ 0). Approximations of the integrated

processes are computed by discrete integration (with a trapeze method).

The generated V
(i)
jδ′ , i = 1, . . . , 4 samples have length N ′ = 5.106, for a step δ′ =

1000/5.106 = 2.10−4, and the integrated process is computed using 10 data, therefore,

we obtain n = 5.105 and δ = 2.10−3, for T = nδ = 1000. Different values of k are used,

but the best value, k = 250, corresponds to ∆ = kδ = 0.5 and N = 2000 data for the

same T .

5.2 Estimation algorithms and numerical results

We use the algorithm of Comte and Rozenholc (2004). The precise calibration of penal-

ties is difficult and done for the trigonometric basis but also for a general piecewise

polynomial basis, described in detail in Comte et al (2006). Additive correcting terms

are involved in the penalty. Such terms avoid under-penalization and are in accordance

with the fact that the theorems provide lower bounds for the penalty. The correcting

terms are asymptotically negligible and do not affect the rate of convergence. For the

trigonometric polynomial collection (denoted by [T]), the drift penalty (i = 1) and the

diffusion penalty (i = 2) are given by

2
ŝ2i
n

(
Dm + ln2.5(Dm + 1)

)
, with Dm at most [N∆/ ln1.5(N)].

For the penalty when considering general piecewise polynomial bases (denoted by

[GP]), we refer the reader to Comte et al. (2006). The constants κ1 and κ2 in both

drift and diffusion penalties have been set equal to 2. The term ŝ21 replaces σ2
1/∆ for

the estimation of b and ŝ22 replaces σ4
1 for the estimation of σ2. Let us first explain
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Fig. 1 Estimation of b (left) and σ2 (right) for 20 paths of the CIR process with the trigono-
metric basis (top) and the piecewise polynomial basis (bottom), k = 250.

how ŝ22 is obtained. We run once the estimation algorithm of σ2 with the basis [T] and

with a preliminary penalty where ŝ22 is taken equal to 2maxm(γ
(2)
n (σ̂2

m)). This gives

a preliminary estimator σ̃2
0 . Afterwards, we take ŝ2 equal to twice the 99.5%-quantile

of σ̃2
0 . The use of the quantile is here to avoid extreme values. We get σ̃2. We use this

estimate and set ŝ21 = max0≤k≤N−1(σ̃2( ˆ̄Vk))/∆ for the penalty of b. The results given

0 1 2 3
−1

−0.5

0

0.5

0 1 2 3
0

0.5

1

1.5

2

2.5

Fig. 2 Estimation of b (left) and σ2 (right) for 20 paths of the process V
(1)
t

(exponential
Ornstein Uhlenbeck) with the trigonometric basis, k = 250.

by our algorithm are described in Figure 1 and 2. We plot in Figure 1 the true function

(thick curve) and 20 estimated functions (thin curves) in the case b and σ2 when using
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first the basis [T] and then the basis [GP], in the case of the CIR process. We can see

that the trigonometric basis finds the right slope in the central part of the interval,

whereas the basis [GP] in general selects only one bin and a straight curve, but with

a slightly too small slope. The same type of result holds in Figure 2 for the exponen-

tial Orsntein Uhlenbeck process. For comparison with direct or integrated observations

of V , we refer to Comte et al. (2006,2007). It is not surprising that in the case of a

stochastic volatility model, empirical results are less satisfactory and require a large

number of observations.

We also give in Tables 1 and 2 results of Monte-Carlo type experiments. In Table 1,

we show the results of the estimation procedure with the basis [T] and the CIR process

when choosing different values of k for building the quadratic variation. Clearly, there

is an optimal value. If k is too large, there are not enough observations left for the

estimation algorithm. If k is too small, bias phenomena appear, related to the violation

of the theoretical assumptions (mainly 1/k ≤ ∆). We repeated the experiment for the

other processes and obtained analogous results. In general, for this sample size, the

choice k = 250 seems to be relevant. In Table 2, we can see from the last two columns

that the basis [GP] seems to be better than [T], at least for the CIR process. The

errors are computed as the mean over 100 simulated paths of the empirical errors (e.g.

(1/N
∑N−1

i=0 [b( ˆ̄Vi) − b̃( ˆ̄Vi)]
2 for b).

6 Discussion on the assumptions and proofs

6.1 Proof of Proposition 2.1

We start with some preliminaries. Let It =
∫ t
0 Vsds. The joint process (Vt, It)t≥0 is a

two dimensional diffusion satisfying:

{
dVt = b(Vt)dt+ σ(Vt)dWt, V0 = η,

dIt = Vtdt, I0 = 0

Under regularity assumptions on b and σ, this process admits a transition density,

say qt(v0, i0, ; v, i) for the conditional density of (Vt, It) given V0 = v0, I0 = i0. This

density is w.r.t. the Lebesgue measure on (0,+∞)2 (see Rogers and Williams (2000)).

