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This paper presents a partitional dynamic clustering method for interval data based on adaptive Hausdorff distances. Dynamic clustering algorithms are iterative two-step relocation algorithms involving the construction of the clusters at each iteration and the identification of a suitable representation or prototype (means, axes, probability laws, groups of elements, etc.) for each cluster by locally optimizing an adequacy criterion that measures the fitting between the clusters and their corresponding representatives. In this paper, each pattern is represented by a vector of intervals. Adaptive Hausdorff distances are the measures used to compare two interval vectors. Adaptive distances at each iteration change for each cluster according to its intra-class structure. The advantage of these adaptive distances is that the clustering algorithm is able to recognize clusters of different shapes and sizes. To evaluate this method, experiments with real and synthetic interval data sets were performed. The evaluation is based on an external cluster validity index (corrected Rand index) in a framework of a Monte Carlo experiment with 100 replications. These experiments showed the usefulness of the proposed method.

Introduction

Cluster analysis seeks to organize a set of items (usually represented as a vector of quantitative values in a multidimensional space) into clusters such that items within a given cluster have a high degree of similarity, whereas items belonging to different clusters have a high degree of dissimilarity [START_REF] Bock | Classification and Clustering: Problems for the Future[END_REF], [START_REF] Jain | Data Clustering: A Review[END_REF]). Cluster analysis techniques can be divided into hierarchical and partitional methods [START_REF] Spaeth | Cluster analysis algorithms[END_REF], [START_REF] Gordon | Classification. Chapman and Hall/CRC[END_REF], [START_REF] Everitt | Cluster Analysis[END_REF]).

Hierarchical methods yield complete hierarchy, i.e., a nested sequence of partitions of the input data. Hierarchical methods can be agglomerative or divisive. Agglomerative methods yield a sequence of nested partitions starting with trivial clustering in which each item is in a unique cluster and ending with trivial clustering in which all items are in the same cluster. A divisive method starts with all items in a single cluster and performs a splitting procedure until a stopping criterion is met (usually upon obtaining a partition of singleton clusters).

Partitional methods seek to obtain a single partition of the input data into a fixed number of clusters. They usually produce clusters by (locally) optimizing an adequacy criterion. To improve cluster quality, the algorithm is run multiple times with different starting points and the best configuration obtained from the total runs is used as the output clustering. This paper addresses the partitioning of interval data often present in real applications. Table 1 shows an example of an interval data table. This kind of data have been studied mainly in Symbolic Data Analysis (SDA), a new domain in the area of knowledge discovery and data management related to multivariate analysis, pattern recognition and artificial intelligence. The aim of SDA is to provide suitable methods (clustering, factorial techniques, decision trees, etc.) for managing aggregated data described by multi-valued variables, where the cells of the data table contain sets of categories, intervals, or weight (probability) distributions [START_REF] Diday | The symbolic approach in clustering and related methods of data analysis[END_REF], [START_REF] Bock | Analysis of Symbolic Data, Exploratory methods for extracting statistical information from complex data[END_REF], [START_REF] Billard | From the statistics of data to the statistics of knowledge: Symbolic Data Analysis[END_REF]).

SDA has provided partitioning methods for clustering symbolic data. [START_REF] Diday | Symbolic Cluster Analysis[END_REF] proposed a clustering approach based on a transfer algorithm. [START_REF] El-Sonbaty | Fuzzy Clustering for Symbolic Data[END_REF] proposed a fuzzy k-means algorithm for clustering different types of symbolic data. [START_REF] Verde | A Dynamical Clustering Algorithm for symbolic data[END_REF] introduced a dynamic cluster algorithm for symbolic data considering context-dependent proximity functions. [START_REF] Gordon | An Iteractive Relocation Algorithm for Classifying Symbolic Data[END_REF] presented an iterative relocation algorithm that minimizes the sum of the description potentials of the clusters. [START_REF] Bock | Clustering algorithms and kohonen maps for symbolic data[END_REF] gives clustering strategies based on a clustering criterion and presents a sequential clustering and updating strategy for constructing a Self-Organizing Map in order to visualize symbolic interval-type data. [START_REF] Chavent | Dynamical Clustering Algorithm of Interval Data: Optimization of an Adequacy Criterion Based on Hausdorff Distance[END_REF] proposed a dynamical clustering algorithm for interval data where the prototype is defined by the optimization of an adequacy criterion based on the Hausdorff distance. Moreover, in [START_REF] Souza | Clustering of interval data based on city-block distances[END_REF], an adaptive dynamic clustering algorithm is presented for interval data based on City-block distances.

The main contribution of this paper is the proposal of a new partitional dynamic clustering method for interval data based on the use of an adaptive Hausdorff distance at each iteration.

The partitioning dynamical cluster algorithms [START_REF] Diday | La méthode des Nuées dynamiques[END_REF]) are iterative two-step relocation algorithms involving the construction of clusters at each iteration and the identification of a suitable representation or prototype (means, axes, probability laws, groups of elements, etc.) for each cluster by locally optimizing an adequacy criterion between the clusters and their corresponding representations [START_REF] Diday | Clustering Analysis[END_REF]). An allocation step is performed to assign individuals to classes according to their proximity to the prototypes. This is followed by a representation step where the prototypes are updated according to the assignment of the individuals in the allocation step, until the convergence of the algorithm, when the adequacy criterion reaches a stationary value.

