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THE CYCLING NORMAL FORM IN DUAL BRAID MONOIDS

JEAN FROMENTIN

Abstract. We introduce the cycling normal form, a new normal form for the
dual braid monoid. It is based on a natural operation called the φ-splitting,
which expresses every dual n-braid in terms of a finite sequence of braids of
dual (n−1)-braids. We deduce a complete description of the Dehornoy ordering
of the dual braid monoids: via the φ-splitting, the ordering of dual n-braids is
a lexicographical extension of the ordering of dual (n−1)-braids. We deduce a
new proof for the existence of the braid ordering, and determine the order-type
of the braid ordering of dual n-braids.

Dual braid monoids have been introduced by Birman, Ko, and Lee in [3]. The
dual braid monoid B+∗

n is a certain submonoid of the n-strand braid group Bn,
generated by a family that contains one generator ai,j for each pair of integers i, j
between 1 and n. It is known that the monoid B+∗

n admits a Garside structure,
where simple elements correspond to non-crossing partitions of n—see [2]. In par-
ticular, there exists a standard normal form associated with this Garside structure,
namely the so-cally greedy normal form.

In this paper, we introduce a new normal form called the cycling normal form.
It stems from investigating the embedding of B+∗

n−1 in B+∗
n , and follows from the

easy observation that each element of B+∗
n admits a maximal right divisor that

belongs to B+∗
n−1. The key result expresses every braid of B+∗

n in terms of a unique
finite sequence of braids of B+∗

n−1. In the following statement, φn denotes the
conjugacy automorphism of Bn associated with the Garside element δn of B+∗

n ,
which is σ1σ2...σn−1 in terms of the Artin generators σi.

Theorem 1. Each braid β in B+∗
n admits a unique decomposition

β = φp−1
n (βp) · φ

p−2
n (βp−1) · ... · φn(β2) · β1,

such that βr is, for each r, the maximal right divisor of φp−r
n (βp) · ... · φn(βr+1) · βr

that lies in B+∗
n−1.

The above finite sequence (βp, ..., β1) will be called the φn-splitting of β. A
unique normal form is then obtained by a natural recursive definition.

It seems that the φn-splitting is interesting in itself, and we think it can be
applied in various situations. In the current paper, we shall use it to specifically
study the ordering of the monoid B+∗

n . It is known since [9] and [15] that the
braid group Bn is left-orderable, by an ordering whose restriction to the positive
braid monoid B+

n is a well-ordering. Initially introduced by complicated methods
of self-distributive algebra, the Dehornoy ordering of braids has then received a lot
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of alternative constructions that reflect the many different possible approaches—
see [11, 12]. However, this ordering remains a complicated object, and many ques-
tions remain open.

Here, we shall study the restriction of the braid ordering to the dual monoid B+∗
n .

Our main result is that the ordering of B+∗
n admits a simple construction from the

ordering of B+∗
n−1 via the φn-splitting of Theorem 1. We prove:

Theorem 2. Assume that β, β′ belong to B+∗
n . Then β is smaller than β′ in the

Dehornoy ordering if and only if the φn-splitting of β is smaller than φn-splitting

of β′ with respect to the ShortLex-extension of the ordering on B+∗
n−1.

We recall that, if (A, <) is an ordered set, a finite sequence s in A is said to be
ShortLex-smaller than another sequence s′ if either the length of s is strictly smaller
than that of s′, or the two sequences have the same length and s is lexicographically
smaller than s′.

Theorem 2 has several consequences. Firstly, it implies that the restriction of

the braid ordering to B+∗
n is a well-ordering of ordinal type ωωn−2

. This refines
a former result by Laver asserting that the restriction of the ordering to B+∗

n is a
well-ordering, but leaving the determination of the ordinal type open. Secondly,
the proof of Theorem 2 actually reproves the existence of the braid ordering. More
precisely, it gives a new proof for the result that every nontrivial braid can be
represented by a so-called σ-positive or σ-negative word (“Property C”). Thirdly,
the proof of Theorem 2 turns out to be an algorithm for finding σ-positive word
representatives. At the moment, the complexity analysis of this algorithm is not
yet completed, but there are good reasons to conjecture that its time complexity is
quadratic, and the space complexity is at most quadratic.

Our proof builds on the new approach developed in [8] for the Artin monoid B+

n.
This method can be easily adapted to the case of B+∗

n . Then, the core of the
construction consists in a direct computation that provides the expected σ-positive
expression. In contrast to the approach developed by Burckel in the case of B+

n, our
construction uses no transfinite induction—see [4, 5, 6], and therefore it remains
elementary—although quite involved in the general case. This is probably the main
advantage of using the Birman–Ko–Lee generators rather than the Artin generators.

The paper is organized as follows. In Section 1, we briefly review the basic
properties of the dual braid monoids, prove Theorem 1, and deduce a new normal
form result for B+∗

n . In Section 2, we introduce and study a new ordering <∗

on B+∗
n based on the φn-splitting. In Section 3, we establish that the ordering <∗

of Section 2 actually coincides with the Dehornoy ordering, taking for granted a
certain statement called the Key Lemma. Finally, in Section 4, we introduce the
technical notion of a stair, which is a certain type of braid word, prove that φ-
normal words necessarily contain stairs, and deduce the Key Lemma.

1. Dual braid monoids

Dual braid monoids have been introduced by J.Birman, K.Y. Ko, and S. Lee
in [3]. For each n, there exists a submonoid B+∗

n of Bn that properly includes the
monoid B+

n for n > 3, but still admits a Garside structure, i.e., a good divisibility
theory with lcm’s and gcd’s.

In this section, we briefly recall the construction of the dual braid monoid, and its
standard Garside structure, with a particular emphasis on the associated cycling
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automorphism that will play a significant role in subsequent constructions. We
define the notion of φn-splitting of a braid of B+∗

n , and prove Theorem 1.

1.1. Presentation of the dual braid monoid. We follow the usual notation. So
Bn denotes the n-strand Artin braid group, which admits the presentation—see [1]

(1.1)

〈
σ1, ..., σn−1;

σiσj = σjσi for |i−j| > 2

σiσjσi = σjσiσj for |i−j| = 1

〉
.

The positive braid monoid B+

n is defined to be the monoid with the presenta-
tion (1.1). In the standard geometric interpretation, the generator σi corresponds to
the half-twist where the (i+1)st strand crosses over the ith strand. The monoid B+

n

admits a Garside structure—see [14] and [10, 13] for a general definition. We denote
by ∆n the Garside element of B+

n and Φn its filp automorphism.
The dual braid monoid B+∗

n can be introduced as the submonoid of Bn gener-
ated by a new family of generators that consists of certain conjugates of the Artin
generators σi.

Definition 1.1. For 1 6 i < j we put,

(1.2) ai,j = σi ... σj−2 σj−1 σ−1
j−2 ... σ−1

i .

For n > 2, we define the dual braid monoid B+∗
n to be the submonoid of Bn

generated by all the elements ai,j with 1 6 i < j 6 n.

Figure 1. From the left to the right: diagram of the braids

a2,3(= σ3), a1,3(= σ1σ2σ
−1
1 ) and a1,4(= σ1σ2σ3σ

−1
2 σ−1

1 ).

In the sequel, we write [i, j] for the interval {i, ..., j} of N, and we say that [i′, j′]
is nested in [i, j] if we have i < i′ < j′ < j.

Proposition 1.2 (Birman, Ko, Lee [3]). The braid monoid B+∗
n is presented by the

generators ai,j subject to the relations

ai,jai′,j′ = ai′,j′ai,j for [i, j] and [i′, j′] disjoint or nested,(1.3)

ai,jaj,k = aj,kai,k = ai,kai,j for 1 6 i < j < k 6 n.(1.4)

Remark 1.3. Our generators ai,j are not those exactly considered in [3]. Precisely,

for 1 6 s < t 6 n, let ãt,s be σt−1...σs+1 σs σ−1
s+1...σ

−1
t−1. The generators considered

in [3] are the ãt,s, and the dual monoid is defined to be generated by the ãt,s’s.
Now, for all s, t, we have ∆nãt,s∆

−1
n = an−t+1,n−s+1, and, therefore, the flip au-

tomorphism of Bn induces an isomorphism of our current B+∗
n to the submonoid

of Bn considered in [3].