We assume that these assumptions hold.

Now, let us set

Jℓδ =

∫ ℓδ

(ℓ−1)δ
Vsds, ℓ ≥ 1. (23)

The discrete time process (Vℓδ, Jℓδ)ℓ≥1 is strictly stationary and Markov. Its one step

transition operator is given by the density:

(v, j) → qδ(v0, 0; v, j) := qδ(v0; v, j).

Its stationary density is given by
∫
π(v0)dv0qδ(v0; v, j) := πδ(v, j).

Let us set, for ℓ ≥ 1,

Zℓ = Xℓδ −X(ℓ−1)δ (24)

and define εℓ by the relation: Zℓ = J
1/2
ℓδ εℓ. Conditionally on (Vt)t≥0, the random vari-

ables (r.v.) Zℓ, ℓ ≥ 1 are independent and Zℓ has distribution N (0, Jℓδ). Consequently,
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the r.v (εℓ, ℓ ≥ 1) are i.i.d. with distribution N (0, 1) and the sequence (εℓ, ℓ ≥ 1) is

independent of (Vt)t≥0. Hence (Zℓ)ℓ≥1 and ( ˆ̄Vi)i≥0 are strictly stationary processes.

From the preliminaries and the above remarks, we deduce that the process (Vℓδ, Jℓδ , εℓ)ℓ≥1

is stationary Markov. Its ℓ-step transition operator is given by:

Qδ
ℓ(v0; dv, dj, du) = q

(ℓ)
δ (v0; v, j)n(u)dvdjdu

where q
(ℓ)
δ (v0; v, j) is the ℓ-step transition density of (Vℓδ, Jℓδ) and n(u) is the standard

gaussian density. The stationary density of (Vℓδ, Jℓδ, εℓ)ℓ≥1 is πδ(v, j)n(u). Hence

‖Q(ℓ)
δ (v0; dv, dj, du) − πδ(v, j)n(u)dvdjdu‖TV =

∫
|q(ℓ)δ (v0, vj) − πδ(v, j))|n(u)dvdjdu

=

∫
|q(ℓ)δ (v0; v, j) − πδ(v, j))|dvdj.

We may now use the representation of the β-mixing coefficient of strictly stationary

Markov processes (see e.g. Genon-Catalot et al. (2000)) to compute

βV.δ,J.δ,ε(ℓ) =

∫
πδ(v0, j0)n(u0)du0dv0dj0‖Q(ℓ)

δ (v0; dv, dj, du) − πδ(v, j)n(u)dvdjdu‖TV

= βV.δ ,J.δ
(ℓ).

Now, we have βZ(ℓ) ≤ βV.δ,J.δ,ε(ℓ) = βV.δ,J.δ
(ℓ) ≤ βV ((ℓ− 1)δ). Finally,

β ˆ̄V
(i) ≤ βZ(ik) ≤ βV ((ik − 1)δ) ≤ cβV (i∆). 2

6.2 Discussion on the assumptions

Actually, Assumption [A3] is too strong. We only need the existence of moments up to

a certain order. Let us now discuss [A5]. Using the representation

ˆ̄V0 =
1

kδ

k∑

ℓ=1

Jℓδ ε
2
ℓ ,

we see that ˆ̄V0 has a conditional density given (Vt, t ≥ 0). Integrating this density w.r.t.

the distribution of (Jℓδ , ℓ = 1, . . . , k), we get that ˆ̄V0 has a density π∗. However the

formula for π∗ is untractable.

On the other hand, we can obtain (5) by another approach. We have

t2(V̄0) = t2(V0) + (V̄0 − V0)(t
2)′(V0) +

1

2
(V̄0 − V0)

2
∫ 1

0
(t2)”(V0 + u(V̄0 − V0))du.

Now we use that, for any t ∈ Sm, there exists some constant C such that

‖(t2)′‖∞ ≤ CD2
m‖t‖2 and ‖(t2)”‖∞ ≤ CD3

m‖t‖2.

Noting that |E
(
V̄0 − V0|F0

)
| = O(∆), we get |E[(V̄0 − V0)(t

2)′(V0)]| ≤ CD2
m∆‖t‖2 =

O(D2
m∆). On the other hand,
∣∣∣∣∣E
[
(V̄0 − V0)

2
∫ 1

0
(t2)”(V0 + u(V̄0 − V0))du

]∣∣∣∣∣ ≤ ‖(t2)”‖∞E[(V̄0 − V0)
2]

≤ CD3
m∆‖t‖2.
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It follows that |E(t2(V̄0) − t2(V0))| ≤ C∆D3
m‖t‖2. Next,

t2( ˆ̄V0) = t2(V̄0) + ( ˆ̄V0 − V̄0)(t
2)′(V0) + ( ˆ̄V0 − V̄0)[(t

2)′(V̄0) − (t2)′(V0)]

+
1

2
( ˆ̄V0 − V̄0)

2
∫ 1

0
(t2)”(V̄0 + u( ˆ̄V0 − V̄0))du.