The idea of dynamical clustering with adaptive distances [START_REF] Govaert | Classification automatique et distances adaptatives[END_REF], [START_REF] Diday | Classification Automatique avec Distances Adaptatives[END_REF]) is to associate a distance to each cluster, which is defined according to its intra-class structure. The advantage of this approach is that the clustering algorithm recognizes different shapes and sizes of clusters. In this paper, the adaptive distance is a weighted sum of Hausdorff distances. Explicit formulas for the optimum class prototype, as well as for the the weights of the adaptive distances, are found. When used for dynamic clustering of interval data, these prototypes and weights ensure that the clustering criterion decreases at each iteration.

In this paper, we present a dynamic clustering method with adaptive Hausdorff distances for partitioning a set of interval data. This method is an extension of the dynamic clustering algorithm based on non-adaptive Hausdorff distances proposed in [START_REF] Chavent | Dynamical Clustering Algorithm of Interval Data: Optimization of an Adequacy Criterion Based on Hausdorff Distance[END_REF]. In Section 2, a description is given of the classical dynamic clustering method with adaptive distances. This is followed by the presentation of the dynamic clustering method based on adaptive Hausdorf distances for interval data (Section 3). To validate this new method, Section 4 presents experiments with real and synthetic interval data sets. In Section 5, the concluding remarks are given.

Introduction to partitional dynamic clustering with adaptive distances

Let Ω be a set n of objects indexed by i and described by p variables indexed by j. Each object i is represented by a vector of feature values x i = (x 1 i , . . . , x p i ). Throughout this paper, we consider the problem of clustering Ω into K disjoint clusters C 1 , ..., C K such that the resulting partition P = (C 1 , ..., C K ) is optimum with respect to a given clustering criteria.

In dynamic clustering [START_REF] Diday | Clustering Analysis[END_REF]), we represent each cluster C k ∈ P by a prototype y k , which is also a vector of feature values. We measure the quality of this cluster by the sum of the dissimilarities d(x i , y k ) between objects i ∈ C k and the prototype y k . This measure of quality i∈C k d(x i , y k ) is called the adequacy criterion of the cluster C k . The classification problem is to find a partition P and a set L of K prototypes that minimize the following clustering criterion:

∆(P, L) = K i=1 i∈C K d(x i , y k ) ( 1 )
over all partitions P = (C 1 , ..., C K ) of Ω and all choices of set L = (y 1 , ...y K ) of cluster prototypes.

In this context, the dynamic clustering algorithm iteratively performs both a representation step and an allocation step: a) Representation step (the partition P is fixed).

Finding L that minimizes ∆(P, •) is equivalent to finding for k = 1, ..., K, the prototype y k that minimizes the adequacy criterion i∈C k d(x i , y k ). For con-tinuous quantitative data in p and the city-block distance, y k is the median vector of the cluster C k .

b) Allocation step (the set of prototypes L is fixed).

Finding P that minimizes ∆(•, L) is equivalent to finding for k = 1, ..., K, the cluster

C k = {i ∈ Ω | d(x i , y k ) ≤ d(x i , y m ) , ∀m = 1, ..., K}
Once these two steps properly defined, the partitioning criterion (1) decreases at each iteration and the algorithm converges to a stationary value of this criterion under the two following conditions:

i) Unicity of the choice for the cluster affectation of each object of Ω; ii) Unicity of the choice of the prototype y k that minimizes the adequacy cri-

terion i∈C k d(x i , y k )
The main idea of dynamic clustering with adaptive distances is to associate a distance d k to each cluster C k (and its prototype y k ) such that the sum of the distances d k (x i , y k ) between objects i ∈ C k and the prototype y k is as small as possible. The distances used in the dynamic algorithm are therefore not determined once and for all. Moreover, they are different from one cluster to another. The clustering criterion is:

∆(P, L) = K k=1 i∈C k d k (x i , y k ) ( 2 ) 
where P = (C 1 , ..., C K ) and now L = (G, d), where G = (y 1 , ..., y K ) and d = (d 1 , . . . , d K ).

In our context, the distance d k is a weighted sum of distances d j , where d j compares a pair of objects according to variable j:

d k (x i , x i ) = p j=1 d j (x j i , x j i ) = p j=1 λ j k d(x j i , x j i ) ( 3 ) with d j (x j i , x j i ) = λ j k d(x j i , x j i ), λ j k > 0 and p j=1 λ j k = 1.
According to the definition of d k given in (3), the set L is written L = (G, λ) where λ = (λ 1 , . . ., λ K ), with λ k = (λ 1 i , ..., λ p i ) being the vector of weights of the fixed distance d. The adaptivity of the distance d k is expressed by the vector of weights λ k .

When using adaptive distances, the representation step is divided in two stages: a1) Stage 1 (the partition P and λ are fixed).

Find for k = 1, ..., K, the prototype y k that minimizes the adequacy criterion

i∈C k d k (x i , y k ) = i∈C k p j=1 λ j k d(x j i , y j k ) = p j=1 λ j k i∈C k d(x j i , y j k ).
a2) Stage 2 (the partition P and the set of prototypes G are fixed).

