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THE WELL-ORDERING OF DUAL BRAID MONOIDS

   

The well-ordering of dual braid monoids

It is known since [START_REF] Dehornoy | Braid groups and left distributive operations[END_REF] and [START_REF] Laver | Braid group actions on left distributive structures and well-orderings in the braid group[END_REF] that the braid group B n is left-orderable, by an ordering whose restriction to the positive braid monoid is a well-order. Initially introduced by complicated methods of self-distributive algebra, the standard braid ordering has then received a lot of alternative constructions originating from different approaches-see [START_REF] Dehornoy | Ordering braids[END_REF]. However, this ordering remains a complicated object, and many questions involving it remain open.

Dual braid monoids have been introduced by Birman, Ko, and Lee in [START_REF] Birman | A new approach to the word and conjugacy problems in the braid groups[END_REF]. The dual braid monoid B + * n is a certain submonoid of the n-strand braid group B n . It is known that the monoid B + * n admits a Garside structure, where simple elements correspond to non-crossing partitions of n-see [START_REF] Bessis | The dual braid monoid[END_REF]. In particular, there exists a standard normal form associated with this Garside structure, namely the so-called greedy normal form.

The rotating normal form is another normal form on B + * n that was introduced in [START_REF] Fromentin | Every braid admits a short σ-definite representative[END_REF]. It relies on the existence of a natural embedding of B + * n-1 in B + * n and on the easy observation that each element of B + * n admits a maximal right divisor that belongs to B + * n-1 . The main ingredient in the construction of the rotating normal form is the result that each braid β in B + * n-1 admits a unique decomposition

β = φ b-1 n (β b ) • ... • φ 2 n (β 3 ) • φ n (β 2 ) • β 1 with β b , ... , β 1 in B + *
n-1 such that β b = 1 and such that for each k 1, the braid β k is the maximal right-divisor of φ b-k n (β b ) • ... • β k that lies in B + * n-1 . The sequence (β b , ..., β 1 ) is then called the φ n -splitting of β.

The main goal of this paper is to establish the following simple connection between the order on B + * n and the order on B + * n-1 through the notion of φ n -splitting. Theorem 1. For all braids β, γ in B + * n with n 2, the relation β < γ is true if and only if the φ n -splitting (β b , ... , β 1 ) of β is smaller than the φ n -splitting (γ c , ... , γ 1 ) of γ with respect to the ShortLex-extension of the ordering of B + * n-1 , i.e., we have either b < c, or b = c and there exists t such that β t < γ t holds and β k = γ k holds for b k > t.

A direct application of Theorem 1 is:

Corollary. For n 2, the restriction of the braid ordering to B + * n is a well-ordering of ordinal type ω ω n-2 .

This refines a former result by Laver stating that the restriction of the braid ordering to B + * n is a well-ordering without determining its exact type. Another application of Theorem 1 or, more exactly, of its proof, is a new proof of the existence of the braid ordering. What we precisely obtain is a new proof of the result that every nontrivial braid can be represented by a so-called σ-positive or σ-negative word ("Property C").

The connection between the restrictions of the braid order to B + * n and B + * n-1 via the φ n -splitting is formally similar to the connection between the restrictions of the braid order to the Garside monoids B + n and B + n-1 via the so-called Φ n -splitting established in [START_REF]Alternating normal forms for braids and locally Garside monoids[END_REF] as an application of Burckel's approach of [START_REF] Burckel | L'ordre total sur les tresses positives[END_REF][START_REF]The wellordering on positive braids[END_REF][START_REF]Computation of the ordinal of braids[END_REF]. However, there is an important difference, namely that, contrary to Burckel's approach, our construction requires no transfinite induction: although intricate in the general case of 5 strands and above, our proof remains elementary. This is an essential advantage of using the Birman-Ko-Lee generators rather than the Artin generators.

The paper is organized as follows. In Section 1, we briefly recall the definition of the Dehornoy ordering of braids and the definition of the dual braid monoid. In Section 2, we use the φ n -splitting to construct a new linear ordering of B + * n , called the rotating ordering. In Section 3, we deduce from the results about φ n -splittings established in [START_REF] Fromentin | Every braid admits a short σ-definite representative[END_REF] the result that certain specific braids are σ-positive or trivial. Finally, Theorem 1 is proved in Section 4.

The general framework

Artin's braid group B n is defined for n 2 by the presentation σ 1 , ... , σ n-1 ;

σ i σ j = σ j σ i for |i -j| 2 σ i σ j σ i = σ j σ i σ j for |i -j| = 1 . (1.1)
The submonoid of B n generated by {σ 1 , ... , σ n-1 } is denoted by B + n .

1.1. The standard braid ordering. We recall the construction of the Dehornoy ordering of braids. By a braid word we mean any word on the letters σ ±1 i . Definition 1.1.

-A braid word w is called σ i -positive (resp. σ i -negative) if w contains at least one σ i (resp. at least one σ -1 i ), no σ -1 i (resp. no σ i ), and no letter σ ±1 j with j > i. -A braid β is said to be σ i -positive (resp. σ i -negative) if, among the braid words representing β, at least one is σ i -positive (resp.

σ i -negative). -A braid β is said to be σ-positive (resp. σ-negative) if it is σ i -positive (resp. σ i -negative) for some i. -For β, γ braids, we declare that β < γ is true if the braid β -1 γ is σ-positive.
By definition of the relation <, every σ-positive braid β satisfy 1 < β. Then, every braid of B + n except 1 is lager than 1. Example 1.2. Put β = σ 2 and γ = σ 1 σ 2 . Let us show that β is <-smaller than γ. The quotient β -1 γ is represented by the word σ -1 2 σ 1 σ 2 . Unfortunately, the latter word is neither σ 2 -positive (since it contains σ -1

2 ), nor σ 2 -negative (since it contains σ 2 ), nor σ 1 -positive and σ 1 -negative (since it contains a letter σ ±1

2 ). However, the word σ -1 2 σ 1 σ 2 is equivalent to σ 1 σ 2 σ -1 1 , which is σ 2 -positive. Then, the braid β -1 γ is σ 2 -positive and the relation β < γ holds.

Theorem 1.3. [START_REF] Dehornoy | Braid groups and left distributive operations[END_REF] For each n 2, the relation < is a linear ordering on B n that is invariant under left multiplication.

Remark 1.4. In this paper, we use the flipped version of the braid ordering [START_REF] Dehornoy | Ordering braids[END_REF], in which one takes into account the generator σ i with greatest index, and not the original version, in which one considers the generator with lowest index. This choice is necessary here, as we need that B + * n-1 is an initial segment of B + * n . That would not be true if we were considering the lower version of the ordering. We recall that the flip automorphism Φ n that maps σ i and σ n-i for each i exchanges the two version, and, therefore, the properties of both orderings are identical.

Following [START_REF] Dehornoy | Braid groups and left distributive operations[END_REF], we recall that Theorem 1.3 relies on two results:

Property A. Every σ i -positive braid is nontrivial.
Property C. Every braid is either trivial or σ-positive or σ-negative.