By Gloter’s (2007) Proposition 3.1, we have |E[( ˆ̄V0− V̄0)|V0]| ≤ cδ(1+V0)
c and E[| ˆ̄V0−

V̄0|2] ≤ c/k. Hence

|E(t2( ˆ̄V0) − t2(V̄0))| ≤ C‖t‖2(∆D2
m +

√
∆D3

m√
k

+
D3

m

k
).

Since 1/k ≤ ∆

|E(t2( ˆ̄V0) − t2(V0))| ≤ C‖t‖2∆D3
m.

As there exist two positive constants π0, π1 such that ∀v ∈ A, π0 ≤ π(v) ≤ π1, we

obtain

(π0 − C∆D3
n)‖t‖2 ≤ ‖t‖2

π∗ ≤ (π1 + C∆D3
n)‖t‖2.

Under the constraint that ∆D3
n = o(1), we get (5) for n large enough. This constraint

is compatible with the other ones, see the discussion after Theorem 4.1.

6.3 Definition of the residuals and their properties

We have

R(1)(i+ 1) = b(V̄i) − b( ˆ̄Vi) +R
(1)
∗ ((i+ 1)∆)

where R
(1)
∗ is the residual term for b studied in Comte et al. (2006, Proposition 3.1)

and defined by

R
(1)
∗ ((i+ 1)∆) = b(V(i+1)∆) − b(V̄i) +

1

∆2

∫ (i+3)∆

(i+1)∆
ψ(i+1)∆(s)(b(Vs) − b(V(i+1)∆))ds.

On the other hand,

R(2)(i+ 1) =
3

2

(ui+1,k − ui,k)2

∆
+ [σ2(V(i+1)∆ − σ2( ˆ̄Vi)] +R

(2)
∗ ((i+ 1)∆)

where R
(2)
∗ is the residual term for σ2 studied in Comte et al. (2006, Propositions 4.1,

4.2 and 4.3) defined by R
(2)
∗ =

∑3
m=1R

(2,m)
∗ with

R
(2,1)
∗ (i∆) =

3

2∆3

(∫ (i+2)∆

i∆
ψi∆(s)b(Vs)ds

)2

R
(2,2)
∗ (i∆) =

3

∆3

(∫ (i+2)∆

i∆
ψi∆(u)(b(Vu) − b(Vi∆))du

)(∫ (i+2)∆

i∆
ψi∆(u)σ(Vu)dWu

)

R
(2,3)
∗ (i∆) =

3

2∆3

∫ (i+2)∆

i∆

(∫ (i+2)∆

s
ψ2

i∆(u)du

)
τb,σ(Vs)ds,

where τb,σ = (σ2/2)(σ2)” + b(σ2)′. This decomposition is obtained by applying Ito’s

formula and Fubini’s theorem.

We may now summarize the following useful results, proved in Comte et al. (2006,

Propositions 3.1, 4.1, 4.2 and 4.3):
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Lemma 6.1 Under Assumptions [A1]-[A2]-[A3],

1. For ℓ = 1, 2, for m = 1, 2, for all i, E{[R(ℓ)
∗ (i∆)]2m} ≤ c∆2mℓ where c is a constant.

2. Let Z
(1)
∗ (i) = (1/∆2)

∫ (i+2)∆
i∆ ψi∆(s)σ(Vs)dWs. For all i, E([Z

(1)
∗ (i)]2) ≤ (2/3∆)E(σ2(V0)).

3. For all i, E([Z
(2,1)
i ]2) ≤ c1E(σ4(V0)) and E([Z

(2,2)
i ]2) ≤ c2σ

2
1∆.

We also need the following result:

Lemma 6.2 Under assumptions [A1]-[A3], for any integer i, E[(V̄i− ˆ̄Vi)
2] = E(u2

i,k) ≤
2E(V 2

0 )/k and E[(V̄i − ˆ̄Vi)
4] = E(u4

i,k) ≤ 56E(V 4
0 )/k2.

Proof of Lemma 6.2. This follows from Proposition 3.1 p.504 in Gloter (2007).2

6.4 Proof of Propositions 3.1 and 3.2

For sake of brevity, we give both proofs at the same time. The main difference lies in

the orders of the expectations and in the appearance of a specific term in the study of

the estimator of σ2. Let us thus define R
(ℓ)
∗∗ for ℓ = 1, 2 as R

(1)
∗∗ = R(1) and

R
(2)
∗∗ (i+ 1) = R(2)(i+ 1) − [σ2(V(i+1)∆ − σ2( ˆ̄Vi)].