Find for k = 1, ..., K, the vector of weights λ k that minimizes the adequacy cri-

terion i∈C k d k (x i , y k ) = p j=1 λ j k i∈C k d(x j i , y j k ) = p j=1 λ j k Φ j where Φ j = i∈ C k d(x j i , y j k ).
The allocation step of the algorithm is once again:

b) Allocation step (the set of prototypes G and and the vector λ are fixed):

Find for k = 1, ..., K, C k = {i ∈ Ω | d k (x i , y k ) ≤ d m (x i , y m ) , ∀m = 1, ..., K}.
Once these two steps have been properly defined, the partitioning criterion (2) decreases at each iteration and the algorithm converges to a stationary value of this criterion under the three following conditions:

i) Unicity of the choice for the cluster affectation of each object of Ω; ii) Unicity of the choice of the prototype y k that minimizes the adequacy cri-

terion i∈C k d k (x i , y k ) iii) Unicity of the choice of the vectors of weights λ k that minimizes the ade- quacy criterion p j=1 λ j k i∈C k d(x j i , y j k ).

Dynamic clustering method with an adaptive Hausdorff distances

In this paper we are concerned with objects that are represented by a vector of intervals (we consider a point as an interval with equal lower and upper bounds). Let Ω be a set of n objects indexed by i and described by p interval variables indexed by j. An interval variable X [START_REF] Bock | Analysis of Symbolic Data, Exploratory methods for extracting statistical information from complex data[END_REF]) is a correspondence defined from Ω in such that for each i ∈ Ω,

X(i) = [a, b] ∈ ,
where is the set of closed intervals defined from .

Each object i is represented as a vector of intervals

x i = (x 1 i , • • • , x p i )
, where

x j i = [a j i , b j i ] ∈ = {[a, b] : a, b ∈ , a ≤ b}.
In this paper, an interval data table {x j i } n×p is made up of n rows that represent n objects to be clustered and p columns that represent p interval variables. Each cell of this table contains an interval

x j i = [a j i , b j i ] ∈ .
A prototype y k of cluster C k ∈ P is also represented as a vector of intervals

y k = (y 1 k , • • • , y p k ), where y j k = [α j k , β j k ] ∈ .
It is now a matter of choosing an adaptive distance between vectors of intervals and properly defining the representation step of the dynamic algorithm with adaptive distances given in the previous section. In other words, we will give an explicit formula for the prototype y k and for the vector of weights λ k that minimizes both the adequacy criterion p j=1 λ j k i∈C k d(x j i , y j k ).

The adaptive Hausdorff distances for interval data

A number of proximity measures have been introduced in the literature for interval data (as well as for other types of symbolic data). [START_REF] Gowda | Symbolic clustering using a new dissimilarity measure[END_REF] and [START_REF] Gowda | Symbolic clustering using a new similarity measure[END_REF] We have seen that the distance d k associated with the cluster C k is defined as a weighted sum of distances d j , where d j compares a pair of objects according to variable j:

d j (x j i , x j i ) = λ j k d(x j i , x j i )
Here, the two feature values x j i and x j i are, respectively, the two intervals [a j i , b j i ] and [a j i , b j i ]. The distance d (see equation 3) chosen to compare two intervals is the Hausdorff distance. The Hausdorff distance [START_REF] Nadler | Visualization of Large Data Sets: The Zoom Star Solution[END_REF], [START_REF] Rote | Computing the minimum Hausdorff distance between two point sets on a line under translation[END_REF]) is often used in image processing [START_REF] Huttenlocher | Comparing images using the Hausdorff Distance[END_REF]) and is defined to compare two sets of objects A and B. This distance depends on the distance chosen to compare two objects u and v respectively in A and B. We consider the euclidean distance and the Hausdorff distance is defined by:

d H (A, B) = max(h(A, B), h(B, A))
where:

h(A, B) = sup u∈A inf v∈B ||u -v|| At times, h is called the directed Hausdorff distance.
In this work, A and B are two intervals

x j i = [a j i , b j i ] and x j i = [a j i , b j i ].
The previous Hausdorff distance is simplified to:

d H (x j i , x j i ) = max{|a j i -a j i |, |b j i -b j i |} (4)
Finally, the adaptive distance d k associated with the cluster C k and defined in equation ( 3) is:

d k (x i , x i ) = p j=1 λ j k d H (x j i , x j i ) = p j=1 λ j k max{|a j i -a j i |, |b j i -b j i |} (5)
with λ j k > 0 and p j=1 λ j k = 1.