The invariance properties of the family of the braids ai,j can be visualized by
drawing braid diagrams on a cylinder—see Figure 2. Then, it is natural to associate
with ai,j the chord connecting the vertices i and j in a circle with n marked vertices.
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Figure 2. Rolling up the usual diagram helps up to see the symme-

tries of the ai,j ’s. On the resulting cylinder, ai,j naturally corresponds

to the chord connecting the vertices i and j.

Note that, in the chord representation, the relations of type (1.3) correspond
to the fact that, for each chord triangle, the product of two adjacent edges taken
clockwise does not depend on the initial vertex: for instance, on Figure 2, the
triangle (1, 3, 5) gives a1,3a3,5 = a3,5a1,5 = a1,5a1,3. Relations of type (1.4) say that
the generators associated with non-intersecting chords commute: for instance, on
Figure 2, we see that a2,4 and a1,5 commute.

One of the very nice features with the monoid B+∗
n is that it admits a Garside

structure different from that of B+

n. This structure is used in [3] to construct
a greedy normal form and to solve the word problem efficiently. Here, we shall
not really use the whole Garside structure, but only the properties of the Garside
element δn and of the associated conjugation automorphism.

Definition 1.4. For n > 2, we define the braid δn by

(1.5) δn = a1,2 a2,3 ... an−1,n = σ1 σ2 ... σn−1.

Proposition 1.5 (Birman, Ko, Lee [3]). The dual braid monoid B+∗
n admits a

Garside structure associated with the Garside element δn. The associated inner

automorphism φn—defined by φn(β) = δn β δ−1
n —satisfies

(1.6) φn(ai,j) =

{
ai+1,j+1 for j < n,

a1,n for j = n.

In the chord representation the automorphism φn acts as a clockwise rotation
by 2π/n in the circle with n marked vertices—see Figure 3.
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Figure 3. Representation of the inner automorphism φn as a rota-

tion by 2π/n clockwise of the marked circle.



THE CYCLING NORMAL FORM IN DUAL BRAID MONOIDS 5

The Garside element δn of B+∗
n is related to the Garside element ∆n of B+

n, by
the relations ∆2

n = δn
n and ∆n = δn ∆n−1. The flip automorphism Φn of B+

n, which
is the inner automorphism associated with ∆n, is an involution, whereas φn has
order n, as is visible on the representation by a rotation.

Lemma 1.6. For every β in B+∗
n , there exists k > 0 such that δk

n β belongs to B+

n.

Proof. Let β a braid of B+∗
n , then β belongs to Bn. The Garside structure of B+

n

guarantees the existence of k > 1 such that ∆2k′

n · β belongs to B+

n. As ∆2
n = δn

n

holds, the braid δk
n β belongs to B+

n for k = n k′. �

In the sequel, we shall often use the following braids δi,j and some computational
formulas that involve them.

Definition 1.7. For i 6 j, we define δi,j to be ai,i+1...aj−1,j = σi ... σj−1.

Proposition 1.8. The following equalities are satisfied:

ai,j = δi,j δ−1
i,j−1, for i 6 j(1.7)

δi,j = δi,k δk,j for i 6 k 6 j,(1.8)

δi,j δi′,j′ = δi′,j′ δi,j for i 6 j < i′ 6 j′,(1.9)

δ−1
m,n ai,j δm,n = φ−1

n

(
φm(ai,j)

)
for i < j 6 m 6 n.(1.10)

Proof. Relation (1.7) holds by definition of ai,j . Relation (1.8) holds by definition
of δi,j . For Relation (1.9), we observe that the Artin generator of greatest index
in δi,j is σj−1, while the Artin generator of lower index in δi′,j′ is σi′ . Then re-

lation j < i′ implies j−1 6 i′ − 2, and we can apply the Artin commutativity
relation to obtain the expected result. It remains to prove the Relation (1.10).
Form (1.8), we obtain δ1,n = δ1,m δm,n, that implies δm,n = δ−1

1,m δ1,n, i.e., δ−1
m δn.

Then δ−1
m,n ai,j δm,n becomes δ−1

n δm ai,j δ−1
m δn. As, by hypothesis, ai,j lies in B+∗

m ,

the underlined factor equals φm(ai,j). Finally, from B+∗
m ⊆ B+∗

n and φm(ai,j) ∈ B+∗
m ,

we obtain δ−1
n φm(ai,j) δn = φ−1

n

(
φm(ai,j)

)
. �

1.2. The φn-splitting. It is shown in [8] how to associate with every braid β of B+

n

a unique sequence of braids in B+

n−1, called the B+

n−1-splitting of β, that specifies β
completely. In this section, we introduce a similar construction for the dual braid
monoid B+∗

n . The automorphisms φn and Φn do not coincide: in particular, we
saw that Φn has order 2, while φn has order n. Hence, some adaptation of the
construction is needed. However, the properties of divisibility in the monoids B+∗

n

and B+

n are similar, so the needed changes are minor.
The initial observation of [8] is that each braid in the monoid B+

n admits a
unique, well-defined, maximal right divisor that lies in the submonoid B+

n−1. The
same phenomenon occurs with the dual monoid B+∗

n

Lemma 1.9. For n > 3, every braid β of B+∗
n admits a maximal right divisor β1

lying in B+∗
n−1 and the maximal right divisor of β β−1

1 lying in B+∗
n−1 is trivial.

Proof. The submonoid B+∗
n−1 of B+∗

n is closed under right divisor and left lcm. Hence
we can apply Lemma 1.12 of [8]. �

Definition 1.10. The braid β1 given by Lemma 1.9 is called the B+∗
n−1-tail of β.
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Example 1.11. Let us compute the B+∗
2 -tail of δ2

3 . By applying twice Relation (1.4)
to the word a1,2a2,3a1,2a2,3 representing δ2

3 , we obtain successively a1,2a2,3a1,3a1,2

and a1,2a1,3a
2
1,2. We claim that a1,2a1,3 is not right divisible by a1,2, hence the

B+∗
2 -tail of δ2

3 is a2
1,2.

By definition of the B+∗
n−1-tail, the quotient braid β′

1 = ββ−1
1 is right divisible

by no ai,j with j 6 n−1, hence, if it is not trivial, it must be right divisible by at
least one generator ai,n.

Lemma 1.12. Every generator ai,j of B+∗
n belongs to B+∗

n−1∪φn

(
B+∗

n−1

)
∪φ2

n

(
B+∗

n−1

)
.

Proof. The braids ai,j with j 6 n−1 belong to B+∗
n−1. Then, the braids ai,n with

i > 2 belong to φn

(
B+∗

n−1

)
, as we can write ai,n = φn(ai,n−1). There remains

the braid a1,n: it is equal to φn(an−1,n), hence to φ2
n(an−2,n−1), and, therefore, it

belongs to φ2
n

(
B+∗

n−1). �

In [8], one obtains a distinguished decomposition for every braid in B+

n by con-
sidering the B+

n−1-tail and the Φn

(
B+

n+1)-tail alternatively. Here, we shall use the

B+∗
n−1-tail, the φn

(
B+∗

n−1)-tail, ..., and the φn−1
n

(
B+∗

n−1)-tail cyclically to obtain a
distinguished decomposition for every braid of B+∗

n .
We easily obtain the result stated as Theorem 1 in the introduction—an easy

result actually.

Proposition 1.13. Assume that β is a nontrivial braid in B+∗
n . Then there exists

a unique sequence (βp, ..., β1) in B+∗
n−1 satisfying βp 6= 1 and

β = φp−1
n (βp) · ... · φn(β2) · β1,(1.11)

for each r, the braid βr is the B+∗

n−1-tail of φp−r
n (βp) · ... · βr.(1.12)

Proof. The argument is similar to Proposition 1.16 of [8] and we recall it. Starting
from β(0) = β, we define two sequences of braids, denoted β(r) and βr, by

(1.13) β(r) = φ−1
n

(
β(r−1) β−1

r

)
and βr = tailn−1(β

(r−1)),

where tailn−1 denotes the B+∗
n−1-tail. Firstly, we prove the relations:

β = φr
n(β(r)) · φr−1

n (βr) · ... · β1,(1.14)

tailn−1(φn

(
β(r)

)
) = 1(1.15)

for every r > 1. Assume r = 1. Lemma 1.9 implies that the B+∗
n−1-tail of β β−1

1 is

trivial. Then, as φn

(
β(1)

)
equals β β−1

1 , the B+∗
n−1-tail of φn

(
β(1)

)
is trivial, and the

relation β = φn(β(1)) · β1 holds. Assume r > 2. By construction of β(r), we have
φn(β(r)) = β(r−1) β−1

r , hence β(r−1) = φn(β(r)) · βr. Then we have the relation

(1.16) φr−1
n

(
β(r−1)) = φr

n(β(r)) · φr−1
n

(
βr

)

On the other hand, by induction hypothesis, we have

(1.17) β = φr−1
n (β(r−1)) · φr−2

n (βr−1) · ... · β1.