In the sequel, as we shall prove that Property C is a consequence of Theorem 1, we never use Theorem 1.3, i.e., we never use the fact that the relation < of Definition 1.1 is a linear ordering. The only properties of < we shall use are the following trivial facts-plus, but exclusively for the corollaries, Property A. Lemma 1.5. The relation < is transitive, and invariant under left-multiplication.

The ordering < on B n admits lots of properties but it is not a well-ordering. For instance, σ -1 n-1 , σ -2 n-1 , ... , σ -k n-1 , ... is an infinite descending sequence. However, R. Laver proved the following result: Theorem 1.6. [START_REF] Laver | Braid group actions on left distributive structures and well-orderings in the braid group[END_REF] Assume that M is a submonoid of B ∞ generated by a finite number of braids, each of which is a conjugate of some braid σ i . Then the restriction of < to M is a well-ordering.

The positive braid monoid B +

n satisfies the hypotheses of Theorem 1.6. Therefore, the restriction of the braid ordering to B + n is a well-ordering. However, Laver's proof of Theorem 1.6 leaves the determination of the isomorphism type of (M, <) open. In the case of the monoid B + n , the question was solved by S. Burckel: Proposition 1.7. [START_REF]The wellordering on positive braids[END_REF] For each n 2, the order type of (B + n , <) is the ordinal ω ω n-2 . 1.2. Dual braid monoids. In this paper, we consider another monoid of which B n is a group of fractions, namely the Birman-Ko-Lee monoid, also called the dual braid monoid.

Definition 1.8. For 1 p < q, put a p,q = σ p ...σ q-2 σ q-1 σ -1 q-2 ...σ -1 p . (1.2)
Then the dual braid monoid B + * n is the submonoid of B n generated by the braids a p,q with 1 p < q n; the braids a p,q are called the Birman-Ko-Lee generators.

Remark 1.9. In [START_REF] Birman | A new approach to the word and conjugacy problems in the braid groups[END_REF], the braid a p,q is defined to be σ q-1 ...σ p+1 σ p σ -1 p+1 ...σ -1 q-1 . Both options lead to isomorphic monoids, but our choice is the only one that naturally leads to the suitable embedding of B + * n-1 into B + * n . By definition, we have σ p = a p,p+1 , so the dual braid monoid B + * n includes the positive braid monoid B + n . The inclusion is proper for n 3: the braid a 1,3 , which belongs to B + * n by definition, does not belong to B + n .

The following notational convention will be useful in the sequel. For p q, we write [p, q] for the interval {p, ... , q} of N. We say that [p, q] is nested in [r, s] if we have r < p < q < s. The following results were proved by Birman, Ko, and Lee. Proposition 1.10. [START_REF] Birman | A new approach to the word and conjugacy problems in the braid groups[END_REF] (i) In terms of the generators a p,q , the monoid B + * n is presented by the relations a p,q a r,s = a r,s a p,q for [p, q] and [r, s] disjoint or nested,

a p,q a q,r = a q,r a p,r = a p,r a p,q for 1 p < q < r n.

(1.4)

(ii) The monoid B + * n is a Garside monoid with Garside element δ n defined by

δ n = a 1,2 a 2,3 ... a n-1,n (= σ 1 σ 2 ... σ n-1 ). (1.5)
Garside monoids are defined for instance in [START_REF] Dehornoy | Gaussian groups and Garside groups, two generalizations of Artin goups[END_REF] or [START_REF]Groupes de garside[END_REF]. In every Garside monoid, conjugating by the Garside element defines an automorphism (. In the case of B + * n , the automorphism φ n defined by φ n (β) = δ n β δ -1 n has order n, and its action on the generators a p,q is as follows.

Lemma 1.11. For all p, q with 1 p < q n, we have φ n (a p,q ) = a p+1,q+1 for q n-1, a 1,p+1 for q = n.

(

The relations (1.6) show that the action of φ n is similar to a rotation. Note that the relation φ n (a p,q ) = a p+1,q+1 always holds provided indices are taken mod n and possibly switched, so that, for instance, a p+1,n+1 means a 1,p+1 .

For every braid β in B + * n and every k, the definition of φ n implies the relation

δ n φ k n (β) = φ k+1 n (β) δ n , δ -1 n φ k n (β) = φ k-1 n (β) δ -1 n . (1.7)
By definition, the braid a p,q is the conjugate of σ q-1 by the braid σ p ... σ q-2 . Braids of the latter type play an important role in the sequel, and we give them a name. Definition 1.12. For p q, we put δ p,q = a p,p+1 a p+1,p+2 ... a q-1,q ( = σ p σ p+1 ... σ q-1 ).

(1.8)

Note that the Garside element δ n of B + * n is equal to δ 1,n and that the braid δ p,p is the trivial one, i.e., is the braid 1.

With this notation, we easily obtain a p,q = δ p,q δ -1 p,q-1 = δ p,q-1 σ i-1 δ -1 p,q-1 for p < q, (1.9) a p,q = δ -1 p+1,q δ p,q for p < q, (1.10) δ p,r = δ p,q δ q,r for p q r, (1.11) δ p,q δ r,s = δ r,s δ p,q for p q < r s.

(1.12)

Relations (1.9), (1.11), and (1.12) are direct consequences of the definition of δ p,q . Relation (1.10) is obtained by using an induction on p and the equality δ -1 p+1,q δ p,q = σ p δ -1 p+2,q δ p+1,q σ -1 p , which holds for p < q.

1.3. The restriction of the braid ordering to the dual braid monoid. The aim of this paper is to describe the restriction of the braid ordering of Definition 1.1 to the dual braid monoid B + * n . The initial observation is:

Proposition 1.13. [START_REF] Laver | Braid group actions on left distributive structures and well-orderings in the braid group[END_REF] For each n 2, the restriction of the braid ordering to the monoid B + * n is a well-ordering. Proof. By definition, the braid a p,q is a conjugate of the braid σ q-1 . So B + * n is generated by finitely many braids, each of which is a conjugate of some σ i . By Laver's Theorem (Theorem 1.6), the restriction of < to B + * n is a well-ordering.

As in the case of B + n , Laver's Theorem, which is an non-effective result based on the so-called Higman's Lemma [START_REF] Higman | Ordering by divisibility in abstract algebras[END_REF], leaves the determination of the isomorphism type of < ↾ B + * n open. This is the question we shall address in the sequel. Before introducing our specific methods, let us begin with some easy observations.

Lemma 1.14. Every braid β in B + * n except 1 satisfies β > 1. Proof. By definition, the braid a p,q is σ-positive-actually it is σ q-1 -positive in the sense of Definition 1.1.