Definition of the best prototypes

In section 2, we saw that the representation step of the dynamic clustering algorithm with adaptive distances was divided into two stages, corresponding to two minimization problems. The first problem, when the partition P and the vector λ are fixed, is to find for k = 1, ..., K the prototype y k that minimizes the adequacy criterion i∈C k d k (x i , y k ). With d k defined in (5) and with

x i = (x 1 i , • • • , x p i ) and y k = (y 1 k , • • • , y p k )
, the adequacy criterion is:

i∈ C k d k (x i , y k ) = i∈ C k p j=1 λ j k d H (x j i , y j k ) = p j=1 λ j k i∈ C k d H (x j i , y j k ) ( 6 )
The vector of weights being fixed, the problem is now to find for j = 1, . . . , p the interval

y j k = [α j k , β j k ] that minimizes: i∈C k d H (x j i , y j k ) = i∈C k max{|a j i -α j k |, |b j i -β j k |} (7)
According to [START_REF] Chavent | Dynamical Clustering Algorithm of Interval Data: Optimization of an Adequacy Criterion Based on Hausdorff Distance[END_REF], an explicit formula for the components y j k of the best prototype is found by transforming the previous minimization problem into two well-known L 1 norm problems. Let m j i = (a j i + b j i )/2 be the midpoint of the interval x j i = [a j i , b j i ] (for j = 1, . . . , p) and l j i = (b j ia j i )/2 be half of its length. From this we have:

a j i = m j i -l j i and b j i = m j i + l j i (8)
Also, let µ j k = (α j k + β j k )/2 be the midpoint of the interval y j k = [α j k , β j k ] (for j = 1, . . . , p) and ρ j k = (β j kα j k )/2 be half of its length. We have:

α j k = µ j k -ρ j k and β j k = µ j k + ρ j k (9)
From the equations ( 7), ( 8) and ( 9), the equation ( 6) can be written as:

i∈C k d H (x j i , y j k ) = i∈C k max{|(m j i -l j i ) -(µ j k -ρ j k )|, |(m j i + l j i ) -(µ j k + ρ j k )|} = i∈C k max{|(m j i -µ j k ) -(l j i -ρ j k )|, |(m j i -µ j k ) + (l j i -ρ j k )|}
According to the following property defined for x and y in ,

max(|x -y|, |x + y|) = |x| + |y| Then: i∈C k d H (x j i , y j k ) = i∈C k (|m j i -µ j k | + |l j i -ρ j k |) = i∈C k |m j i -ρ j k | + i∈C k |l j i -ρ j k | (10)
This yields two well-known minimization problems in L 1 norm: find µ j k ∈ and ρ j k ∈ that respectively minimize:

i∈C k |m j i -µ j k | and i∈C k |l j i -ρ j k |
The solution μj k and ρj k are, respectively, the median of the set {m j i , i ∈ C k } (the midpoints of the intervals

x j i = [a j i , b j i ], i ∈ C k )
, and the median of the set

{l j i , i ∈ C k } (the half-lengths of the intervals x j i = [a j i , b j i ], i ∈ C k ). Finally, the solution ŷj k = [α j k , βj k ] is given by αj k = μj k -ρj k and βj k = μj k + ρj k (11)

Definition of the best distances

The second stage of the representation step of the dynamic clustering algorithm with adaptive distances, when the partition P and the set of prototypes G are fixed, is to find for k = 1, ..., K the vector of weights λ k that minimizes the adequacy criterion defined in (6) by:

i∈ C k d k (x i , y k ) = p j=1 λ j k Φ j where Φ j = i∈ C k d H (x j i , y j k )
Following [START_REF] Diday | Classification avec Distances Adaptatives[END_REF] and [START_REF] Govaert | Classification automatique et distances adaptatives[END_REF], the weights λ j k are calculated by the Lagrange multiplier method:

∂ ∂λ j k ( p j=1 λ j k Φ j -µ p h=1 λ h k ) = 0 for j = 1, . . . , p (12) 
From equation ( 12), we have the following result:

Φ j -µ p h=1 λ h k λ j k = 0 ⇒ λ j k = µ Φ j ( p h=1 λ h k ) (13) 
Remembering that Π p h=1 λ h k = 1, the parameter λ j k in equation ( 13) is given by

λ j k = µ Φ j
The restriction Π p h=1 λ h k = 1 can be written as:

1 = p h=1 µ Φ h = µ p p h=1 Φ h and then µ = ( p h=1 Φ h ) 1 p
Finally, the solution λj k to the parameter λ j k is:

λj k = µ Φ j = p h=1 ( i∈C h max{|a h i -αh k |, |b h i -βh k |}) 1 p i∈C k max{|a j i -αj k |, |b j i -βj k |} (14)

The algorithm

The algorithm schema of dynamic clustering algorithm with Hausdorff adaptive distances for interval data is as follows: 

λj k max{|a j i -αj k |, |b j i -βj k |} if i ∈ C k and k * = k test ← 1 C k * ← C k * ∪ {i} C k ← C k \ {s} (4

) Stopping criterion

If test = 0 then STOP, otherwise go to (2).

For classical dynamical clustering methods, the initialization step and stopping rules can be modified. For example, the points chosen randomly at initialization can be chosen in such a way that they are as dissimilar as possible.

Concerning the stopping rule, a minimum value for the clustering criterion or a maximum number of iterations can also be given.

Another remark is when all the weights λ j k are fixed to 1, the distances are nonadaptive and the previous algorithm is equivalent to the dynamic clustering algorithm of interval data proposed in [START_REF] Chavent | Dynamical Clustering Algorithm of Interval Data: Optimization of an Adequacy Criterion Based on Hausdorff Distance[END_REF]. This remark will be used in the next section for evaluating the adaptive dynamic clustering algorithm.

Experimental results

To show the usefulness of this method, two synthetic interval data sets with linearly non-separable clusters of different shapes and sizes have been drawn.

Real applications are then considered.