Moreover let T
(1)
N (t) = 0 and

T
(2)
N (t) =

1

N

N−1∑

i=0

(σ2(V(i+1)∆ − σ2( ˆ̄Vi))t(
ˆ̄Vi).

Let us consider the set

ΩN =

{
ω/

∣∣∣∣∣
‖t‖2

N

‖t‖2
π∗

− 1

∣∣∣∣∣ ≤
1

2
, ∀t ∈ ∪m,m′∈Mn

(Sm + Sm′)/{0}
}
. (25)

On ΩN , ‖t‖π∗ ≤
√

2‖t‖N . From (11), we deduce

‖f̂(ℓ)
m − f

(ℓ)
A ‖2

N ≤ ‖f(ℓ)
m − f

(ℓ)
A ‖2

N +
1

8
‖f̂(ℓ)

m − f
(ℓ)
m ‖2

π∗ + 16 sup
t∈Sm,‖t‖π∗=1

[ν
(ℓ)
N ]2(t)

+16 sup
t∈Sm,‖t‖π∗=1

[T
(ℓ)
N (t)]2

+
1

8
‖f̂(ℓ)

m − f
(ℓ)
m ‖2

N +
8

N

N−1∑

i=0

[R
(ℓ)
∗∗ (i+ 1)]2

≤ ‖f(ℓ)
m − f

(ℓ)
A ‖2

N +
3

8
‖f̂(ℓ)

m − f
(ℓ)
m ‖2

N + 16 sup
t∈Sm,‖t‖π∗=1

[ν
(ℓ)
N ]2(t)

+
16

π∗0
sup

t∈Sm,‖t‖=1
[T

(ℓ)
N (t)]2 +

8

N

N−1∑

i=0

[R
(ℓ)
∗∗ (i+ 1)]2.

In the last line above, we use the lower bound π∗0 introduced in [A5].

Setting Bm(0, 1) = {t ∈ Sm, ‖t‖ = 1} and Bπ∗

m (0, 1) = {t ∈ Sm, ‖t‖π∗ = 1}, the

following holds on the set ΩN :

1

4
‖f̂(ℓ)

m −f(ℓ)
A ‖2

N ≤ 7

4
‖f(ℓ)

m −f(ℓ)
A ‖2

N+16 sup
t∈Bπ∗

m
(0,1)

[ν
(ℓ)
N ]2(t)+

16

π∗0
sup

t∈Bm(0,1)
[T

(ℓ)
N (t)]2+

8

N

N−1∑

i=0

[R
(ℓ)
∗∗ (i+1)]2.

We have the following result:
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Lemma 6.3 Under assumptions [A1]-[A3] and [A5], if 1/k ≤ ∆, we have, for ℓ = 1, 2

E

(
sup

t∈Bπ∗

m
(0,1)

[ν
(ℓ)
N ]2(t)

)
≤ K

CℓDm

N∆2−ℓ
,

with Cℓ = E(σ2ℓ(V0)).

The Lipschitz condition on b and Lemma 6.2 imply that

E[(b(V̄i) − b( ˆ̄Vi))
2] ≤ cbE[(V̄i − ˆ̄Vi)

2] ≤ 2cbE(V 2
0 )/k.

Consequently, there exists a constant c such that

E

(
8

N

N−1∑

i=0

[R
(1)
∗∗ (i+ 1)]2

)
≤ c(∆+ k−1).

Thus

E(‖b̂m − bA‖2
N 1IΩN

) ≤ 7‖bm − b‖2
π∗ +

32

π∗0
E

(
sup

t∈Sm,‖t‖=1
[ν

(1)
N (t)]2

)
+ c”(∆ + k−1).

By gathering all bounds, we find

E(‖b̂m − b‖2
N1IΩN

) ≤ 7‖bm − b‖2
π∗ +K

E(σ2(V0))Dm

N∆
(1 +

1

k∆
) +K′(∆+ k−1).

On the other hand, Lemma 6.1 and Lemma 6.2 imply that

E(
1

N

N−1∑

i=0

[R
(2)
∗∗ (i+ 1)]2 ≤ 2E

[
1

N

N−1∑

i=0

(
[R

(2)
∗ (i+ 1)]2 +

9

4

(ui+1,k − ui,k)4

∆2

)]

≤ 2c∆2 +
36

∆2
E(u4

1,k) ≤ C(∆2 +
1

k2∆2
).

Next we need to bound E

(
supt∈Sm,‖t‖=1[T

(2)
N (t)]2

)
. This is obtained in the fol-

lowing Lemma:

Lemma 6.4 Under the Assumptions of Proposition 3.2 and if 1/k ≤ ∆, there exists

a constant C such that

E

(
sup

t∈Sm,‖t‖=1
[T

(2)
N (t)]2

)
≤ C(D2

m∆
2 +D5

m∆
3 +D3

m/k
2 +Dm/(Nk)).