Lemma 1.15. For each n 2, we have

1 < a 1,2 < a 2,3 < a 1,3 < ... < a 1,n-1 < a n-1,n < a n-2,n < ... < a 1,n . (1.13) 
Proof. We claim that a p,q < a r,s holds if and only if we have either q < s, or q = s and p > r. Assume first q < s. Then, the braid a -1 p,q is σ q-1 -negative while a r,s is σ s-1 -positive with q < s, hence the quotient a -1 p,q a r,s is σ s-1 -positive, which implies a p,q < a r,s . Assume now q = s and p > r. Then, by relation (1.9), the quotient a -1 p,q a r,s is equal to δ p,s-1 δ -1 p,s δ r,s δ -1 r,s-1 . Applying Relation (1.11) on δ r,s , we obtain a -1 p,q a r,s = δ p,s-1 δ -1 p,s δ r,p-1 δ p-1,s δ -1 r,s-1 . Then, by applying Relation (1.12) on δ -1 p,s δ r,p-1 , we obtain

a -1 p,q a r,s = δ p,s-1 δ r,p-1 δ -1 p,s δ p-1,s δ -1 r,s-1 . Finally, Relation (1.10) on δ -1 p,s δ p-1,s implies a -1 p,q a r,s = δ p,s-1 δ r,p-1 a p-1,s δ -1 r,s-1 . The braid a p-1,s is σ s-1 -positive, while the braids δ p,s-1 , δ r,p-1 and δ -1
r,s-1 are σ tpositive or σ t -negative for t < s-1. Hence the quotient a -1 p,q a r,s is σ s-1 -positive, which implies a p,q < a r,s .

As < is a linear ordering, this is enough to conclude, i.e., the implications we proved above are equivalences.

1.4. The rotating normal form. In this section we briefly recall the construction of the rotating normal form of [START_REF] Fromentin | Every braid admits a short σ-definite representative[END_REF]. Definition 1.16. For n 3 and β a braid of B + * n . The maximal braid β 1 lying in B + * n-1 that right-divides the braid β is called the B + * n-1 -tail of β.

Proposition 1.17. [START_REF] Fromentin | Every braid admits a short σ-definite representative[END_REF] Assume n 3 and that β is a nontrivial braid in B + * n . Then there exists a unique sequence (β b , ... , β 1 ) in

B + * n-1 satisfying β b = 1 and -β = φ b-1 n (β b ) • ... • φ n (β 2 ) • β 1 , (1.17.i) -for each k 1, the B + * n-1 -tail of φ b-k n (β b ) • ... • φ n (β k+1 ) is trivial.
(1.17.ii)

Definition 1.18. The unique sequence (β b , ... , β 1 ) of braids introduced in Proposition 1.17 is called the φ n -splitting of β. Its length, i.e., the parameter b, is called the n-breadth of β.

The idea of the φ n -splitting is very simple: starting with a braid β of B + * n , we extract the maximal right-divisor that lies in B + * n-1 , i.e., that leaves the nth strand unbraided, then we extract the maximal right-divisor of the remainder that leaves the first strand unbraided, and so on rotating by 2π/n at each step-see Figure 1. 6 . Starting from the right, we extract the maximal right-divisor that keeps the sixth strand unbraided, then rotate by 2π/6 and extract the maximal right-divisor that keeps the first strand unbraided, etc.

β 1 φ 6 (β 2 ) φ 2 6 (β 3 ) φ 3 6 (β 4 )
As the notion of a φ n -splitting is fundamental in this paper, we give examples.

Example 1.19. Let us determine the φ n -splitting of the generators of B + * n , i.e., of a p,q with 1 p < q n. For q n-1, the generator a p,q belongs to B + * n-1 , then its φ n -splitting is (a p,q ). Next, as a p,n does not lie in B + * n-1 , the rightmost entry in its φ n -splitting is trivial. As we have φ -1 n (a p,n ) = a p-1,n-1 for p 2, the φ n -splitting of a p,n with p 2 is (a p-1,n-1 , 1). Finally, the braids a 1,n and φ

-1 n (a 1,n ) = a n-1,n do not lie in B + * n-1 , but φ -2 n (a 1,n ) = a n-2,n-1 does. So the φ n -splitting of a 1,n is (a n-2,n-1 , 1, 1). To summarize, the φ n -splitting of a p,q is      (a p,q ) for p < q n-1, (a p-1,n-1 , 1)
for 2 p and q = n, (a n-2,n-1 , 1, 1) for p = 1 and q = n.

(1.15) By Relation (1.6), the application φ n maps each braid a p,q to another similar braid a r,s . Using this remark, we can consider the alphabetical homomorphism, still denoted φ n , that maps the letter a p,q to the corresponding letter a r,s , and extends to word on the letter a p,q . Note that, in this way, if the word w on the letter a p,q represents the braid β, then φ n (w) represents φ n (β).

We can now recursively define a distinguished expression for each braid of B + * n in terms of the generators a p,q . Definition 1.20.

-For β in B + * 2 , the φ 2 -normal form of β is defined to be the unique word a k 1,2 that represents β.

-For n 3 and β in B + * n , the φ n -normal form of β is defined to be the word φ b-1 n (w b ) ... w 1 where, for each k, the word w k is the φ n-1 -normal form of β k and where (β b , ... , β 1 ) is the φ n -splitting of β.

As the φ n -splitting of a braid β lying in B + * n-1 is the length 1 sequence (β), the φ n -normal form and φ n-1 -normal form of β coincide. Therefore, we can drop the subscript in the φ n -normal form. From now on, we call rotating normal form, or simply normal form, the expression so obtained.

As each braid is represented by a unique normal word, we can unambiguously use the syntactical properties of its normal form.

We conclude this introductory section with some syntactic constraints involving φ n -splittings and normal words, These results are borrowed from [START_REF] Fromentin | Every braid admits a short σ-definite representative[END_REF].

Definition 1.21. For β in B + *
n , the last letter of β, denoted β # , is defined to be the last latter in the normal form of β.

Lemma 1.22. [START_REF] Fromentin | Every braid admits a short σ-definite representative[END_REF] Assume that (β b , ... , β 1 ) is a φ n -splitting.

(i) For k 2, the letter β # k has the form a ..,n-1 , unless β k is trivial;

(ii) For k 3, the braid β k is different from 1; (iii) For k 2, if the normal form of β k is w ′ a n-2,n-1 with w ′ = ε (
the empty word), then the last letter of w ′ has the form a ..,n-1 .

The rotating ordering

As explained above, we aim at proving results about the restriction of the braid ordering < to the dual braid monoid B + * n . We shall do it indirectly, by first introducing an auxiliary ordering < * , and eventually proving that the latter coincides with the original braid ordering.

Another ordering on B + *

n . Using the φ n -splitting of Definition 1.18, every braid of B + * n comes associated with a distinguished finite sequence of braids belonging to B + * n-1 . In this way, every ordering on B + * n-1 can be extended to an ordering on B + * n using a lexicographic extension. Iterating the process, we can start from the standard ordering on B + * 2 , i.e., on natural numbers, and recursively define a linear ordering on B + * n . We recall that, if (A, ≺) is an ordered set, a finite sequence s in A is called ShortLex-smaller than another finite sequence s ′ if the length of s is smaller than that of s ′ , or if both lengths are equal and s is lexicographically ≺-smaller than s ′ , i.e., when both sequences are read starting from the left, the first entry in s that does not coincide with its counterpart in s ′ is ≺-smaller. n with n 3, we declare that β < * n γ is true if the φ n -splitting of β is smaller than the φ n -splitting of γ for the ShortLex-extension of < * n-1 . Example 2.2. As was seen in Example 1.19, the n-breadth of a p,q with q n-1 is 1 while the n-breadth of a q,n is 2 for p = 1 or 3 for p = 1. An easy induction on n gives a p,q < * n a r,s whenever q < s n holds. Then, one establishes 1

< * n a 1,2 < * n a 2,3 < * n a 1,3 < * n a 3,4 < * n a 2,4 < * n a 1,4 < * n ... < * n a n-1,n < * n ... < * n a 1,n .
We observe that, according to Lemma 1. ) is isomorphic to N with the usual ordering, which is a well-ordering. As the ShortLex-extension of a well-ordering is itself a well-ordering-see [START_REF] Levy | Basic set theory[END_REF]-we inductively deduce that < * n is a well-ordering. The result about successors immediately follows from the fact that, if the φ nsplitting of β is (β p , ... , β 1 ), then the φ n -splitting of βa 1,2 is (β p , ... , β 1 a 1,2 ).