Our aim is to achieve a comparison of the dynamic clustering algorithm considering different distances between vectors of intervals: adaptive Hausdorff distance proposed in this paper, non-adaptive Hausdorff distance [START_REF] Chavent | Dynamical Clustering Algorithm of Interval Data: Optimization of an Adequacy Criterion Based on Hausdorff Distance[END_REF]), one component adaptive city-block distance [START_REF] Souza | Clustering of interval data based on city-block distances[END_REF]) and non-adaptive city-block distance.

To compare the results furnished by the dynamic clustering algorithm with these different distances, an external validity index is used. For synthetic interval data sets, rectangles are built from three clusters of points drawn from three bi-variate normal distributions. Next, the a priori partition of the objects is known. For the car interval data set describing car models, it is defined a a priori partition into four groups according to a car category. For the interval data set describing species of freshwater fish, it is considered a a priori partition of the species into four groups according to diet.

The idea of external validity is simply to compare the a priori partition with the partition obtained from the clustering algorithm. In this paper, we use the corrected Rand (CR) index defined in [START_REF] Hubert | Comparing Partitions[END_REF] for comparing two partitions, the definition of which is as follows.

Let U = {u 1 , . . . , u i , . . . , u R } and V = {v 1 , . . . , v j , . . . , v C } be two partitions of the same data set having respectively R and C clusters. The corrected Rand index is:

CR = R i=1 C j=1 n ij 2 -n 2 -1 R i=1 n i. 2 C j=1 n .j 2 1 2 [ R i=1 n i. 2 + C j=1 n .j 2 ] -n 2 -1 R i=1 n i. 2 C j=1 n .j 2 (15) 
where n 2 = n(n-1) 2 and n ij represents the number of objects that are in clusters u i and v i ; n i. indicates the number of objects in cluster u i ; n .j indicates the number of objects in cluster v j ; and n is the total number of objects in the data set. CR takes its values from the interval [-1,1], where the value 1 indicates perfect agreement between partitions, whereas values near 0 (or negatives) correspond to cluster agreement found by chance.

Synthetic interval data sets

In this paper, we consider the same data point configurations presented in [START_REF] Souza | Clustering of interval data based on city-block distances[END_REF]. Two data sets of 350 points in 2 were constructed. In each data set, the 350 points are drawn from three bi-variate normal distributions of independent components. There are three clusters of unequal sizes and shapes: two clusters with an ellipsoidal shape and size 150 and one cluster with a spherical shape and size 50. The mean vector and the covariance matrix of the bi-variate normal distributions are noted:

µ =    µ 1 µ 2    and Σ 11 =    σ 2 1 0 0 σ 2 2   
Data set 1 shows well-separated clusters (Figure 1). The data points of each cluster in this data set were drawn according to the following parameters: In order to build interval data sets from data sets 1 and 2, each point (z 1 , z 2 ) of these data sets is considered as the 'seed' of a rectangle. Each rectangle is therefore a vector of two intervals defined by:

([z 1 -γ 1 /2, z 1 + γ 1 /2], [z 2 -γ 2 /2, z 2 + γ 2 /2]) ( 16 
)
The parameters γ 1 and γ 2 are the width and the height of the rectangle. They are drawn randomly within a given range of values. For example, the width and the height of all the rectangles can be drawn randomly within the interval [1,8]. Figure 2 shows two synthetic interval data sets built from data set 1 and data set 2 when γ 1 and γ 2 are drawn randomly from [1,8]. In the framework of a Monte Carlo experiment, 100 replications of the previous process were carried out for parameters γ 1 and γ 2 , drawn randomly 100 times from each of the following intervals: [1,8], [1,16], [1,24], [1,32], [1,40]. This process has also been repeated for seeds taken from data set 1 and data set 2.

Dynamic clustering algorithms considering different distances between vectors of intervals have been performed on these data sets. The 3-cluster partitions obtained with these clustering methods were compared with the 3-cluster partition known a priori. The comparison index used is the corrected Rand index CR given in equation ( 15). For each 100 replications, the average corrected Rand index CR is calculated.

Table 2 gives the values of the average CR index obtained with adaptive and non-adaptive distances for interval data sets 1 and 2 as well as γ 1 and γ 2 drawn from [1,8], [1,16], [1,24], [1,32], [1,40]. As expected, in each case the average CR indices are better with adaptive distances.

Concerning the data configurations presenting well separated classes, the Hausdorff (non-adaptive) distance shows better CR indices than city-block (nonadaptive) distance regardless the range of the predefined intervals in Table 2. Moreover, the Hausdorff distance is also the best option for data configuration presenting overlapping classes as long as the widest intervals are considered.

For both type of data configurations (well separated classes and overlapping classes), the average CR indices provided by the adaptive Hausdorff distance are again better than those provided by the adaptive city-block distance for those data configurations where the range of the predefined intervals are the widest. Table 3 gives the corresponding values of the standard deviation for the average CR index.