We can use Lemma 6.1 in Comte et al. (2005) to obtain that, if Dn ≤ C
√
N∆/ ln(N),

then

P(Ωc
N ) ≤ c

N4
.

This enables to check that E(‖f̂(ℓ)
m − f(ℓ)‖2

N1IΩc
n
) ≤ c/N using the same lines as the

analogous proof given p.532 in Comte et al. (2007). For this reason, details are omitted.

2



18

6.5 Proof of Lemma 6.3.

Case ℓ = 1. Next, let us define Ft = σ((Ws, Bs), 0 ≤ s ≤ t, η). We can use martingale

properties to see that, ∀t ∈ Sm,

E(t( ˆ̄Vi)Z
(1)
i+1) = E(E(t( ˆ̄Vi)Z

(1)
i+1|F(i+1)∆)) = E(t( ˆ̄Vi)E(Z

(1)
i+1|F(i+1)∆)) = 0

because the last conditional expectation is zero. Moreover, the same tool shows that

the covariance term E(t( ˆ̄Vi)t(
ˆ̄Vℓ)Z

(1)
i+1Z

(1)
ℓ+1) for ℓ ≥ i + 2 is also null by inserting a

conditional expectation given F(ℓ+1)∆. Consequently, it is now easy to see that

E

(
sup

t∈Sm,‖t‖=1
[ν

(1)
N (t)]2

)
≤

Dm∑

j=1

E[ν2
N (ϕj)] ≤

Dm∑

j=1

Var

[
1

N

N−1∑

i=0

ϕj(
ˆ̄Vi)Z

(1)
i+1

]

≤ 2

N

Dm∑

j=1

Var
(
ϕj(

ˆ̄V1)Z
(1)
2

)

≤ 2

N

Dm∑

j=1

E(ϕ2
j ( ˆ̄V1)Z

(1)
2 )2) ≤ 2DmE[(Z

(1)
2 )2]

N
.

Now, Lemma 6.2 implies that E[(ui+2,k − ui+1,k)2/∆2 = E[(u2
i+2,k + u2

i+1,k)/∆2 ≤
c/(k∆2). Then, applying also Lemma 6.1 (ii), it follows that, with

E

(
sup

t∈Sm,‖t‖=1
[ν

(1)
N (t)]2

)
≤ K

Dm

N∆

(
1 +

1

k∆

)
.

Case ℓ = 2. Next, for the martingale terms, we write

E( sup
t∈Bπ∗

m
(0,1)

[ν
(2)
N (t)]2) ≤ 1

π∗0
E( sup

t∈Bm(0,1)
[ν

(2)
N (t)]2) ≤ 1

π∗0

Dm∑

j=1

E([ν
(2)
n (ϕj)]

2)

=
1

π∗0

Dm∑

j=1

E

(
1

N

N−1∑

i=0

ϕj(
ˆ̄Vi)Z

(2)
i+1

)2

≤ 2

π∗0

Dm∑

j=1

E



(

1

N

N−1∑

i=0

ϕj(
ˆ̄Vi)(Z

(2,1)
i+1 + Z

(2,2)
i+1 )

)2

+

(
9

N∆

N−1∑

i=0

ϕj(
ˆ̄Vi)(V̄i+2 − V̄i)(ui+2,k − ui+1,k)

)2


Both terms are bounded separately. For the first one, we use that, for r = 1, 2

cov(ϕj(
ˆ̄Vi)Z

(2,r)
i+1 , ϕj(

ˆ̄Vℓ)Z
(2,r)
ℓ+1 ) = 0
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if ℓ ≥ i+ 2, by inserting a conditional expectation with respect to F(ℓ+1)∆. Now, for

r = 1, 2,

Dm∑

j=1

E



(

1

N

N−1∑

i=0

ϕj(
ˆ̄Vi)Z

(2,r)
i+1

)2
 ≤ 1

N2

Dm∑

j=1

E


 ∑

0≤i,ℓ≤N−1

ϕj(
ˆ̄Vi)Z

(2,r)
i+1 ϕj(

ˆ̄Vℓ)Z
(2,r)
ℓ+1




=
1

N2

∑

j=1

DmE

{
N−1∑

i=0

[
ϕ2

j ( ˆ̄Vi)[Z
(2,r)
i+1 ]2 + ϕj(

ˆ̄Vi)Z
(2,r)
i+1 ϕj(

ˆ̄Vi+1)Z
(2,r)
i+2

]}

≤ 2

N
‖

Dm∑

j=1

ϕ2
j‖∞E[(Z

(2,r)
2 )2] ≤ 2

Dm

N
[c̃1E(σ4(V0)) + c̃2∆]

by using Lemma 6.1.