Substituting (1.16) in (1.17), we obtain (1.14). As βr is the B+∗
n−1-tail of β(r),

Lemma 1.9 gives (1.15).
By construction, the sequence of right divisors of β,

β1, φn(β2)β1, φ2
n(β3)φn(β2)β1, ...
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is non-decreasing, and, therefore, it is eventually constant. Hence, by right cancella-
tivity, there exists p such that for r > p, we have φr−1

n (βr) · ... ·β1 = φp−1
n (βp) · ... ·β1.

Then (1.14) implies β = φp
n(β(p))φp−1

n (βp) · ... ·β1, with βp 6= 1 whenever p is chosen
to be minimal.

By definition of p, the B+∗
n−1-tails of β(p), φn(β(p)) and φ2

n(β(p)) are trivial, and

Lemma 1.12 implies that β(p) is right divisible by no ai,j with 1 6 i < j 6 n. Hence

β(p) is trivial, and we have β = φp−1
n (βp) · ... · β1.

The uniqueness of the B+∗
n−1-tail implies the uniqueness of the φn-splitting. �

Definition 1.14. The unique sequence (βp, ...β1) of braids introduced in Propo-
sition 1.13 is called the φn-splitting of β and its length is called the B+∗

n−1-breadth

of β.

As the notion of B+∗
n−1 is fundamental in this paper, we describe several examples.

Example 1.15. We start with the φn-splitting of the generators of B+∗
n , i.e., ai,j

with 1 6 i < j 6 n. For j 6 n−1, the generator ai,j belongs to B+∗
n−1, then its φn-

splitting is (ai,j). As ai,n does not lie in B+∗
n−1, the rightmost entry in its φn-splitting

is trivial. As we have φ−1
n (ai,n) = ai−1,n−1 for i > 2, the φn-splitting of ai,n with

i > 2 is (ai−1,n−1, 1). The braids a1,n and φ−1
n (a1,n) = an−1,n do not lie in B+∗

n−1,

but φ−2
n (a1,n) = an−2,n−1 does. So the φn-splitting of a1,n is (an−2,n−1, 1, 1). Then

the φn-splitting is

(1.18)





(ai,j) for i < j 6 n−1

(ai−1,n−1, 1) for 2 6 i and j = n

(an−2,n−1, 1, 1) for i = 1 and j = n

Remark 1.16. If β1 is the B+∗
n−1-tail of a braid β, then, by definition, the B+∗

n−1-tail

of β β−1
1 is trivial. Hence, Condition (1.12) is equivalent to

(1.19) for each r > 1, the B+∗

n−1-tail of φp−r
n βp · ... · φnβr+1 is trivial.

Example 1.17. We reconsider Example 1.11 and compute the φ3-splitting of δ2
3 .

We know that the B+∗
2 -tail of δ2

3 is a2
1,2. We claim that the B+∗

2 -tail of φ−1
3 (a1,2a1,3)

which is a1,3a2,3, is trivial. The B+∗
2 -tail of φ−1

3 (a1,3a2,3), which is a2,3a1,2, is a1,2.

And, finally, the B+∗
2 -tail of φ−1

3 (a2,3), which is a1,2, is obviously a1,2. Therefore,
the φ3-splitting of δ2

3 is (a1,2, a1,2, 1, a2
1,2), and its 3-breadth is 4.

1.3. The φ-normal form. We shall now deduce from the φn-splitting a unique
normal form for the elements of B+∗

n , i.e., identify for each braid β in B+∗
n a distin-

guished braid word that represents β
The principle is as follows. First, each braid of B+∗

2 is represented by a unique
word a

p
1,2. Then, the φn-splitting provides a distinguished decomposition for every

braid of B+∗
n in terms of braids of B+∗

n−1. Hence, we can obtain a distinguished word
representing β starting from words representing the entries of the φn-splitting of β.
In this way, we shall obtain a normal form on B+∗

n by induction on n.

Definition 1.18. A word on the alphabet of ai,j with i < j 6 n is called a dual

n-braid word. The collection of all dual n-braid words is denoted by ∗B
+

n. For w
in ∗B

+

n, the braid represented by w is denoted by w. Two dual braid words w, w′

representing the same braid are said to be equivalent, denoted w ≡ w′.
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β0φ6(β1)
φ2

6(β2)

φ3
6(β3)

6

5

4

3

2

1

Figure 4. The φn-splitting of a braid of B+∗
n —here B+∗

6 . Starting

from the right, we take the maximal right divisor that keeps the last

strand—here the sixth—unbraided, then rotate counterclockwise by

2π/n—here 2π/6—and take the maximal right divisor that keeps the

first strand unbraided, etc.

Remark 1.19. By Proposition 1.5, the application φn maps a letter to another
letter. Then φn define an application on dual braid words, which is also denoted
φn.

Definition 1.20. (i) For β in B+∗
2 , the φ-normal form of β is defined to be the

unique word a
e
1,2 that represents β.

(ii) For n > 3 and β in B+∗
n , the φ-normal form of β is defined to be the word

φp−1
n (wp) ... w1, where (βp, ..., β1) is the φn-splitting of β and, for each r, the word wr

is the φ-normal form of βr.

Example 1.21. Let us compute the φ-normal form of δ2
4 . It is easy to check the

equality δ2
4 = a1,2 a1,4 δ2

3 , and that the φ4-splitting of δ2
4 is (a2,3, a2,3, 1, δ2

3). The
φ3-splitting of a2,3 is (a1,2, 1), then the φ-normal form of a2,3 is φ3(a1,2) that is
a2,3. We saw in Example 1.17 that the φ3-splitting of δ2

3 is (a1,2, a1,2, 1, a2
1,2). Then

the φ-normal form of δ2
3 is φ3

3(a1,2) ·φ
2
3(a1,2) ·φ3(1) ·a2,3 that is a1,2 ·a1,3 ·ε ·a1,2a1,2,

i.e., a1,2a1,3a1,2a1,2. Finally the φ-normal form of δ2
4 is φ3

4(a2,3) · φ
2
4(a2,3) · φ4(1) ·

a1,2a1,3a1,2a1,2 that is a1,2 · a1,4 · ε · a1,2a1,3a1,2a1,2, i.e., a1,2a1,4a1,2a1,3a1,2a1,2.

The construction is exactly similar to the alternating normal form in [8]. As
for computational issues, all procedures mentioned here for B+∗

n−1 have the same
complexity as their B+

n-counterparts. In particular, the φ-normal form of an n-
strand braid specified by a dual braid word of length ℓ can be computed in time
O(ℓ2).

1.4. Constraints on the splittings. We now establish some constraints that are
necessarily satisfied by the entries of a φn-splitting. Indeed, not every sequence of
braids in B+∗

n−1 need to be the φn-splitting of a braid in B+∗
n , and we shall often use

the technical properties that are established below.
As a braid is represented by a unique φ-normal word, we can unambigously use

the syntactical properties of its normal form.

Definition 1.22. We say that a braid β contains (resp. ends with) ai,j if the
φ-normal form of β does.

With these notions, we can state some constraints that are necessarily satisfied
by the entries of a φn-splitting.
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Lemma 1.23. Assume that (βp, ...β1) is a φn-splitting.

(i) For r > 2, the last letter of βr is ai,n−1 for some i except if βr is trivial.

(ii) For r > 3, the braid βr is non-trivial.

(iii) If βr = β′
r an−2,n−1 holds with β′

r 6= 1 for r > 2, then the last letter of β′
r is

ai,n−1 for some i.

Proof. (i) Let ai,j be the last letter of βr for r > 2. Condition (1.19) implies that
the B+∗

n−1-tail of φp−r+1
n (βp) · ... · φn(βr) is trivial, so, a fortiori, φn(ai,j) does not

lie in B+∗
n−1, i.e., j = n−1.