The evaluation of the performance of the dynamic clustering methods for these different distances between vectors of intervals is achieved by an independent Student's t-test with a 5% level of significance. Tables 4 and5 shows the suitable (null and alternative) hypothesis and the observed values of the test statistics following a Student's t distribution with 198 degrees of free- dom for interval data sets 1 and 2, respectively. In this table, µ 1 , µ 2 , µ 3 and µ 4 are, respectively, the average of the CR index for the dynamic clustering algorithm considering the Hausdorff distance, city-block distance, adaptive Hausdorff distance and city-block (one componente) adaptive distance, respectvely. These tables show that, in 75% of the data simulation configurations considered in this work, the dynamic clustering algorithm based on Hausdorff distance outperforms the version of this algorithm which uses the city-block distance considering both adaptive and non-adaptive cases. 

H 0 : µ 1 ≤ µ 2 H 0 : µ 3 ≤ µ 4 H 1 : µ 1 > µ 2 H 1 : µ 3 > µ 4 [1,
H 0 : µ 1 ≤ µ 2 H 0 : µ 3 ≤ µ 4 H 1 : µ 1 > µ 2 H 1 : µ 3 > µ 4 [1, 8] -2.

Car data set

The car interval data set consists of a set of 33 car models described by 8 interval, 2 categorical multi-valued and one nominal variables (see Table 6).

In this application, the 8 interval variables -Price, Engine Capacity, Top Speed, Acceleration, Step, Length, Width and Height -have been considered for clustering purposes, the nominal variable Car Category has been used as a a priori classification. 

Ecotoxicology data set

Several studies realized in French Guyana indicated abnormal levels of mercury contamination in some Amerindian populations. This contamination was connected to their high consumption of contaminated freshwater fish (Boudou and Ribeyre (1998)). In order to get a better knowledge of this phenomenon, a data set has been collected by researchers from the LEESA (Laboratoire d'Ecophysiologie et d'Ecotoxicologie des Systèmes Aquatiques) laboratory.

This data set concerns 12 species of freshwater fish, each species being described by 13 interval variables. These species are grouped into four a priori clusters of unequal sizes according to diet: two clusters (Carnivorous and Detritivorous) of size 4 and two clusters of size 2 (Omnivorous and Herbivorous).

Table 6 shows part of the freshwater fish data set.

Dynamic clustering algorithms considering different distances between vectors of intervals have also been performed on this data set. The 4-cluster partitions obtained with these clustering methods were compared with the 4-cluster partition known a priori. Again, the comparison index used is the corrected Rand index CR given in equation ( 15). The a priori classification, indicated by the suffix attached to the freshwater specie denomination, is as follows: performance). However, for this data sets, the version of the dynamic clustering algorithm with adaptive distances outperforms the version of this algorithm with non-adaptive distances. For the case of the dynamic clustering algorithm considering the Hausdorff adaptive distances performed on the Ecotoxicology interval data set, Tables 10 and11, respectively, give the prototype descriptions and the corresponding weight vectors of the (Hausdorff) adaptive distances associated to each class, according to the 13 interval variables. presented, especially a type of graphic called Zoom Star. In this graphical representation, each axis corresponds to an interval variable. In each axis, the lower and upper bounds of the interval value assumed by an interval variable for a given object are represented. The lower bounds (as well the upper bounds) of the intervals assumed by each interval variable are linked to form a polygon. The Zoom Star shows the area between the upper-bound and lower-bound polygons. Figure 5 gives the visualization of the prototype of each cluster from Table 10 according to the Zoom Star method.

All the interval variables for the prototype of Cluster 1 show intervals with low spread, whereas they show intervals with medium spread for the prototype of Cluster 4. For the prototype of Cluster 2, most of the interval variables that do not represent ratios show a high spread, whereas the interval variables that express ration show a low spread. Concerning the prototype of Cluster 3, the role of the ratio and non-ratio interval variables are inverted in comparison to their role in the prototype of Cluster 2.

In conclusion, for this data set, the performance of the adaptive methods measured by the CR index is superior to the non-adaptive methods. The dynamic clustering algorithm with adaptive Hausdorff distances starts from an initial partition and alternates a representation step and an allocation step until convergence when the adequacy criterion reaches a stationary value representing a local minimum. The representation step has two stages.

In the first stage, the partition and the Hausdorff distances are fixed and the algorithm looks for the best prototype of each class which minimizes the adequacy criterion. The solution for the best prototype of each class, presented in this paper, is a vector of intervals whose lower bounds, for a given variable, are the difference between the median of midpoints of the intervals computed for the objects belonging to this class and the median of their half-lengths, and whose upper bounds, for a given variable, are the sum of the median of midpoints of the intervals computed for the objects belonging to this class plus the median of their half-lengths. In the second stage, the partition and the prototype of each class are fixed and the algorithm looks for the best Hausdorff distance associated to each class which minimizes the adequacy criterion. The Hausdorff distance associated to each class is parameterized by a vector of weights and the best solution for this vector of weights provided by the clustering method is also presented in this paper. In the allocation step, the individuals are assigned to the classes according to their (minimum) adaptive Hausdorff distance to the prototypes.

Experiments with real and synthetic interval data sets showed the usefulness of this clustering method. The accuracy of the results furnished by the dynamic clustering algorithm based on adaptive Hausdorff distance is assessed by the CR index and compared with the results provided by this algorithm considering non-adaptive Hausdoff distance and adaptive and non-adaptive city-block distances.