The connection between the ordering < * n-1 and the restriction of

< * n to B + * n-1 is simple: B + * n-1 is an initial segment of B + * n . Proposition 2.4. For n 3, the monoid B + * n-1 is the initial segment of (B + * n , < * n ) determined by a n-1,n , i.e., we have B + * n-1 = {β ∈ B + * n | β < * n a n-1,n }. Moreover the braid a n-1,n is the smallest of n-breadth 2.
Proof. First, by construction, every braid β of B + * n-1 has n-breadth 1, whereas, by (1.15), the n-breadth of a n-1,n is 2. So, by definition, β < * n a n-1,n holds. Conversely, assume that β is a braid of B + * n that satisfies β < * n a n-1,n . As the n-breadth of a n-1,n is 2, the hypothesis β < * n a n-1,n implies that the n-breadth of β is at most 2. We shall prove, using induction on n, that β has n-breadth at most 1, which, by construction, implies that β belongs to B + * n-1 . Assume first n = 3. By definition, every φ 3 -splitting of length 2 has the form (a b 1,2 , a c 1,2 ) with b = 0. The ShortLex-least such sequence is (a 1,2 , 1), which turns out to be the φ 3 -splitting of a 2,3 . Hence a 2,3 is the < * 3 -smallest element of B + * 3 with 3-breadth equal to 2, and β < * 3 a 2,3 implies β ∈ B + * 2 . Assume now n > 3. Assume for a contradiction that the n-breadth of β is 2. Let (β 2 , β 1 ) be the φ n -splitting of β. As the φ n -splitting of a n-1,n is (a n-2,n-1 , 1), and

β 1 < * n-1 1 is impossible, the hypothesis β < * n a n-1,n implies β 2 < * n-1 a n-2,n-1
. By induction hypothesis, this implies that β 2 lies in B + * n-2 , hence φ n (β 2 ) lies in B + * n-1 . This contradicts Condition (1.17.ii): a sequence (β 2 , β 1 ) with β 2 < * n-1 a n-2,n-1 cannot be the φ n -splitting of a braid of B + * n . So the hypothesis that β has nbreadth 2 is contradictory, and β necessarily lies in B + * n-1 .

Building on the compatibility result of Proposition 2.4, we hereafter drop the subscript in < * n and simply write < * . Note that < * is actually a linear order (and even a well-ordering) on B + * ∞ , the inductive limit of the monoids B + * n with respect to the canonical embedding of B + * n-1 into B + * n .

2.2. Separators. By definition of < * , for b < c, every braid in B + * n that has nbreadth b is < * -smaller than every braid that has n-breadth c. As the ordering < * is a well-ordering, there must exist, for each b, a < * -smallest braid with n-breadth b. These braids, which play the role of separators for < * , are easily identified. They will play an important role in the sequel.

Proposition 2.4 says that the least upper bound of the braids with n-breadth 1 is a n-1,n . From n-breadth 2, a periodic pattern appears. n that has n-breadth b+2-hence it is the least upper bound of all braids of n-breadth b+1.

Proof. (i) First, we observe that there exists no relation a n-1,n a n-2,n-1 = ... in the presentation of the monoid B + * n . Then the word a n-1,n a n-2,n-1 , which is equal to φ n (a n-2,n-1 ) a n-2,n-1 , is alone in its equivalence class under the relation of B + * n . Similarly, the word φ b-1 n (a n-2,n-1 )•...•a n-2,n-1 , called w, is alone in its equivalence class, as no relation of the presentation may be applied to any length 2 subword of this word. As φ n is an isomorphism, the same result holds for the word φ 2 n (w), which represents the braid δ n,b . As the braid δ n,b is represented by a normal word, we deduce that φ 2 n (w) is the normal word representing δ n,b , i.e., it is its normal form.

(ii) We use an induction on b. Relation (1.9) implies a 1,n = δ n δ -1 n-1 . Using (1.6), we deduce

δ n,1 = φ 2 n (a n-2,n-1 ) = a 1,n = δ n δ -1 n-1 . Assume now b 2. By definition, we have δ n,b = φ b+1 n (a n-2,n-1 ) δ n,b-1 .
Then, using the induction hypothesis we have

δ n,b = φ b+1 n (a n-2,n-1 ) δ b-1 n δ -b+1 n-1 . Pushing δ b-1 n
to the left using (1.7), we find:

δ n,b = δ b-1 n φ 2 n (a n-2,n-1 ) δ -b+1 n-1 . Relation (1.6) implies φ 2
n (a n-2,n-1 ) = a 1,n . So, using (1.9), we finally obtain

δ n,b = δ b-1 n δ n δ -1 n-1 δ -b+1 n-1 = δ b n δ -b n-1 .
(iii) Let (β b+2 , ..., β 1 ) be the φ n -splitting of a braid β that lies in B + * n and satisfies β * δ n,b . By definition of < * , we have β b+2 * a n-2,n-1 . By Lemma 1.22(i) and (ii), the B + * n-2 -tail of β b+2 is trivial, hence its n-1-breadth is at least 2. Then Proposition 2.4 implies β b+2 = a n-2,n-1 . By definition of < * again, we have β b+1 * a n-2,n-1 . Using the previous argument repeatedly, we obtain β k = a n-2,n-1 for k 3. Using the argument once more gives β 2 * 1, which implies β 2 = 1. Finally, by definition of < * , we have β 1 = 1. We conclude by (i) and the uniqueness of the φ n -splitting.

Owing to Proposition 2.6, it is coherent to extend Definition 2.5 by δ n,0 = a n-1,n . In this way, the result of Proposition 2.6(iii) extends to the case b = 0.

We now observe that the orderings < and < * agree on the separators δ n,b .

Lemma 2.7. Assume n 3. Then 0 b < c implies δ n,b < δ n,c .

Proof. Assume 0 < b < c. By Proposition 2.6(ii), we have

δ -1 n,b • δ n,c = δ b n-1 δ -b n • δ c n δ -c n-1 = δ b n-1 δ c-b n δ -c n-1 . 1 δ n,1 δ n δ n,2 δ 2 n δ n,3 δ 3 n n-breadth 2 n-breadth 3 n-breadth 4 Figure 2.
The braid δ n,r as a separator in (B + * n , < * )-hence in (B + * n , <) as well once Theorem 2.8 is proved.