(ii) Assume p > 4. By definition of splitting, the braid βp is not trivial, and (i)
implies that its last letter is ak,n−1 for some k. Assume that βr is trivial with
r = p−1 > 3. Condition (1.19) implies that the B+∗

n−1-tail of φ2
n(βp)φn(βp−1),

i.e., φ2
n(βp), is trivial. Hence φ2

n(ak,n−1) does not lie in B+∗
n−1, that implies k =

n−2. Now, we state that φ3
n(an−2,n−1) = a1,2 quasi-commutes with φn(βp−2) and

eventually obtain a contradiction. As we have

a1,2 ai,j =

{
ai,j a1,2 for 2 < i,

a1,j a1,2 for 2 = i,

there exists β′ in B+∗
n satisfying a1,2 φn(βp−1) = β′

a1,2. Then a1,2 is an right divisor
of φ3

n(βp) · φ
2
n(βp−1) · φn(βp−2) with p−2 > 2, and we obtain a contradiction with

Condition (1.19). Therefore the braid βp−1 is not trivial. We iterate this process
with r = p−2, ..., 3 to prove (ii). The case p = 3 is obvious since, by definition of
φn-splitting, βp is nontrivial.
(iii) Assume βr = β′

r an−2,n−1 with β′ nontrivial. Let ai,j be the last letter of β′
r.

As we have

(1.20) ai,j an−2,n−1 =

{
an−2,n−1 ai,j for j < n−2,

ai,n−1 ai,j for j = n−2,

we must have j = n−1, for otherwise ai,j would be a right divisor of βr, i.e., the
B+∗

n−1-tail of φn(βr) would not be trivial, which contradicts Condition (1.19). �

In the sequel, we shall often consider subsequences consisting of several adjacent
entries in a splitting. It will be convenient to have a specific notation for such
subsequences.

Notation 1.24. Assume that β is a braid of B+∗
n , with n > 3, whose n-breadth

is p. The braid noted β[q,r] with p > q > r > 1 is defined to be

(1.21) β[q,r] = φq−1
n (βq) · ... · φ

r−1
n (βr),

where (βp, ..., β1) is the φn-splitting of β.

So, in particular, β[1,1] denotes the rightmost entry in the splitting of β, and
β[p,1] is all of β if β has breadth p.

Lemma 1.25. Assume that β is a braid of B+∗
n with n > 3, whose n-breadth is p.

Then the following holds:

(i) For p > q > 1, the φn-splitting of β[q,1] is (βq, ..., β1)
(ii) For p > q > 2, the φn-splitting of β[q,2] is (βq, ..., β2, 1).
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Proof. (i) As a right divisor of β′ lying in B+∗
n is an right divisor of β′′ β′ for β′′

in B+∗
n , Condition (1.19) implies

(1.22) for each r > 1, the B+∗

n−1-tail of φq−r
n (βq) · ... · φn(βr+1) is trivial.

(ii) is a consequence of (i) and that Condition (1.19) does not involve the rightmost
entry in the φn-splitting of β, namely β1. �

2. A linear ordering on B+∗
n

Our aim in the sequeel will be to investigate the restriction of the Dehornoy
ordering of braids to the dual monoid B+∗

n . Our approach will be indirect. What
we shall do is to introduce an auxiliary ordering on B+∗

n recursively defined using the
φn-splitting, and, at the end, prove that this ordering coincides with the standard
ordering.

In this section, we briefly recall the definition of the standard ordering on Bn,
introduce our new ordering <∗, and prove some preparatory results about this
ordering.

2.1. The Dehornoy ordering of braids. We recall the definition of the braid
ordering in terms of σ-positive braid words.

Definition 2.1. (i) A braid word w (in the letters σi) is said to be σi-positive if w
contains at least one σi, no σ−1

i , and no letter σ±

j with j > i.

(ii) A braid β is said to be σi-positive if, among the braid words representing β, at
least one is a σi-positive word.
(iii) A braid is said to be σi-negative if its inverse is σi-positive.
(iv) If β, β′ are braids, we declare that β < β′ is true if the braid β−1β′ is σi-positive
for some i.

Example 2.2. Let us show that ai,j < ai′,j′ holds if and only if either i < j,
or j = j′ and i > i′. Assume j < j′. Then, by the definition of ai,j, the quotient

a
−1
i,j ai′,j′ is represented by

σi ... σj−1 σj σ−1
j−1 ... σ−1

i · σi′ ... σj′−1 σj′ σ−1
j′−1 ... σ−1

i ,

whose generator of greatest index, namely σj′ , appears only positively. Hence we

have ai,j < ai′,j′ . Assume j = j′ and i > i′. Using (1.7), we decompose ai,j

as δi,j δ−1
i,j−1 and ai′,j as δi′,i−1 δi−1,i δi,j δ−1

i′,j−1, i.e., δi′,i−1 ai−1,i δi,j δ−1
i′,j−1, and we

obtain

a
−1
i,j ai′,j = δi,j δ−1

i,j · δi′,i−1 ai−1,i δi,j δ−1
i′,j−1

By (1.10), the underlined factor becomes φ−1
j

(
φi(δi′,i−1 ai−1,i)

)
, that is equal to

φ−1
j (δi′+1,i a1,i), i.e., δi′,i−1ai−1,j . Hence the quotient a−1

i,j · ai′,j′ is represented by

δi,j−1 δi′,i−1 ai−1,jδ
−1
i′,j−1 = σi...σj−2 σi′ ...σi−2 σi−1...σj−1 σj σ−1

j−2...σ
−1
i−1 σ−1

j−1...σ
−1
i′ ,

where the generator of greatest index, i.e., σj appears only positively, and the

relation ai,j < ai′,j holds (for i > i′). Thus we obtained the well-ordered sequence

a1,2 < a2,3 < a1,3 < a3,4 < a2,4 < a1,4 < ... < an−1,n < ... < a1,n.

Proposition 2.3. [11] For each n, the relation < is a linear ordering of Bn that

is invariant under left multiplication.
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Remark 2.4. It should be noted that we use here the so-called upper version of the
ordering, in which one takes into account the generator σi with greatest index, and
not the lower version, in which one considers the generator with lowest index. This
choice is necessary here, because we wish that B+∗

n−1 is an initial segment of B+∗
n ,

which would not be true if we were considering the lower version of the ordering.

Following [11], we recall that, in Proposition 2.3, the non-trivial parts are :

Property A. Every σ-positive braid is non-trivial.

Property C. Every braid is σ-positive or σ-negative.

In the sequel, we shall never use Proposition 2.3, i.e., we shall not pre-suppose
that the relation < of Definition 2.1 is a linear ordering. The only properties of <
we shall use are the following trivial facts—plus Property A, but exclusively for
the corollaries.

Lemma 2.5. The relation < is transitive, and invariant under left-multiplication.

2.2. The <∗-ordering. As was said in the introduction, we aim at proving results
about the restriction of the ordering < to the dual braid monoid B+∗

n , but we shall
do that indirectly, first introducing an auxiliary ordering <∗, and eventually proving
that the latter coincides with the original braid ordering.

The construction of the auxiliary ordering <∗ is recursive, based on the φn-
splitting of Definition 1.14.

Definition 2.6. For n > 2, we recursively define <∗
n on B+∗

n as follows:
(i) For β, β′ in B+∗

2 , we declare that β <∗
2 β′ is true if we have β =a

p
1,2 and β′=a

q
1,2

with p < q;
(ii) For β, β′ in B+∗

n with n > 3, we declare that β <∗
n β′ is true if the φn-splitting

of β is smaller than this of β′ for the ShortLex-extension of <∗
n−1.

We recall that a sequence s is said to be ShortLex-smaller than s′ if the length
of s is strictly smaller than the length of s′, or the lengths are equal and s is
lexicographically smaller than s′ (for some prescribed ordering on the set of entries).

Example 2.7. As was seen in Example 1.15, the φn-splitting of ai,j of B+∗
n is

(2.1)





(ai,j) for i < j 6 n−1

(ai−1,n−1, 1) for 2 6 i and j = n

(an−2,n−1, 1, 1) for i = 1 and j = n

Hence a1,n is the <∗-greatest generator of B+∗
n , and we have ai,j <∗

n ak,n for all
i < j < n and k < n. Then, an easy induction gives

1 <∗

n a1,2 <∗

n a2,3 <∗

n a1,3 <∗

n a3,4 <∗

n a2,4 <∗

n a1,4 <∗

n ... <∗

n an−1,n <∗

n ... <∗

n a1,n.

So, we can see that the relations < and <∗
n agree on the generators of B+∗

n .