Concerning the synthetic interval data sets, the CR index is calculated in the framework of a Monte Carlo experiment with 100 replications. For the data configurations showing well separated classes, the Hausdorff distance outperforms the city-block distance for the non-adaptive version of the dynamic clustering algorithm. Moreover, for the non-adaptive version of the dynamic clustering algorithm, the Hausdorff distance is also the best option for data configurations presenting overlapping classes as long as the widest intervals are considered. For both types of data configurations (well separated classes and overlapping classes) the adaptive Hausdorff distance outperforms the adaptive city-block distance also as long as the widest intervals are considered.

Concerning the car interval data set, the Hausdorff distance outperforms the city-block distance for the non-adaptive version of the dynamic clustering algorithm. Moreover, these distances presented the same performance when the adaptive version of the dynamic clustering algorithm is applied on this data set. Concerning the ecotoxicology data set, the Hausdorff and city-block distances presented the same performance for the non-adaptive and adaptive version of the dynamic clustering algorithm. However, for both data sets, the version of the dynamic clustering algorithm with adaptive distances outperforms the version of this algorithm with non-adaptive distances.

  introduced, respectively, dissimilarity and similarity functions with components based on position, span and content. The component based on position indicates the relative positions of two feature values on a real line. The component based on span indicates the relative sizes of the feature values without referring their common parts. The component based on content is a measure of the common parts between two features values.Ichino and Yaguchi (1994) presented the generalized Minkowski metrics for mixed feature variables. Similarity and dissimilarity measures between symbolic data restricted by dependency rules between feature values can be found in De[START_REF] De Carvalho | Proximity coefficients between Boolean symbolic objects[END_REF][START_REF] De Carvalho | Statistical proximity functions of boolean symbolic objects based on histograms[END_REF] and De Carvalho and[START_REF] De Carvalho | New metrics for Constrained Boolean Symbolic Objects[END_REF].

Fig. 1 .

 1 Fig. 1. Seed data sets 1 and 2 showing, respectively, well-separated and overlapping classes

Fig. 2 .

 2 Fig. 2. Interval data sets 1 and 2, showing, respectively, well-separated and overlapping classes

Fig. 3 .

 3 Fig. 3. Ecotoxicology data set: description of prototypes for each cluster according to Zoom Star method 5 Concluding remarks

  InitializationChoose a partition {C 1 . . . , C K } of Ω randomly or choose K distinct objects y 1 , . . . , y K belonging to Ω and assign each object i to the closest object y k * (k * = arg min k=1,...,K ∈ C k } and ρj k is the median of the set {l j i , i ∈ C k } b) For j = 1, . . . , p and k = 1, . . . , K, compute λj

	Schema of adaptive dynamic clustering algorithm
	(1) p j=1 max{|a j i -α j k |, |b j i -β j k |} to con-
	struct the initial partition {C 1 , . . . , C K }.
	(2) Representation step	
	a) For i = 1 to K compute the prototype ŷk = ([α 1 k , β1 k ], . . . , αp k , βp k ]) with αj k = μj k -ρj k and βj k = μj k + ρj k where μj k is the median of the set {m j i , i k with equation (14)
	(3) Allocation step	
	test ← 0	
	for i = 1 to n do	
	define the winning cluster C k * such that
	k * = arg min k=1,...,K	p j=1

Table 2

 2 Comparison of the methods according to the average corrected Rand index

			Interval Data Set 1	Interval Data Set 2
	Predefined	Non-Adaptive	Adaptive	Non-Adaptive	Adaptive
	Intervals	Distances	Distances	Distances	Distances
		L 1	Hausd.	L 1	Hausd.	L 1	Hausd.	L 1	Hausd.
	[1, 8]	0.684 0.691 0.935 0.923 0.379 0.378 0.470 0.448
	[1, 16]	0.664 0.706 0.931 0.931 0.375 0.374 0.432 0.434
	[1, 24]	0.636 0.700 0.892 0.909 0.369 0.377 0.406 0.418
	[1, 32]	0.622 0.685 0.773 0.912 0.361 0.385 0.389 0.412
	[1, 40]	0.618 0.702 0.701 0.886 0.348 0.378 0.373 0.393
	Table 3							
	Comparison of the methods according to the standard deviation of the corrected
	Rand index							
			Interval Data Set 1		Interval Data Set 2
	Predefined	Non-Adaptive	Adaptive	Non-Adaptive		Adaptive
	Intervals	Distances	Distances	Distances		Distances
		L 1	Hausd.	L 1	Hausd.	L 1	Hausd.		L 1	Hausd.
	[1, 8]	0.0127 0.0150 0.0005 0.0010 0.0013 0.0013 0.0050 0.0019
	[1, 16]	0.0118 0.0184 0.0009 0.0007 0.0010 0.0012 0.0014 0.0023
	[1, 24]	0.0041 0.0154 0.0058 0.0011 0.0014 0.0010 0.0015 0.0019
	[1, 32]	0.0019 0.0131 0.0114 0.0011 0.0013 0.0014 0.0013 0.0017
	[1, 40]	0.0014 0.0133 0.0073 0.0032 0.0010 0.0016 0.0024 0.0024

Table 6 '