The hypothesis c -b > 0 implies that δ -1 n,b δ n,c is a σ n-1 -positive braid, since the braid δ k is σ k-1 -positive. Hence we have δ n,b < δ n,c .
It remains to establish the result for b = 0. The previous case implies δ n,1 δ n,c . As the relation < is transitive (Lemma 1.5), it is enough to prove δ n,0 < δ n,1 . Using Proposition 2.6(ii) and inserting δ n δ -1 n on the left, we obtain

δ -1 n,0 δ n,1 = a -1 n-1,n δ n δ -1 n-1 = δ n δ -1 n a -1 n-1,n δ n δ -1 n-1 . Relation (1.6) implies δ -1 n a -1 n-1,n δ n = φ -1 n (a -1 n-1,n ) = a -1 n-2,n-1 . We deduce δ -1 n,0 δ n,1 = δ n a -1 n-2,n-1 δ -1
n-1 , and the latter decomposition is explicitly σ n-1 -positive. Proof. Assume that β is a non-trivial braid of B n . First, as B n is a group of fractions for B + * n , there exist β ′ , β ′′ in B + * n satisfying β = β ′-1 β ′′ . As β is assumed to be nontrivial, we have β ′ = β ′′ . As < * is a strict linear ordering, one of β ′ < * β ′′ or β ′′ < * β ′ holds. In the first case, Theorem 2.8 implies that β ′-1 β ′′ , i.e., β, is σ-positive. In the second case, Theorem 2.8 implies that β ′′-1 β ′ is σ-positive, hence β is σ-negative.

Corollary 2.10. The relation < * coincide with the restriction of < to B + * n . Proof. Let β, γ belong to B + * n . By Theorem 2.8, β < * γ implies β < γ. Conversely, assume β < * γ. As < * is a linear ordering, we have either γ < * β, hence γ < β, or β = γ. In both cases, Property A implies that β < γ fails. Corollary 2.10 directly implies Theorem 1 stated in the introduction. Indeed, the characterization of the braid ordering given in Theorem 1 is nothing but the recursive definition of the ordering < * .

Finally, we obtain a new proof of Laver's result, together with a determination of the order type. n is a well-ordering, and its order type is the ordinal ω ω n-2 . Proof. It is standard that, if (X, <) is a well-ordering of ordinal type λ, then the ShortLex-extension of < to the set of all finite sequences of elements of X is a well-ordering of ordinal type λ ω -see [START_REF] Levy | Basic set theory[END_REF]. The ordinal type of < * on B + * 2 is ω, the order type of the standard ordering of natural numbers. So, an immediate induction shows that, for each n 2, the ordinal type of < * on B + * n is at most ω ω n-2 . A priori, this is only an upper bound, because it is not true that every sequence of braids in B + * n-1 is the φ n -splitting of a braid of B + * n . However, by construction, the monoid B + * n includes the positive braid monoid B + n , and it was shown in [START_REF]The wellordering on positive braids[END_REF]or, alternatively, in [START_REF] Carlucci | Unprovability statements involving braids[END_REF]-that the order type of the restriction of the braid ordering to B + n is ω ω n-2 . Hence the ordinal type of its restriction to B + * n is at least that ordinal, and, finally, we have equality. (Alternatively, we could also directly construct a type ω ω n-2 increasing sequence in B + * n .)

Remark 2.12. By construction, the ordering < is invariant under left-multiplication. Another consequence of Corollary 2.10 is that the ordering < * is invariant under left-multiplication as well. Note that the latter result is not obvious at all from the direct definition of that relation.

A Key Lemma

So, our goal is to prove that the rotating ordering of Definition 2.1 and the standard braid ordering coincide. The result will follow from the fine properties of the rotating normal form and of the φ n -splitting. The aim of this section is to establish these properties. Most of them are improvements of properties established in [START_REF] Fromentin | Every braid admits a short σ-definite representative[END_REF], and we shall heavily use the notions introduced in this paper.

3.1. Sigma-positive braid of type a p,n . We shall prove Theorem 2.8 by using an induction on the number of strands n. Actually, in order to maintain an induction hypothesis, we shall prove a stronger implication: instead of merely proving that, if β is < * -smaller than γ, then the quotient braid β -1 γ is σ-positive, we shall prove the more precise conclusion that β -1 γ is σ-positive of type a p,n for some p related to the last letter in γ. Definition 3.1. Assume n 3.

-A braid is called a p,n -dangerous if it admits one decomposition of the form

δ -1 f (d),n-1 δ -1 f (d-1),n-1 ... δ -1 f (1),n-1 , with f (d) f (d-1) ... f (1) = p. -A braid is called σ i -nonnegative if it is σ i -positive or it belongs to B i .
-For p n-2, a braid β is called σ-positive of type a p,n if it can be expressed as

β + • δ p,n • β -, where β + is σ n-1 -nonnegative and β -is a p,n -dangerous. -A braid β is called σ-positive of type a n-1,n if it is 1, or equal to β ′ • a n-1,n ,
where β ′ is a σ-positive braid of type a 1,n .

Note that, an a p,n -braid with p = n-1 is not the trivial one, i.e., is different from 1, as it contains δ p,n-1 , which is non trivial. In the other hand, the only a n-1,n -danger ours braid is 1.

We observe that the definition of σ-positive of type a n-1,n is different from the definition of σ-positive of type a p,n for p < n-1 (technical reasons make such a distinction necessary).

Saying a braid is σ-positive of type a p,n is motivated by the fact that a p,n is the simplest σ-positive braid of its type.

Lemma 3.2. Assume that β is a σ-positive braid of type a p,n . Then (i) β is σ n-1 -positive, (ii) φ n+1 (β) is σ-positive of type a p+1,n+1 , (iii) if p = 1 then β δ -t n-1 is σ-positive of type a 1,n for all t 0, (iv) if β = a n-1,n holds, then γ β is σ-positive of type a p,n for every σ n-1 - nonnegative braid γ. Proof. (i) An a p,n -dangerous braid is σ n-1 -nonnegative (actually it is σ n-2 -negative), and the braid δ p,n is σ n-1 -positive. Therefore β is σ n-1 -positive. (ii) With the notation of Definition 3.1, let δ -1 f (d),n-1 ... δ -1 f (1) 
,n-1 be the decomposition of β -, with f (1) = p. Then we have

φ n+1 (β -) = δ -1 f (d)+1,n ... δ -1 f (1) 
+1,n , an a p+1,n+1 -dangerous word. By definition, the braid β + can be represented by a word on the alphabet σ ±1 i with i n-2. As, for i n-2, the image of σ i by φ n+1 is σ i+1 , the braid

φ n+1 (β + ) is σ n -nonnegative. So the relation φ n+1 (β) = φ n+1 (β + )•δ p+1,n+1 •φ n+1 (β -) witnesses that φ n+1 (β) is σ-positive of type a p+1,n+1 .
Point (iii) directly follows from the fact that, if γ -is an a 1,n -dangerous braid, then, for each t 0, the braid γ -δ -t n-1 is also a 1,n -dangerous. (iv) Assume p n-2. Then, by definition, we have β = β + • δ p,n • β -, where β + is σ n-1 -nonnegative and β -is a p,n -dangerous. Hence, we get γ β = γ β + • δ p,n • β -. As the product of σ n-1 -nonnegative braids is σ n-1 -nonnegative, the braid γ β is σ-positive of type a p,n .