For the second part, let us define the filtration generated by B and the whole path

of V , i.e.

GV
t = σ(Vs, s ∈ R

+, Bs, s ≤ t) = σ(Ws, s ∈ R
+, Bs, s ≤ t, η).

Now we observe that

E(t( ˆ̄Vi)(V̄i+2 − V̄i+1)ui+1,k) = E

[
E(t( ˆ̄Vi)(V̄i+2 − V̄i+1)ui+1,k)|GV

(i+1)∆)
]

= E

[
t( ˆ̄Vi)(V̄i+2 − V̄i+1)E(ui+1,k)|GV

(i+1)∆)
]

= 0

as E(ui+1,k)|GV
(i+1)∆) = 0. Moreover for any ℓ > i,

E(t( ˆ̄Vi)(V̄i+2 − V̄i+1)ui+1,kt(
ˆ̄Vℓ)(V̄ℓ+2 − V̄ℓ+1)uℓ+1,k)) = 0

by inserting a conditional expectation with respect to GV
(ℓ+1)∆. The last remark is that

one can easilty see that

E[(V̄i+1 − V̄i)
4] ≤ 1

∆4
E



(∫ (i+2)∆

(i+1)∆
(Vs − Vs−∆)ds

)4

 ≤ C∆2.

Now we have

Dm∑

j=1

E

(
1

N∆

N−1∑

i=0

ϕj(
ˆ̄Vi)(V̄i+2 − V̄i)ui+1,k

)2

=
1

N2∆2

Dm∑

j=1

N−1∑

i=0

E

(
ϕ2

j ( ˆ̄Vi)(V̄i+2 − V̄i)
2u2

i+1,k

)

≤ Dm

N∆2
E

1/2[(V̄2 − V̄1)
4]E1/2[u4

2,k]

≤ C
Dm

N

1

k∆
.

The second part of this term can be treated in the same way, and it follows that if

1/k ≤ ∆, then this term is less than C′Dm/N . 2
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6.6 Proof of Lemma 6.4.

Let us recall that we know from Comte et al. (2006) that

T ∗
N (t) =

1

N

N−1∑

i=0

(σ2(V(i+1)∆ − σ2(V̄i))t(V̄i)

is such that

E( sup
t∈Bm(0,1)

[T ∗
N (t)]2) ≤ C(D2

m∆
2 +D5

m∆
3).

Here, we write that T
(2)
N (t) = T

(2,1)
N (t) + T

(2,2)
N (t) + T

(2,3)
N (t) + T ∗

N (t) with

T
(2,1)
N (t) =

1

N

N−1∑

i=0

[t( ˆ̄Vi)−t(V̄i)][σ
2( ˆ̄Vi)−σ2(V̄i)], T

(2,2)
N (t) =

1

N

N−1∑

i=0

t(V̄i)[σ
2( ˆ̄Vi)−σ2(V̄i)],

T
(2,3)
N (t) =

1

N

N−1∑

i=0

[t( ˆ̄Vi) − t(V̄i)][σ
2(V̄i) − σ2(V(i+1)∆)].

We shall use the following decompositions obtained by the Taylor formula:

σ2( ˆ̄Vi) − σ2(V̄i) = ( ˆ̄Vi − V̄i)(σ
2)′(V̄i) +Ri, t(

ˆ̄Vi) − t(V̄i) = ( ˆ̄Vi − V̄i)t
′(V̄i) + Si(t)

with E(R2
i ) ≤ C/k2 and E(R4

i ) ≤ C/k4 if (σ2)” is bounded, and E

(
supt∈Bm(0,1) Si(t)

2
)
≤

CD5
m/k

2, E
1/2
(
supt∈Bm(0,1) Si(t)

4
)

≤ CD5
m/k

2 because ‖t”‖2
∞ ≤ CD5

m‖t‖2. Now,

the three terms can be studied as follows. First

T
(2,1)
N (t) =

1

N

N−1∑

i=0

( ˆ̄Vi − V̄i)
2(t′)(V̄i)(σ

2)′(V̄i) +
1

N

N−1∑

i=0

( ˆ̄Vi − V̄i)t
′(V̄i)Ri

+
1

N

N−1∑

i=0

( ˆ̄Vi − V̄i)(σ
2)′(V̄i)Si(t) +

1

N

N−1∑

i=0

RiSi(t)

:= T
(2,1,1)
N (t) + T

(2,1,2)
N (t) + T

(2,1,3)
N (t) + T

(2,1,4)
N (t),

and we bound each term successively. Clearly by Schwarz inequality applied to each

term, we find,

E( sup
t∈Bm(0,1)

[T
(2,1,1)
N (t)]2) ≤ CE

1/2(V̄ 4
1 )
D3

m

k2

using that ‖t′‖2
∞ ≤ CD3

m‖t‖2,

E( sup
t∈Bm(0,1)

[T
(2,1,2)
N (t)]2) ≤ C

D3
m

k3 , E( sup
t∈Bm(0,1)

[T
(2,1,3)
N (t)]2) ≤ CE

1/2(V̄ 4
1 )
D5

m

k3 ,

and

E( sup
t∈Bm(0,1)

[T
(2,1,4)
N (t)]2) ≤ C

D5
m

k4
.