 6 Car' data set with 8 interval and one nominal variables Each clustering method is run (until the convergence to a stationary value of the adequacy criterion) 100 times and the best result, according to the adequacy criterion, is selected. The corrected Rand index CR is calculated for the best result. Table7shows the clusters (individual labels) given by the nonadaptive (L 1 and Hausdorff) and adaptive (one component L 1 and Hausdorff) methods. The CR indices obtained from the results displayed in Table7are 0.35 and 0.38 for the non-adaptive L 1 and Hausdorff methods, respectively, and 0.56 for the adaptive (one component L 1 and Hausdorff) methods. Notice that, for this data set, the dynamic clustering algorithm with non-adaptive Hausdorff distance outperforms this same algorithm with non-adaptive L 1 distance. Moreover, for the case of adaptive distances, it is furnished the same partition by the dynamic clustering algorithm (the adaptive Hausdorff and one component city-block distances presented the same performance). However, for this data set, the version of the dynamic clustering algorithm with adaptive distances outperforms the version of this algorithm with non-adaptive distances.

	Price	Engine	. . .	Height	Category
		Capacity			

Table 7

 7 Clustering Results for the Car data set

	Method	Cluster 1	Cluster 2	Cluster 3	Cluster 4
	L 1 (non-adaptive)	2/B 3/L 5/U	7/L 9/L 10/L	1/U 12/U 13/U	4/S 11/S 16/S
		6/B 8/B 18/L	15/S 19/S 20/S	14/B 17/U 24/U	22/L 23/L
		21/B 30/B 33/L	27/S	25/U 26/B 28/U	
				29/U 31/U 32/B	
	Hausdorf (non-adaptive)	1/U 12/B 13/U	7/L 9/L 10/L	2/B 3/L 5/U	4/S 11/S 16/S
		14/B 17/U 24/U	15/S 19/S 20/S	6/B 8/B 18/L	
		25/U 26/B 28/U	22/L 23/L 27/S	21/B 30/B 33/S	
		29/U 31/U 32/B			
	L 1 (adaptive)	12/U 13/U 17/U	1/U 2/B 3/L	6/B 7/L 9/L	4/S 11/S 15/S
		24/U 25/U 28/U	5/U 8/B 14/B	10/L 22/L 23/L	16/S 19/S 20/S
		29/U 31/U	18/L 21/B 26/B		27/S
			30/B 32/B 33/L		
	Hausdorf (adaptive)	1/U 2/B 3/L	12/U 13/U 17/U	4/S 11/S 15/S	6/B 7/L 9/L
		5/U 8/B 14/B	24/U 25/U 28/U	16/S 19/S 20/S	10/L 22/L 23/L
		18/L 21/B 26/B	29/U 31/U	27/S	
		30/B 32/B 33/L			

Table 9

 9 Clustering Results for the Ecotoxicology data set

	Method	Cluster 1	Cluster 2	Cluster 3	Cluster 4
	L 1 (non-adaptive)	1/C 4/C 7/D	2/C	3/C	5/O 6/O 9/D
		8/D 10/D			11/H 12/H
	Hausdorf (non-adaptive)	1/C 4/C 7/D	2/C	3/C	5/O 6/O 9/D
		8/D 10/D			11/H 12/H
	L 1 (adaptive)	5/O 6/O	9/D 11/H 12/H	1/C 2/C 3/C	4/C 7/D 8/D
					10/D
	Hausdorf (adaptive)	5/O 6/O	9/D 11/H 12/H	1/C 2/C 3/C	4/C 7/D 8/D
					10/D

Table 11

 11 Ecotoxicology data set: vectors of weights λ k of adaptive distance d k (k = 1, . . . , 4) according to the 13 interval variables

	Interval		Vectors of weights	
	Variables	λ 1	λ 2	λ 3	λ 4
	Length	3.911076	3.784355	9.578303	5.855540
	Weight	0.099555	0.022819	0.362272	0.022301
	Muscle	0.016830	0.031758	0.375701	0.077517
	Intestine	0.062889	0.146273	0.200882	0.145701
	Stomach	0.042986	0.012046	0.319487	0.108850
	Gills	0.158115	0.097757	0.295046	0.468606
	Liver	0.032341	0.003193	0.032691	0.006864
	Kidneys	0.008428	0.004982	0.082949	0.007686
	Liver/Muscle	41.066313	33.423074	3.175321	2.804027
	Kidneys/Muscle 28.321594	39.767796	2.033658	8.990483
	Gills/Muscle	410.663114 1466.437071 12.970620 374.103973
	Intestine/Muscle 68.443852	488.812463 18.866356 184.489640
	Stomach/Muscle 40.064695	139.660709	9.453641 144.814440

. . . . . . . . . Each clustering method is run (until the convergence to a stationary value of the adequacy criterion) 100 times and the best result, according to the adequacy criterion, is selected. The corrected Rand index CR is calculated for the best result. Table 9 shows the clusters (individual labels) given by the non-adaptive (L 1 and Hausdorff) and adaptive (one component L 1 and Hausdorff) methods. The CR indices obtained from the results displayed in Table 9 are 0.488 and 0.138 for the adaptive and non-adaptive distances, respectively. Notice that, for this data set, regardless the adaptive (or the non-adaptive) distances used, the dynamic clustering algorithm furnishes the same partition (the Hausdorff and city-block distances presented the same In Noirhomme-Fraiture (2002), visualization techniques for interval data are