Assume now p = n-1. As, by hypothesis β is different from a n-1,n , we have β = β ′ • a n-1,n , where β ′ is σ-positive of type a 1,n . The case p n-2 implies that the braid γ β ′ is σ-positive of type a 1,n . Hence the braid γ β, which is equal to

γ β ′ • a n-1,n , is σ-positive of type a n-1,n . Remark 3.3. For t 1, the braid δ n,t is σ-positive of type a 1,n . Indeed, by Proposition 2.6(ii), we have δ n,t = δ t-1 n • δ n • δ -t
n-1 , the right-hand side being an explicit σ-positive braid of type a 1,n .

3.2.

Properties of σ-positive braids of type a p,n . We now show that the entries in a φ n -splitting give raise to σ-positive braids of type a p,n , for some p that can be effectively controlled. Lemma 3.4. For n 3, every braid with last letter a p,n is σ-positive of type a p,n .

Proof. Let β be a braid of B + * n with last letter a p,n (Definition 1.21). Put β = β ′ • a p,n . Assume first p n-2. Then, by (1.9), we have β = β ′ • δ p,n • δ -1 p,n-1 , an explicit σ-positive braid of type a p,n , since the braid β ′ is positive, hence σ n-1nonnegative, and δ -1 p,n-1 is a p,n -dangerous.

Assume now p = n-1. The case β ′ = 1 is clear. For β ′ = 1, by Lemma 1.22(iii), there is a positive braid β ′′ satisfying β ′ = β ′′ • a q,n for some q. The relation a 1,q a q,n = a q,n a 1,n implies a q,n = a -1 1,q a q,n a 1,n . Using (1.9) for a 1,n gives

β ′ = β ′′ a -1 1,q a q,n • δ 1,n • δ -1 1,n-1 , an explicit σ-positive braid of type a 1,n . Therefore, β is σ-positive of type a 1,n .
We shall see now that the normal form of every braid β of B + * n-1 such that the B + * n-1 -tail of φ n (a p,n β) is trivial contains a sequence of overlapping letters a r,s . Words containing such sequences are what we shall call ladders. Definition 3.5. For n 3, we say that a normal word w is an a p,n -ladder lent on a q-1,n-1 , if there exists a decomposition

w = w 0 x 1 w 1 ... w h-1 x h w h , (3.1) 
and a sequence p = f (0) < f (1) < ... < f (h) = n-1 such that (i) for each k h, the letter x k is of the form a e(k),f (k) with e(k)<f (k-1)<f (k), (ii) for each k < h, the word w k contains no letter a p,q with p<f (k)<q, (iii) the last letter of w is a q-1,n-1 .

By convention, an a n-1,n -ladder lent on a q-1,n-1 is a word on the letters a p,q whose last letter is a q-1,n-1 .

The concept of a ladder is easily illustrated by representing the generators a p,q as a vertical line from the pth line to the qth line on an n-line stave. Then, for every k 0, the letter x k looks like a bar of a ladder-see Figure 3. In such boxes the vertical line representing the letter ap,q does not cross the gray line.

Proposition 3.6. [START_REF] Fromentin | Every braid admits a short σ-definite representative[END_REF] Assume n 3 and that (β b , ... , β 1 ) is the φ n -splitting of some braid of B + * n . Then, for each k in {b-1, ... , 3}, the normal form of β k is a φ n (β # k+1 )-ladder lent on β # k . The same results hold for k = 2 whenever β 2 is not 1. A direct consequence of Proposition 5.7 of [START_REF] Fromentin | Every braid admits a short σ-definite representative[END_REF] is Lemma 3.7. Assume n 3 and let β be a braid represented by an a p,n -ladder lent on a q-1,n-1 with q = n-1 and γ -be an a p,n -dangerous braid. Then γ -β is a σ-positive braid of type a q-1,n-1 .

We are now ready to prove that the non-terminal entries of a φ n -splitting (β b , ... , β 1 ) have the expected property, namely that the braid β k provides a protection against a φ n (β # k+1 )-dangerous braid, in the sense that if γ - k+1 is a β # k+1 -dangerous braid, then the braid φ n (γ - k+1 ) β k is σ-positive of type β # k . Proposition 3.8. Assume that (β b , ... , β 1 ) is a φ n -splitting. Then, for each k in {b-1, ... , 3} and every β # k+1 -dangerous braid γ - k+1 , the braid

φ n (γ - k+1 ) β k is σ- positive of type β # k . Moreover γ - k+1 β k is different from a n-2,n-1 , except if β is itself a n-2,n-1 .
The same result holds for k = 2, unless β 2 is the trivial braid1.

Proof. Take k in {b-1, ... , 3}. By definition of a dangerous braid, the braid

φ n (γ - k+1 ) is φ n (β # k+1 )-dangerous. Assume β # k = a n-2,n-1
. By Proposition 3.6, the normal form of β k is a φ n (β # k+1 )-ladder lent on β # k . Then, by Lemma 3.7, the braid

φ n (γ - k+1 ) β k is σ-positive of type β # k . Assume now β # k = a n-2,n-1 with β k = a n-2,n-1
. By Proposition 3.6 again, the normal form of β k is a φ n (β # k+1 )-ladder lent on a n-2,n-1 . Let w ′ a n-2,n-1 be the normal form of β. By definition of a ladder, as the letter a n-2,n-1 does not satisfy the condition (i) of Definition 3.5, the word w ′ is an a p,n -ladder lent on a p,n-1 for some p-see Lemma 1.22(iii). We denote by β ′ k the braid represented by w ′ . Then, by Lemma 3.7, the braid

φ n (γ - k+1 ) β ′ k is σ-positive of type a p,n-1 . Then it is the product β ′+ k • δ p,n • β ′- k . The relation δ 1,p δ p,n-1 = δ 1,n-1 implies that the braid φ n (γ - k+1 ) β ′ k is equal to β ′+ k δ -1 1,p • δ 1,n-1 • β ′- k , where β ′+ k δ -1 1,p is σ n-2 -nonnegative and β ′- k is a 1,n -dangerous. Then φ n (γ - k+1 ) β ′ k is σ-positive of type a 1,n-1 . Hence φ n (γ - k+1 ) β k is σ-positive of type a n-2,n-1 . Assume finally β k = a n-2,n-1 .
As the only a n-2,n-1 -dangerous braid is trivial, the braid φ n (γ - k+1 ) β k is equal to a n-2,n-1 , a σ-positive braid of type a n-2,n-1 . The same arguments establish the case k = 2 with β 2 = 1.

3.3.

The Key Lemma. We arrive at our main technical result. It mainly says that, if a braid β of B + * n has n-breadth b, then the braid δ -1 n,b-2 • β is either σpositive or trivial. Actually, the result is stronger: the additional information is first that we can control the type of the quotient above, and second that a similar result holds when we replace the leftmost entry of the φ n -splitting of β with another braid of B + * n-1 that resembles it enough. This stronger result, which unfortunately makes the statement more complicated, will be needed in Section 4 for the final induction on the braid index n. Proposition 3.9. Assume n 3 and that (β b , ... , β 1 ) is the φ n -splitting of a braid β in B + * n with b 3. Let a q,n be the last letter of

β β -1 1 . Whenever γ b is a σ-positive braid of type β # b , the braid δ -1 n,b-2 • φ b-1 n (γ b ) • φ b-2 n (β b-1 ) • ... • φ n (β 2 ), (3.2) 
is trivial or σ-positive of type a q,n -the first case occurring only for q = 1.