Proposition 2.8. For n > 2, the relation <∗
n is a well-ordering of B+∗

n . For each

braid β, the immediate <∗
n-successor of β is βa1,2, i.e., βσ1.

Proof. The ordered monoid (B+∗
2 , <∗

2) is isomorphic to N with the usual ordering
that is a well-ordering. As the ShortLex-extension of an well-ordering is itself a
well-ordering, we prove inductively on n that <∗

n is a well-ordering. The second
result is an immediate consequence that if the φn-splitting of a braid β is (βp, ...β1)
then the φn-splitting of βa1,2 is (βp, ..., β1a1,2). �
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The connection between the ordering <∗
n−1 and the restriction of <∗

n to B+∗
n−1 is

easily described: the next result states that B+∗
n−1 is an initial segment of B+∗

n .

Proposition 2.9. For n > 3, the monoid B+∗
n−1 is the initial segment of (B+∗

n , <∗
n)

determined by an−1,n, i.e., we have B+∗
n−1 = {β ∈ B+∗

n | β <∗
n an−1,n}. Moreover

the braid an−1,n is the smallest of n-breadth 2.

Proof. First, by construction, every braid of n-breadth 1 belongs to B+∗
n−1. On the

other hand, the φn-splitting of an−1,n is (an−2,n−1, 1). Let β be a braid of B+∗
n−1

that satisfies β <∗
n an−1,n. We saw in Example 1.15 that the n-breadth of an−2,n−1

is 2, so, by definition of <∗
n, the n-breadth of β is at most 2. We shall show that,

in fact, it must be at most 1, i.e., β lies in B+∗
n−1.

Assume first n = 3. By definition, every φ3-splitting of length 2 has the form
(ap

1,2, a
q
1,2) with p 6= 0. Hence the braid a2,3, whose φ3-splitting is (a1,2, 1), is the

<∗
3-smallest element of B+∗

3 with 3-breadth equal to 2. So, by definition of the
ShortLex-extension, β <∗

3 a1,2 implies that the 3-breadth of β is 1, and, therefore,
that β lies in B+∗

2 .
Assume now n > 3. Assume for a contradiction that the n-breadth of β is 2. Let

(β2, β1) be the φn-splitting of β. As the φn-splitting of an−1,n is (an−2,n−1, 1), and
β1 <∗

n−1 1 is impossible, the hypothesis β <∗
n an−1,n implies β2 <∗

n−1 an−2,n−1. By
induction hypothesis, this implies that β2 lies in B+∗

n−2, hence φn(β2) lies in B+∗
n−1.

This contradicts Condition (1.19). So the hypothesis that β has n-breadth 2 is
contradictory, and β necessarily lies in B+∗

n−1. �

Building on the compatibility result of Proposition 2.9, we can now drop the
subscript in the ordering <∗

n, and, from now on, write <∗ for arbitrary braids
in B+∗

∞ , which is an inductive limit of the B+∗
n .

2.3. The braids δ̂n,p. By definition, for r < p, every braid in B+∗
n that has n-

breadth r is <∗-smaller than every braid that has n-breadth p. As the ordering <∗

is a well-ordering, there must exist, for each p, a <∗-smallest braid with n-breadth p.
It is easy to identify these braids, which are sorts of separators for <∗, and which
will play an important role in the sequel.

Clearly, the least upper bound of all braids with n-breadth 1 is a1,2, i.e., σ1.
Proposition 2.9 implies that the least upper bound of all braids with n-breadth 2
is an−1,n. From n-breadth 3, a periodic pattern appears.

Definition 2.10. For q > 1, we define δ̂n,q = φq+1
n (an−2,n−1) · ... · φ

2
n(an−2,n−1).

For instance, we find δ̂6,4 = φ5
6(a4,5) · φ

4
6(a4,5) · φ

3
6(a4,5) · φ

2
6(a4,5) that is equal to

a3,4 a2,3 a1,2 a1,6 and δ̂5,3 = a2,3 a1,2 a1,5.

Proposition 2.11. For all n > 3 and q > 1,

(i) the φn-splitting of δ̂n,q is the length q+2 sequence (an−2,n−1, ..., an−2,n−1, 1, 1).

(ii) the relation δ̂n,q = δq
nδ−q

n−1 holds;

(iii) the braid δ̂n,q is the <∗-smallest braid in B+∗
n that has n-breadth q+2—hence

it is the least upper bound of all braids of n-breadth 6 q+1.

Proof. (i) By definition of δ̂n,q it is sufficient to show that the length q+2 sequence
(an−2,n−1, ...an−2,n−1, 1, 1) is a φn-splitting. First, we observe that there does not
exist relation an−1,n an−2,n−1 = ... in the presentation of the monoid B+∗

n . Then
the word an−1,nan−2,n−1 = φn(an−2,n−1) an−2,n−1 is alone in its equivalence class
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under the relation of B+∗
n . An easy induction, using the symmetries of the presenta-

tion of B+∗
n under φn, establishes that the word w = φr−1

n (an−2,n−1) · ... ·an−2,n−1 is
also alone in its equivalence class for all r. In particular the braid w is right divisible
by only one generator, namely an−2,n−1. For p > 3 we put βp = ... = β3 = an−2,n−1

and β2 = β1 = 1. We have to prove that (βp, ..., β1) is a φn-splitting. As every
entry lies in B+∗

n−1, it remains to prove Condition (1.19). By the above remark the

only generator that divides φp−r
n (βp) · ... · φn(βr+1) is φn(an−2,n−1), i.e., an−1,n for

r > 2 and φ2
n(an−2,n−1),i.e., a1,n for r = 1. Therefore, for p > 3, the length p

sequence (an−2,n−1, ..., an−2,n−1, 1, 1) is a φn-splitting.

(ii) We use an induction on q. Assume q = 1. By (1.7), we have a1,n = δnδ−1
n−1.

Using the relation φn(β) δn = δn β, we deduce

δ̂n,1 = φ2
n(an−2,n−1) = a1,n = δn δ−1

n−1.

Assume now q > 2. Using the induction hypothesis and pushing δq−1
n to the left,

we find:

δ̂n,q = φq+1
n (an−2,n−1) δ̂n,q−1 = φq+1

n (an−2,n−1) δq−1
n δ−q+1

n−1

= δq−1
n φ2

n(an−2,n−1) δ−q+1
n−1

= δq−1
n a1,n δ−q+1

n−1

= δq−1
n δn δ−1

n−1 δ−q+1
n−1 = δq

n δ−q
n−1,

which is the expected formula.

(iii) Let (βq+2, ..., β1) be the φn-splitting of β lying in B+∗
n satisfying β 6∗ δ̂n,q. By

definition of <∗, we have the relation βq+2 6
∗
an−2,n−1. As the last letter of βq+2

is ai,n−1, by Lemma 1.23 (i) and (ii), the (n−1)-breadth of βq+2 is at least 2. Then
Proposition 2.9 implies that βq+2 is equal to an−2,n−1. By definition of <∗ again,

the relation β[q+1,1] 6
∗ δ̂n,q−1 holds. Hence, inductively, we obtain βr = an−2,n−1

for r > 3 and β[2,1] 6
∗ 1, which implies β[2,1] = 1. This is the expected result. �

Owing to Proposition 2.11, it is coherent to extend Definition 2.10 by δ̂n,0 = an−1,n.
In this way, the result of Proposition 2.11(iii) extends to the case r = 0.

Lemma 2.12. Assume n > 3. Then p < q implies δ̂n,p < δ̂n,q.

Proof. Let p and q be integers satisfying 0 < p < q. By point (ii), we have

(2.2) δ̂−1
n,p · δ̂n,q = δp

n−1 δ−p
n · δq

n δ−q
n−1 = δp

n−1 δq−p
n δ−q

n−1.

where the underlined factor is σn−1-positive and the other does not involve the nth

strand, i.e., δ̂−1
n,p · δ̂n,q is σn−1-positive. It remains to establish the result for p = 0.

With the previous case, by transitivity of <, we can suppose p = 0 and q = 1.
Using Proposition 2.11 (ii) and inserting δnδ−1

n on the left, we obtain

(2.3) δ̂−1
n,0 δ̂n,1 = a

−1
n−1,n δn δ−1

n−1 = δn δ−1
n a

−1
n−1,nδn δ−1

n−1.