Therefore, if 1/k ≤ ∆, E(supt∈Bm(0,1)[T
(2,1)
N (t)]2) ≤ C(D3

m/k
2 +D5

m/k
3).
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Next, we write that

T
(2,2)
N (t) =

1

N

N−1∑

i=0

t(V̄i)(σ
2)′(V̄i)(

ˆ̄Vi) − V̄i) +
1

N

N−1∑

i=0

t(V̄i)Ri

= T
(2,2,1)
N (t) + T

(2,2,2)
N (t).

We obtain easily that

E( sup
t∈Bm(0,1)

[T
(2,2,2)
N (t)]2) ≤ E( sup

t∈Bm(0,1)
‖t‖2

∞
1

N

N∑

i=1

R2
i ) ≤ Φ2

0DmE(R2
1) ≤ CDm/k

2,

a term which is negligible with respect to the previous ones.

Then ( ˆ̄Vi − V̄i)ψ(V̄i) is a martingale increment with respect to the filtration (GV
t ),

for any measurable function ψ. In particular,

E[( ˆ̄Vi − V̄i)ψ(V̄i)] = E[E[( ˆ̄Vi − V̄i)ψ(V̄i)|GV
i∆]]

= E[ψ(V̄i)E[( ˆ̄Vi − V̄i)|GV
i∆]] = 0

since E( ˆ̄Vi|GV
i∆) = V̄i. In the same way, for i < ℓ,

E

(
( ˆ̄Vi − V̄i)ψ(V̄i)(

ˆ̄Vℓ − V̄ℓ)ψ(V̄ℓ)
)

= 0

by inserting a conditional expectation with respect to GV
ℓ∆. Therefore

E( sup
t∈Bm(0,1)

[T
(2,2,1)
N (t)]2) ≤

Dm∑

j=1

E

(
1

N

N−1∑

i=0

ϕj(V̄i)(σ
2)′(V̄i)(

ˆ̄Vi − V̄i)

)2

=

Dm∑

j=1

1

N
E

(
ϕj(V̄1)(σ

2)′(V̄1)(
ˆ̄V1 − V̄1

)2

≤ 1

N
E


(

Dm∑

j=1

ϕ2
j (V̄1))[(σ

2)′(V̄1)]
2( ˆ̄V1 − V̄1)

2




≤ Dm

N
E

1/2[(σ2)′(V̄1)
4]E1/2[u4

1,k] ≤ CE
1/2(V̄ 4

1 )
Dm

Nk
.

For the last term, we write T
(2,3)
N (t) = T

(2,3,1)
N (t) + T

(2,3,2)
N (t) where

T
(2,3,1)
N (t) = (1/N)

N−1∑

i=0

( ˆ̄Vi − V̄i)t
′(V̄i)(σ

2(V̄i) − σ2(V(i+1)∆)),

T
(2,3,2)
N (t) = (1/N)

N−1∑

i=0

Si(t)(σ
2(V̄i) − σ2(V(i+1)∆)).
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Moreover, we know from Comte et al. (2006) that E[(σ2(V̄i) − σ2(V(i+1)∆))2] ≤
E

1/2[(σ2(V̄i)−σ2(V(i+1)∆))4] ≤ C∆. Now, for T
(2,3,1)
N (t), we proceed as for T

(2,2,1)
N (t)

since both have the same martingale property w.r.t. GV
s . We get

E( sup
t∈Bm(0,1)

[T
(2,3,1)
N (t)]2) ≤

Dm∑

j=1

E

(
1

N

N−1∑

i=0

ϕ′
j(V̄i)(

ˆ̄Vi − V̄i)(σ
2(V̄i) − σ2(V(i+1)∆))

)2

≤ 1

N

Dm∑

j=1

E

(
(ϕ′

j)
2(V̄1)(

ˆ̄V1 − V̄1)2(σ2(V̄1) − σ2(V2∆))2
)

≤ CD3
m

N
E

1/2(u4
1,k)E1/2[(σ2(V̄1) − σ2(V2∆))4]

≤ C
D3

m∆

Nk

as
∑

j(ϕ
′
j)

2(x) ≤ CD3
m. UsingD2

m ≤ N∆ and 1/k ≤ ∆ implies E(supt∈Bm(0,1)[T
(2,3,1)
N (t)]2) ≤

CDm∆
3. On the other hand, E(supt∈Bm(0,1)[T

(2,3,2)
N (t)]2) ≤ CD5

m∆/k
2 ≤ CD5

m∆
3,

as 1/k ≤ ∆.