Proof. Put β * = δ -1 n,b-2 • φ b-1 n (γ b ) • φ b-2 n (β b-1 ) • ... • φ n (β 2 ) and a p-1,n-1 = β # b (Lemma 1.22). First, we decompose the left fragment δ -1 n,b-2 • φ b-1 n (γ b ) of β *
as a product of a σ n-1 -nonnegative braid and a dangerous braid. By definition of a Using φ n (a n-2,n-1 ) δ -1 n = δ -1 n-1 and (1.7), we obtain that the right factor of (3.6) is

β ′′ β ′ k δ -k+2 n-1 φ n (β 2 ). As β ′ k is a σ-positive braid of type a 1,n , Lemma 3.2(iii) implies that β ′ k δ -k+2
n-1 is σ-positive of type a 1,n , and so is β ′′ β ′ k δ -k+2 n-1 by Lemma 3.2(iv). Hence, by (3.6), the braid β * is the product of a σ-positive braid of type a 1,n with φ n (β 2 ).

Case 3: β 2 ∈ {1, a n-2,n-1 }, β 3 = ... = β b-1 = a n-2,n-1 and γ b = a n-2,n-1 .
As in Case 2, it is enough to prove that the braid β * is the product of a σ-positive of type a 1,n with φ n (β 2 ). Using Lemma 2.6(ii) and (1.7) in its definition, the braid β * is equal to

δ b-2 n-1 • φ n (γ b ) δ -1 n • φ n (a n-2,n-1 ) δ -1 n • ... • φ n (a n-2,n-1 ) δ -1 n φ n (β 2 ). By Corollary 3.11 of [12], the last letter of β b is a n-2,n-1 , so γ b is σ-positive of type a n-2,n-1 . Hence φ n (γ b ) is σ-positive of type a n-1,n and is different from a n-1,n .
Then, by definition of a σ-positive braid of type a n-1,n , there exists a σ-positive braid

β ′ b of type a 1,n satisfying φ n (γ b ) = β ′ b a n-1,n . Using φ n (a n-2,n-1 ) δ -1 n = δ -1 n-1 , we deduce that the braid β * is equal to δ b-2 n-1 • β ′ b δ -b+2 n-1 • φ n (β 2 ). (3.10) 
By Lemma 3.2(iii), the middle factor of (3.10), namely

β ′ b δ -b+2 n-1 , is σ-positive of type a 1,n . Then β * is the product of a σ-positive braid of type a 1,n with φ n (β 2 ). Case 4: β 2 ∈ {1, a n-2,n-1 }, β 3 = ... = β b-1 = a n-2,n-1 and γ b = a n-2,n-1 .
By definition, we have

β * = δ b-2 n-1 • φ n (a n-2,n-1 ) δ -1 n ... φ n (a n-2,n-1 ) δ -1 n φ n (β 2 ). (3.11) 
Using φ n (a n-2,n-1 ) δ -1 n = δ -1 n-1 once again, we deduce β * = φ n (β 2 ). The braid φ n (β 2 ) is either trivial or equal to a n-1,n , a σ-positive word of type a n-1,n , as expected.

So the proof of the Key Lemma is complete.

Proof of the main result

We are now ready to prove Theorem 2.8, which state that if β, γ are braids of

B + * n , then β < * γ implies β < γ, (4.1) 
where < * refers to the ordering of Definition 2.1 and < refers to the Dehornoy ordering, i.e., β < γ means that the quotient-braid β -1 γ is σ-positive.

We shall split the argument into three steps. The first step consists in replacing the initial problem that involves two arbitrary braids β, γ with two problems, each of which only involves one braid. To do that, we use the separators δ n,t of Definition 2.5, and address the problem of comparing one arbitrary braid with the special braids δ n,t . We shall prove that 3) are true. It is not hard to deduce that the implication (4.1), which is our goal, is true when the breadth of β is smaller than the breadth of γ, i.e., in the "Short"-case of the ShortLex-ordering. So, there remains to treat the "Lex"-case, i.e., the case when β and γ have the same n-breadth, and this is what we do now. Actually, as was already mentioned, in order to maintain an induction hypothesis, we shall prove a stronger implication: instead of merely proving that the quotient braid β -1 γ is σ-positive, we shall prove the more precise conclusion that β -1 γ is σ-positive of type a p,n for some p related with the last letter of γ. That is why we shall consider the "Short"-and the "Lex"-cases simultaneously. n-1 -tail of γ is trivial, then the braid β -1 γ is σ-positive of type γ # .

β < * δ n,t implies β < δ n,t ( 
Proof. We use induction on n. For n = 2, everything is obvious, as both < and < * coincide with the standard ordering of natural numbers.

Assume n 3, and β < * γ where β, γ belong to B + * n and β = 1 holds. Then γ = 1 holds as well. Let (β b , ... , β 1 ) and (γ c , ... , γ 1 ) be the φ n -splittings of β and γ. As β < * γ holds, we have b c. Write β c = ... = β b+1 = 1. Let t be the maximal integer in {1, ... , c} satisfying β t < * γ t . By definition of < * , such a t exists. Write γ ′ t = β -1 t γ t . By induction hypothesis, the braid γ ′ t is σ-positive. Moreover, if t 2 holds, then the braid γ ′ t is σ-positive of type γ # t . Assume t = 1. Then the braid β -1 γ is equal to γ ′ t . Hence, it is σ-positive. As the B + * n-1 -tail of γ 1 is non-trivial, we have nothing more to prove. Assume now t 2. Let a q,n be the last letter of φ t-1 n (γ t ) • . . . • φ n (β 2 ). The sequence (β t-1 , ... , β 1 ) is a φ n -splitting of a braid of n-breadth t-1. Then Proposition 4.1 implies that the braid β ′ , that is equal to β -1 1 • ... • φ t+1 n (β -1 t-1 ) • δ n,t-2 , is σ-positive of type a 1,n . Let γ ′ be the braid δ -1 n,t-2 • φ t-1 n (γ ′ t ) • φ t-2 n (γ t-1 ) • ... • φ n (γ 2 ). As γ ′ t is σ-positive of type γ # t , Proposition 3.9 implies that the braid γ ′ is σ-positive of type a q,n or trivial (the latter occurs only for q = 1). Then, in any case, the braid β ′ γ ′ is σ-positive of type a q,n . As, by construction, we have β -1 γ = β ′ • γ ′ • γ 1 , the braid β -1 γ is σ-positive. Moreover, assume that the B + * n-1 -tail of γ is trivial. Then γ 1 is trivial and the braid γ ends with a q,n . In this case we have β -1 γ = β ′ •γ ′ , a σ-positive braid of type a q,n-1 . Therefore β -1 γ is a σ-positive braid of type γ # .

Our proof of Proposition 4.3 is therefore complete, and so is the proof of Theorem 2.8, which is strictly included in the latter.