By definition of φn, the underlined factor in (2.3) is φ−1
n (a−1

n−1,n) that is equal

to a
−1
n−2,n−1, and it follows that δ̂−1

n,0 δ̂n,1 is σn−1-positive. �

Remark 2.13. By Proposition 2.11 (ii), for p > 1, the quotient δ̂−1
n,p δp

n is equal

to δp
n−1, which is σ-positive. This implies δ̂n,p < δp

n. As δp
n−1 lies in B+∗

n−1, for
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p > 1, the φn-splitting of δp
n is the length p+2 sequence

(an−2,n−1, ..., an−2,n−1, 1, δp
n−1).

So we see in these examples that the orderings <∗ and < agree on the separators δ̂n,p

and on the powers of the Garside element.

3. The main result

We shall now state our main result, which connects the orderings < and <∗, and
list its consequences. The main technical step of the proof is stated here as Key
Lemma. Its proof is postponed to the subsequent sections.

3.1. The connection between orderings, and its applications. At this point,
we have two a priori unrelated linear orderings of the dual braid monoid B+∗

n−1,
namely the Dehornoy ordering, and the ordering <∗ constructed in Section 2 by a
recursive definition. The main result is the following:

Theorem 3.1. For all braids β, β′ in B+∗
n , the relation β <∗ β′ implies β < β′.

Before starting the proof of this result, we list a few direct consequences.
First we obtain a new proof of Property C.

Corollary 3.2 (Property C). Every non-trivial braid is σ-positive or σ-negative.

Proof. Assume that β is a non-trivial braid of Bn. First, as Bn is the fraction group
of B+∗

n , there exist two braids β′ and β′′ in B+∗
n such that β equals β′−1β′′. As β

is assumed to be non-trivial, we have β′ 6= β′′. As <∗ is a strict linear ordering,
one of β′ <∗ β′′ or β′′ <∗ β′ holds. In the first case, Theorem 3.1 implies that
β′−1β′′, i.e., β, is σ-positive. In the second case, Theorem 3.1 implies that β′′−1β′

is σ-positive, hence β is σ-negative. �

Corollary 3.3. The relation <∗ coincide with the restriction of < to B+∗
n .

Proof. Let β, β′ belong to B+∗
n . By Theorem 3.1, β <∗ β′ implies β < β′. Con-

versely, assume β 6<∗ β′. As <∗ is a linear ordering, we have either β′ <∗ β, hence
β′ < β, or β = β′. In both cases, Property A implies that β < β′ fails. So the
equivalence is established. �

By construction, the ordering < is invariant under left-multiplication. So it
follows from Corollary 3.3 that the ordering <∗ is invariant as well: note that the
latter result is not obvious at all from the direct definition of that relation.

Another direct consequence is the structural result mentionned as Theorem 2 in
the introduction:

Corollary 3.4. The Dehornoy ordering of the dual braid monoid B+∗
n admits the

following recursive characterization: for β, β′ in B+∗
n , the relation β < β′ holds if

and only if, denoting by (βp, ..., β1) and (β′
p′ , ..., β′

1) the φn-splittings of β and β′,

the sequence (βp, ..., β1) is smaller than the sequence (β′
p′ , ..., β′

1) with respect to the

ShortLex-extension of the ordering of B+∗
n−1.

Proof. Indeed, the above characterization is just the recursive definition of the
ordering <∗. �

Finally, we obtain a new proof of Laver’s result, together with a determination
of the order type.
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Corollary 3.5. The Dehornoy ordering of B+∗
n is a well-ordering, and its order

type is the ordinal ωωn−2

.

Proof. It is standard that, if (X, <) is a well-ordering of ordinal type λ, then the
ShortLex-extension of < on the set of all finite sequences in X is a well-ordering
of ordinal type λω. The ordinal type of <∗ on B+∗

2 is ω, the ordering type of the
standard ordering of natural numbers. So, an immediate induction shows that, for

each n > 2, the ordinal type of <∗ on B+∗
n is at most ωωn−2

.
A priori, we only have an upper bound, because it is not true that every sequence

of braids in B+∗
n−1 is the splitting of a braid in B+∗

n . However, by construction, the
monoid B+∗

n includes the positive braid monoid B+

n, and it was shown in [4]—or,
alternatively in [7]—that the ordinal type of the restriction of the Dehornoy ordering

to B+

n is ωωn−2

. Hence the ordinal type of its restriction to B+∗
n is at least that

ordinal, and, finally, we have equality. �

3.2. Splitting the problem. The proof of Theorem 3.1 consists in computing a
σ-positive word representing the quotient β−1β′ when the braids β and β′ of B+∗

n

satisfy β <∗ β′. The computation is direct and effective—so, in particular, it results
in an algorithm for finding σ-positive representatives.

However, describing the computation and proving its correctness is a rather
delicate process, and we shall split it into several steps.

So, our problem is to prove

(3.1) β <∗ β′ implies β < β′

The first step consists in replacing the initial problem that involves two arbitrary
braids β, β′ with two problems, each of which only involves one braid. To this end,

we shall use the separators δ̂n,r of Definition 2.10, and show how to reduce the

problem to comparing an arbitrary braid with the special braids δ̂n,r.
In particular, we shall address the questions of proving that

β <∗ δ̂n,q implies β < δ̂n,q(3.2)

δ̂n,p 6
∗ β implies δ̂n,p 6 β(3.3)

We have three things to do: proving (3.2), proving (3.3), and showing how to
deduce the general result (3.1).

We shall see now that the first of these three tasks is easy.

Proposition 3.6. For β in B+∗
n with n-breadth at most q+1, the braid β−1δ̂n,q is

σn−1-positive.

Proof. Let (βp, ..., β1) be the φn-splitting of β with p 6 q+1. If q = 0 holds the

result is immediate since δ̂n,0 = an−1,n is σn−1-positive and β lies in B+∗
n−1. Assume

q > 0. Then we have

β−1δ̂n,q = β−1 · δq
n · δ−q

n−1 = β−1
1 · φn(β−1

2 ) · ... · φp−1
n (β−1

p ) · δq
n · δ−q

n−1.

Using the relation φk
n(β′) · δk

n = δk
n · β′ that follows from the definition of φn for

every nonnegative k, we push the p−1 factors δn to the left and dispatch them
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between the β−1
i :

β−1δ̂n,q = β−1
1 · φn(β−1

2 ) · ... · φp−2
n (β−1

p−1) · φ
p−1
n (β−1

p ) · δp−1
n · δq−p+1

n · δ−q
n−1

= β−1
1 · φn(β−1

2 ) · ... · φp−2
n (β−1

p−1) · δ
p−2
n · δn · β−1

p · δq−p+1
n · δ−q

n−1

...

= β−1
1 · δn · β−1

2 · ... · β−1
p−1 · δn · β−1

p · δq−p+1
n · δ−q

n−1.

Each braid βr belongs to B+∗
n−1, and so its inverse β−1

r does not involve the nth

strand. For the same reason the braid δ−q+2
n−1 does not involve the nth strand. On

the other hand, the braid δn is σn−1-positive, and occurs at least once in the above

decomposition of β−1δ̂n,q. Hence the latter is σn−1-positive. �

Corollary 3.7. Implication (3.2) is true.

Proof. Assume β <∗ δ̂n,q. By Proposition 2.11(iii), the n-breadth of β is at

most q+1. By Proposition 3.6, the braid β−1δ̂n,q is σ-positive, hence β < δ̂n,q

is true. �

As the following example shows, we cannot hope to prove (3.3) using the argu-
ment of Proposition 3.6.

Example 3.8. Let β be the braid a2,4a1,3a2,4a3,4a1,2. The φ4-splitting of β is

(a1,3, a1,3, a1,3a2,3, a1,2), so its 4-breadth is 4. We try to prove that δ̂−1
4,2 β is σ-

positive or trivial. We start from

δ̂−1
4,2 β = δ2

3 · δ−2
4 · β = δ2

3 · δ−2
4 · φ3

4(a1,3) · φ
2
4(a1,3) · φ4(a1,3a2,3) · a1,2.