By gathering and comparing all terms and assuming that 1/k ≤ ∆, we obtain the

bound given in Lemma 6.4.2

6.7 Proof of Theorem 4.1

The proof of this theorem relies on the following Bernstein-type Inequality:

Lemma 6.5 Under the assumptions of Theorem 4.1, for any positive numbers ǫ and

v, we have

P

[
N−1∑

i=0

t( ˆ̄Vi)Z
(1)
(i+1)∆

≥ Nǫ, ‖t‖2
N ≤ v2

]
≤ exp

(
−N∆ǫ

2

2σ2
1v

2

)
.

Proof of Lemma 6.5: Noting that W is a Brownian motion with respect to the

augmented filtration Fs = σ((Bu,Wu), u ≤ s, η), the proof is obtained as the analogous

proof in Comte et al. (2007), Lemma 2 p.533. 2

Now we turn to the proof of Theorem 4.1.

As in the proof of Proposition 3.1, we have to split ‖b̃− bA‖2
N = ‖b̃− bA‖2

N1IΩN
+ ‖b̃−

bA‖2
N1IΩc

N
. For the study on Ωc

N , the end of the proof of Proposition 3.1 can be used.

Now, we focus on what happens on ΩN . From the definition of b̃, we have, ∀m ∈
Mn, γN (b̂m̂)+pen(m̂) ≤ γN (bm)+pen(m). We proceed as in the proof of Proposition

3.1 with some additional penalty terms and obtain

E(‖b̂m̂ − bA‖2
N1IΩN

) ≤ 7‖bm − bA‖2
π∗ + pen(m) + 32E

(
sup

t∈Sm+Sm̂,‖t‖π∗=1
[ν

(1)
N (t)]21IΩN

)

−E(pen(m̂)) + 32c′∆.

The difficulty here is to control the supremum of ν
(1)
N (t) on a random ball (which

depends on the random m̂). This is done by setting ν
(1)
N = ν

(1,1)
N + ν

(1,2)
N , with

ν
(1,1)
N (t) =

1

N

N−1∑

i=0

Z
(1)
(i+1)∆

t( ˆ̄Vi), ν
(1,2)
N (t) =

1

N

N−1∑

i=0

t( ˆ̄Vi)

(
ui+2,k − ui+1,k

∆

)
.
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We use the martingale property of ν
(1,1)
N (t) and a rough bound for ν

(1,2)
N (t) as follows.

For ν
(1,2)
N , we simply write, as previously

E

(
sup

t∈Sm+Sm̂,‖t‖π∗=1
[ν

(1,2)
n (t)]2

)
≤ 1

π∗0
E

(
sup

t∈Sn,‖t‖=1
[ν

(1,2)
n (t)]2

)

≤ 1

π∗0

Dn∑

j=1

E[(ν
(2)
N (ϕj))

2]

≤ 4Dn

π∗0N
E[(u1,k/∆)2] ≤ 4Dn

π∗0Nkn∆2
≤ 4

π∗0

1

kn∆
.

For ν
(1,1)
N , let us denote by

Gm(m′) = sup
t∈Sm+Sm′ ,‖t‖π∗=1

ν
(1,1)
N (t)

the quantity to be studied. Introducing a function p(m,m′), we first write

G2
m(m̂)1IΩN

≤ [(G2
m(m̂) − p(m,m̂))1IΩN

]+ + p(m,m̂)

≤
∑

m′∈Mn

[(G2
m(m′) − p(m,m′))1IΩN

]+ + p(m,m̂).

Then pen is chosen such that 32p(m,m′) ≤ pen(m)+pen(m′). More precisely, the next

Proposition determines the choice of p(m,m′) which in turn will fix the penalty.

Proposition 6.1 Under the assumptions of Theorem 4.1, there exists a numerical

constant κ1 such that, for p(m,m′) = κ1σ
2
1(Dm +Dm′)/(n∆), we have

E[(G2
m(m′) − p(m,m′))1IΩN

]+ ≤ cσ2
1
e−Dm′

N∆
.

Proof of Proposition 6.1. The result of Proposition 6.1 follows from the inequality

of Lemma 6.5 by the L
2-chaining technique used in Baraud et al. (2001b) (see Section

7 p.44-47, Lemma 7.1, with s2 = σ2
1/∆). 2

It is easy to see that the result of Theorem 4.1 follows from Proposition 6.1 with

pen(m) = κσ2
1Dm/(N∆). 2

6.8 Proof of Theorem 4.2

The lines of the proof are the same as the ones of Theorem 4.1. Moreover, they follow

closely the analogous proof of Theorem 2 p.524 in Comte et al. (2007), see also Comte

et al. (2006). Therefore, we omit it.
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