So, we now have a complete description of the restriction of the Dehornoy ordering of braids to the Birman-Ko-Lee monoid B + * n . The characterization of Theorem 1 is inductive, connecting the ordering on B + * n to the ordering on B + * n-1 . Actually, it is very easy to obtain a non-inductive formulation. Indeed, we can define the iterated splitting T (β) of a braid β of B + * n to be the tree obtained by substituting the φ n-1 -splittings of the entries in the φ n -splitting, and iterating with the φ n-2splittings, and so on until we reach B + * 2 , i.e., the natural numbers. In this way, we associate with every braid β of B + * n a tree T (β) with branches of length n-2 and natural numbers labeling the leaves-see [START_REF]Alternating normal forms for braids and locally Garside monoids[END_REF] for an analogous construction. Then Theorem 1 immediately implies that, for β, γ in B + * n , the relation β < γ holds if and only if the tree T (β) is ShortLex-smaller than the tree T (γ).

Remark 4.4. Whether the tools developed in [START_REF] Fromentin | Every braid admits a short σ-definite representative[END_REF] and in the current may be adapted to the case of B +

n is an open question. The starting point of our approach is very similar to that of [START_REF]Alternating normal forms for braids and locally Garside monoids[END_REF] and [START_REF]The wellordering on positive braids[END_REF]. However, it seems that the machinery of ladders and dangerous braids involved in the technical results of Section 3 are really specific to the case of the dual monoids, and heavily depend on the highly redundant character of the relations connecting the Birman-Ko-Lee generators.

By contrast, a much more promising approach would be to investigate the restriction of the finite Thurston-type braid orderings of [START_REF] Short | Orderings of mapping class groups after Thurston[END_REF] to the monoids B + * n along the lines developed in [START_REF] Ito | On finite Thurston type orderings of braid groups[END_REF]. In particular, it should be possible to determine the isomorphism type explicitly.
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 328 The main result. At this point, we have two a priori unrelated linear orderings of the monoid B + * n , namely the standard braid ordering <, and the rotating ordering < * of Definition 2.1. The main technical result of this paper is: For all braids β, β ′ in B + * n , the relation β < * β ′ implies β < β ′ . Before starting the proof of this result, we list a few consequences. First we obtain a new proof of Property C. Corollary 2.9 (Property C). Every non-trivial braid is σ-positive or σ-negative.
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 211 The restriction of the Dehornoy ordering to the dual braid monoid B + *
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 13 Figure 3. The bars of the ladder are represented by black thick vertical lines. An a2,5-ladder lent on a3,5 (the last letter). The gray line starts at position 2 and goes up to position 5 using the bars of the ladder. The empty spaces between bars in the ladder are represented by a framed box.In such boxes the vertical line representing the letter ap,q does not cross the gray line.
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 43 If β and γ are nontrivial braids of B + * n , the relation β < * γ implies β < γ. Moreover, if the B + *

  15 and Example 2.2, the relations < and < * n agree on the generators of B + * n . Proposition 2.3. For n 2, the relation < * n is a well-ordering on B + * n . For each braid β, the immediate < * n -successor of β is β a 1,2 , i.e., β σ 1 . Proof. The ordered monoid (B + * 2 , < * 2

σ-positive braid of type β # b , we have γ b = γ + b δ p-1,n-1 γ - b , where γ - b is an β # b -dangerous braid and where γ + b is σ n-2 -nonnegative. Using Proposition 2.6(ii)t, we obtain

By (1.7), we have δ -b+2

Using the relation δ p,n δ -1 n = δ -1 p , an easy consequence of (1.11), we obtain

Substituting (3.4) in (3.3), we find

From there, we deduce that β * is equal to

At this point, four cases may occur. Case 1: β 2 / ∈ {1, a n-2,n-1 }. By Lemma 5.9 of [START_REF] Fromentin | Every braid admits a short σ-definite representative[END_REF], the braid

2 and different from a n-2,n-1 . We deduce that β * is equal to

The left factor of (3.7) is σ n-1 -nonnegative, while the right factor, namely φ n (β ′ 3 ), is different from a n-1,n and σ-positive of type φ n (β #

2 ) by Lemma 3.2(ii). As, in this case, the last letter of β β -1

1 is φ n (β # 2 ), we conclude using Lemma 3.2(iv). Case 2:

1 is φ n (a n-2,n-1 ), i.e., a n-1,n -a direct consequence of Lemma 1.22. As the product of a σ-positive braid of type a 1,n with a n-1,n is a σ-positive braid of type a n-1,n , it is enough to prove that the braid β * is the product of a σ-positive braid of type a 1,n with φ n (β 2 ). By Lemma 5.9 of [START_REF] Fromentin | Every braid admits a short σ-definite representative[END_REF], the braid β * * is equal to

with β ′′ a σ n-1 -nonnegative braid and γ - k+1 a β # k+1 -dangerous braid. Proposition 3.8 implies that the braid φ n (γ - k+1 ) β k is σ-positive of type β # k . By Corollary 3.11 of [START_REF] Fromentin | Every braid admits a short σ-definite representative[END_REF], the last letter of β k is a n-2,n-1 . Then, by Lemma 3.2(ii) the braid φ 2 n (γ k+1 ) φ n (β k ) is σ-positive of type a n-1,n . Hence, by definition of a σ-positive braid of type a n-1,n , we have the relation

where β ′ k is a σ-positive braid of type a 1,n . Substituting (3.9) in (3.8) gives that β * * is equal to

4.1. Proofs of (4.2) and (4.3). We begin with the implication (4.2). Actually, we shall prove a stronger result, needed to maintain an inductive argument in the proof of Theorem 2.8.

Proposition 4.1. For n 3, the implication (4.2) is true. Moreover for t 1, the relation β < * δ n,t implies that β -1 δ n,t is σ-positive of type a 1,n .

Proof. Take β in B + * n and assume β < * δ n,t for some t 0. Let (β b , ... , β 1 ) be the φ n -splitting of β. By Proposition 2.6(iii), we necessarily have b t+1. If t = 0 holds, then the braid β lies in B + * n-1 and the quotient β -1 δ n,0 , which is β -1 a n-1,n , is σ-positive. If t 1 and b 1 hold, then the braid β -1 is σ n-1 -nonnegative, and as δ n,t is σ-positive of type a 1,n , Lemma 3.2 implies that the quotient β -1 δ n,t is σ-positive of type a 1,n . Assume now t 1 and b 2. Then, by Proposition 2.6(ii), we find

Using Relation (1.7), we push b-1 factors δ n to the left and dispatch them between the factors β -1 k :

n-1 is a Garside monoid, there exists an integer k such that β -1 b δ k n-1 belongs to B + * n-1 . Call the latter braid β ′ b . Thus, we have

Each braid β k belongs to B + * n-1 , and so its inverse β -1 k does not involve the nth strand. Hence the left factor of (4.4), namely

, which shows it is a σ-positive braid of type a 1,n . If b t holds, (4.4) ends with δ n δ -t n-1 , which is a σ-positive braid of type a 1,n , and the factor δ n δ -k n-1 δ t-b n is σ n-1 -nonnegative. In each case, we conclude using Lemma 3.2(iii) that β -1 δ n,t is σ-positive of type a 1,n .

Using the Key Lemma of Section 3, i.e., Proposition 3.9, we now establish the implication (4.3). b . Then, Proposition 3.9 guarantees that the right factor of (4.5), namely δ -1 n,b-2 β, is σ-positive or trivial.