Following the scheme of Proposition 3.6 we push the 2 factors δ−1
4 to the right and

dispatch them between the φ4(βr):

δ̂−1
4,2 β = δ2

3 · δ−2
4 · φ3

4(a1,3) · φ
2
4(a1,3) · φ4(a1,3a2,3) · a1,2

= δ2
3 · φ4(a1,3) · δ

−1
4 · δ−1

4 · φ2
4(a1,3) · φ4(a1,3a2,3) · a1,2

= δ2
3 · φ4(a1,3) · δ

−1
4 · φ4(a1,3) · δ

−1
4 · φ4(a1,3a2,3) · a1,2.(3.4)

Now we could conclude if the underlined factors were σ3-positive. But this is just
false: we have φ4(a1,3) · δ

−1
4 = a2,4 · δ−1

4 = a
−1
3,4 a

−1
1,2, so the underlined factors are

σ3-negative.

Nevertheless, we observe now that, in good cases, the previous argument works.
Assume β is a braid of B+∗

n . Let (βp, ...β1) be the φn-splitting of β. Then we
consider the following conditions

(∗) for r > 3, the last letter of βr is an−2,n−1.

Proposition 3.9. Assume that β satisfies the conditions of (∗). Then Implica-

tion (3.3) is true for β.

Proof. Let (βp, ..., β1) be the φn-splitting of β. By hypothesis, β satisfies the con-

ditions of (∗). Then, for r > 3, we denote by β′
r the braid βr a

−1
n−2,n−1. As in

Example 3.8, we obtain

δ̂−1
n,p−2 β = δp−2

n−1 · φn(β′

pan−2,n−1) · δ
−1
n · ... · φn(β′

3an−2,n−1) · δ
−1
n · φn(β2) · β1.
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As φn(an−2,n−1) · δ
−1
n equals an−1,nδ−1

n that is δ−1
n−1, we obtain

(3.5) δ̂−1
n,p−2 β = δp−2

n−1 · φn(β′

p) · δ
−1
n−1 · ... · φn(β′

3) · δ
−1
n−1 · φn(β2) · β1,

If β[p,3] equals δ̂n,p−2, by definition of δ̂n,p−2, the braid β′
r is trivial for r > 3. Then

the quotient δ̂−1
n,p−2 β equals φn(β2) · β1 that is σ-positive or trivial. Otherwise,

if β[p,3] 6= δ̂n,p−2 holds, by Lemma 1.23 (iii), one of the braids β′
p, ..., β

′
3 ends by

ai,n−1 for some i, i.e., is σn−2-positive. Then, by (3.5), the quotient δ̂n,p−2 β is

σn−1-positive. �

Corollary 3.10. For n = 3, Implication (3.3) is true for β.

Proof. The braid a1,2 is the only generator of the form ai,n−1 for n = 3. So
Condition (∗) is satisfied for every braid β in B+∗

3 . �

3.3. Dangerous elements. As we shown in Example 3.8, we cannot prove Impli-
cation (3.3) for n > 4 by just pushing the factors δ−1

n to the right in the φn-splitting
of β and obtain the desired expression. We shall now identify the fragments in βr

that can result in the quotient φn(β) δ−1
n being σn−1-negative.

Example 3.11. In Example 3.8 we prove that the quotient is φ4(a1,3) · δ−1
4 is

σ3-negative. In the other hand the quotient φ4(a2,3) · δ−1
4 is equal to δ−1

3 that is

not σ3-negative. We have to isolate what are the differences between a1,3 and a2,3.

First, we observe that the braid a1,3 can be decomposed as a1,2a2,3a
−1
1,2, where a2,3

and a negative part, i.e., a−1
1,2, occur. The idea consists to split a1,3 in two factors

and obtain

(3.6) φ4(a1,3) · δ
−1
4 = φ4(a1,2a2,3) · δ

−1
4 · φ2

4(a
−1
1,2) = φ4(a1,2) · δ

−1
3 · φ2

4(a
−1
1,2),

We substitute the first underlined factor of (3.4) by φ4(a1,2) ·δ
−1
3 ·φ2

4(a
−1
1,2) to obtain

δ̂−1
4,2 β = δ2

3 · φ4(a1,3) · δ
−1
4 · φ4(a1,3) · δ

−1
4 · φ4(a1,3a2,3) · a1,2

= δ2
3 · φ4(a1,2) · δ

−1
3 · φ2

4(a
−1
1,2) · φ4(a1,3) · δ

−1
4 · φ4(a1,3a2,3) · a1,2

= δ2
3 · φ4(a1,2) · δ

−1
3 · φ4(φ4(a

−1
1,2) · a1,3) · δ

−1
4 · φ4(a1,3a2,3) · a1,2(3.7)

Now we would apply anymore this method, the only obstruction is that the under-
lined factor is not exactly the third terms of the φ4-splitting of β, but they are not
very different as show the following computation:

(3.8) φ4(a
−1
1,2) · a1,3 = a1,3a

−1
1,2 = a1,2a2,3a

−2
1,2.

So, the negative part of φ4(a
−1
1,2) · a1,3 is a

−2
1,2. We substitute the underlined factor

of (3.7) by (3.8) to obtain

δ̂−1
4,2 β = δ2

3 · φ4(a1,2) · δ
−1
3 · φ4(a1,2a2,3a

−2
1,2) · δ

−1
4 · φ4(a1,3a2,3) · a1,2

= δ2
3 · φ4(a1,2) · δ

−1
3 · φ4(a1,2a2,3) · δ

−1
4 · φ2

4(a
−2
1,2) · φ4(a1,3a2,3) · a1,2

= δ2
3 · φ4(a1,2) · δ

−1
3 · φ4(a1,2) · δ

−1
3 · φ4(φ4(a

−2
1,2) · a1,3a2,3) · a1,2

An immediate generalization of (3.8) gives φ4(a
−2
1,2) · a1,3 = a1,3 · a−2

1,2. Then we
obtain:

δ̂−1
4,2 β = δ2

3 · φ4(a1,2) · δ
−1
3 · φ4(a1,2) · δ

−1
3 · φ4(a1,3a

−2
1,2) · a1,2

= δ2
3 · a2,3 · δ

−1
3 · a2,3 · δ

−1
3 · a2,4 · a

−2
2,3 · a1,2,
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that is σ3-positive as the underlined factor is σ3-positive and the other braid can be
express with σ±

1 and σ±

2 .

We now introduce the general form of the braids that play the role of the negative
fragments a−1

1,2 and a
−2
1,2 of Example 3.11, i.e., that possibly endanger the expected

σ-positivity.

Definition 3.12. Assume i 6 n−1. A braid β of B+∗
n−1 is said to be ai,n-dangerous

if it admits a decomposition of the form

(3.9) β+

0 δ−1
i,n−1 β+

1 ... β+

d−1 δ−1
i,n−1 β+

d

where β+

0 , ..., β+

d belongs to B+

n−1.

For instance a
−1
1,2 and a

−2
1,2 are a1,3-dangerous. By (1.7) each generator ai,n can

be decomposed as δi,n−1 · an−1,n · δ−1
i,n−1. Then the negative part of ai,n is an

ai,n-dangerous braid.
A braid can be ai,n-dangerous for many i.

Lemma 3.13. An ai,n-dangerous braid is also aj,n-dangerous for j 6 i.

Proof. Let β be an ai,n-dangerous braid. By definition, we have

β+

0 δ−1
i,n−1 β+

1 ... β+

d−1 δ−1
i,n−1 β+

d

with β+

0 , ..., β+

d belongs to B+

n−1. Using the relation δj,n−1 = δj,iδi,n−1, we obtain

β = β+

0 δ−1
j,n−1 δj,iβ

+

1 ... δj,iβ
+

d−1 δ−1
j,n−1 δj,iβ

+

d

= γ+

0 δ−1
j,n−1 γ+

1 ... γ+

d−1 δ−1
j,n−1 γ+

d

with γ+

0 = β+

0 and γ+

k = δi,jβ
+

k for k = 1, ..., d. As δi,j together with β′
k lies in B+

n−1

the braids γ+

k belong to B+

n−1, that prove β is aj,n-dangerous. �

3.4. The notion of a σi,n−1-positive braid. We wish now state the Key Lemma,
that will eventually allow us to prove both Implication (3.3) and Theorem (3.1),
we have to introduce one more family of braids, namely a refinement of the notion
of σn−1-positive braid in which we identify a dangerous part.

First, it is convenient to consider the following weakening of σi-positivity.

Definition 3.14. A braid β is said to be σi-nonnegative if it is σi-positive, or it
belongs to Bi.

For instance the trivial braid, σ−1
1 and σ2 σ−1

1 are σ2-nonnegative. Note that an
ai,n-dangerous braid is also σn−1-nonnegative.

Definition 3.15. Assume i 6 n−1.
(i) A braid β lying in B+∗

n is called σi,n−1-positive with i 6 n−2 if it admits a
decomposition of the form

(3.10) β∗ · an−1,n · β∗ = β∗ · σn−1 · β∗

where β∗ is σn−1-nonnegative and β∗ is ai,n-dangerous.

(ii) A braid β lying in B+∗
n is called σn−1,n−1-positive if it admits a decomposition

of the form

(3.11) β∗ · an−1,n · β∗ · an−1,n = β∗ · σn−1 · β∗ · σn−1

where β∗ is σn−1-nonnegative and β∗ is σj,n−1-positive for some j.
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The following properties directly follow from Definitions 3.15 and 3.14.

Lemma 3.16. (i) Every σi,n−1-positive braid is σn−1-positive.

(ii) If β is σn−1-nonnegative and β′ is σi,n−1-positive, then β β′ is σi,n−1-positive.

(iii) An σi,n−1-positive braid is also σj,n−1-positive for j 6 i.

Proof. (i) As β∗ and β∗ are σn−1-nonnegative, the braids (3.10) and (3.11) are

σn−1-positive. (ii) The product of two σn−1-positive braid is σn−1-positive, so is
β β∗. (iii) Immediate by Lemma 3.13. �

Example 3.17. Every braid of B+∗
n−1 that is right divisible by ai,n with i < n−1

is σi,n−1-positive. Indeed, by definition, such an element admits an expression of

the form β ai,n where β is an element of B+∗
n−1, and the generator ai,n can be

decomposed as δi,n−1 · an−1,n · δ−1
i,n−1. Then we put β∗ = β δi,n−1 and β∗ = δi,n−1,

and we conclude that β is σi,n−1-positive.

In general a braid that is right divisible by an−1,n is not σn−1,n-positive. Indeed

an−1,n is not σn−1,n-positive.

Lemma 3.18. Every β braid of B+∗
n differents from an−1,n, whose last letter is

ak,n, is σk,n−1-positive.

Proof. If the last letter of β is ak,n−1, then β is right divisible by ak,n−1. Thus the
case k < n−1 has been observed in Example 3.17. Assume k = n−1. By hypothesis
the φ-normal form of β ending by an−1,n. so the B+∗

n−1-tail of β is trivial. Let w be
the dual braid word such that the φ-normal word of β is wan−1,n. The hypothesis
β 6= an−1,n guarantees that w is not empty. We shall prove that w ends by ai,n−1

for some i. We decompose w as w′
ai,j . The B+∗

n−1-tail of β is trivial, hence the
relations

(3.12) ai,j an−1,n =

{
an−1,n ai,j for j < n−1,

ai,n ai,j for j = n−1,

imply j = n. Therefore the φ-normal form of β is w′
ai,nan−1,n. Let β′ to be the

braid represented by w′. By (1.7), we can decompose ai,n as δi,n−1 · an−1,n · δ−1
i,n−1.

Then β admits a decomposition of the form (3.11) with β∗ = β′ · δi,n−1 and β∗ =

δ−1
i,n−1. �

3.5. The Key Lemma. We recall that our aim is to prove Implication (3.3) in
the general case, and to show how to deduce Implication (3.1). Actually, we shall
establish a unique statement, which is a refinement of Implication (3.3):

Proposition 3.19 (Key Lemma). Assume that (βp, ..., β2, 1) is the φn-splitting of

a braid β in B+∗
n with p > 2. Let ai−1,n−1 be the last letter of βp and aj,n is the

one of β. Then, for every σi−1,n−2-positive braid β′, the braid

(3.13) δ−p+2
n · φp−1

n (β′) · φp−2
n (βp−1) · ... · φn(β2)

is σj,n−1-positive.

We postpone the proof of Proposition 3.19 to Section 4, and show now how it
implies Implication (3.3). We begin with an easy preparatory lemma.
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Lemma 3.20. Assume n > 3. Let β be a braid of B+∗
n , and let (βq, ..., β1) be its

splitting. Assume q > 3. Let r to be the greatest index satisfying βr 6= an−2,n−1 if

such an index exists, and 0 otherwise. Then we have

(3.14) δ−q+2
n β =

{
δ−q+r
n−1 δ−r+2

n β[r,1] for r > 3,

δ−q+2
n−1 φn(β2) β1 for r 6 2.

Proof. Pushing q− r factors of δ−q+2
n to the right in the decomposition of δ−q+2

n β,
we obtain

δ−q+2
n β = δ−q+2

n φq−1
n (βq) · ... · φ

r
n(βr+1) · φ

r−1
n (βr) · ... · β1

= φn(βq) δ−1
n δ−q+3

n · ... · φr
n(βr+1) · φ

r−1
n (βr) · ... · β1

...

= φn(βq) δ−1
n · ... · φn(βr+1) δ−1

n δ−r+2
n · φr−1

n (βr) · ... · β1

= φn(an−2,n−1) δ−1
n · ... · φn(an−2,n−1) δ−1

n δ−r+2
n · φr−1

n (βr) · ... · β1.

Using the relation φn(an−2,n−1) δ−1
n = δ−1

n−1, the expected result follows. �

Now, we prove the following result than is an adaptation of the Key Lemma in
a special case.

Lemma 3.21. Assume that (βp, ..., β2, 1) is the φn-splitting of a braid in B+∗
n with

p 6 2 and that the last letter of βp is an−2,n−1. Let aj,n be the last letter of β.

Then the braid

(3.15) δ−p+2
n · φp−1

n (an−2,n−1) · φ
p−2
n (βp−1) · ... · φn(β2),

is σj,n−1-positive for β[p−1,2] 6= φp−2
n (an−2,n−1) · .. · φ

2
n(an−2,n−1), and equals δ−p+2

n−1

otherwise.

Proof. Let r be the greatest integer satisfying βr 6= an−2,n−1 and r 6 p−1. If
r 6 1 holds, the braid β[p−1,2] equals φp−2

n (an−2,n−1) · .. · φ2
n(an−2,n−1), and, by

Lemma 3.20, the braid (3.15) equals δ−q+2
n−1 , which is the expected result in this

case. Assume r > 2. By Lemma 3.20, the braid (3.15) equals δ−p+r
n−1 δ−r+2

n β[r,2].

By definition of r, Lemma 3.18 guarantees that βr is σi−1,n−1-positive for some i.

Then Proposition 3.19 implies that δ−r+2
n β[r,2] is σj,n−1-positive, and so is the

braid (4.15), since δ−1
n−1 is σn−1-nonnegative. �

Then the Key Lemma (Proposition 3.19) implies the second of our expected
implications.

Corollary 3.22. For n > 3, Implication (3.3) is true.

Proof. Let β be a braid satisfying δ̂n,p 6
∗ β and let (βq, ..., β1) be its φn-splitting.

By definition of 6∗, we have p+2 6 q. Assume first p > 1. As we have

(3.16) δ̂−1
n,p β = δ̂−1

n,p δ̂n,q−2 · δ̂
−1
n,q−2 β,

and as the not underlined factor is σ-positive by Proposition 2.11 (iv), we can
suppose q = p+2. Using Proposition 2.11 (ii), we establish

(3.17) δ̂−1
n,q−2 β = δq−2

n−1 δ−q+2
n β,

which, by Lemma 3.21, is σ-positive.
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Assume now p = 1. As in the previous case, we can suppose q = 2. Let (β2, β1)
be the φn-splitting of β, then we obtain

δ̂−1
n,0 β = an−1,n φn(β2) · β1 = φn(a−1

n−2,n−1)φn(β2)β1 = φn(a−1
n−2,n−1 β2) · β1.

We use induction on n. For n = 3, there exists e > 1 such that β2 = a
e
1,2, then

a
−1
1,2 β2 equals a

e−1
1,2 that is σ1-positive. For n > 3, by Lemma 1.23, the braid β2

have a (n−1)-breath at least 2 and an−2,n−1 is δ̂n,0. Then, by induction hypothesis,

a
−1
n−2,n−1β2 is σ-positive, and so is δ̂−1

n−1,0 β. �

3.6. Proof of Theorem 3.1. At this point, we saw that, provided we take the
Key Lemma for granted, both Implications (3.2) and (3.3) are true, and it is not
hard to deduce that Implication (3.1), which is our goal, is true in the case when
the breadth of β is smaller than the breadth of β′, i.e., the “Short”-case in the
ShortLex-ordering.

So, there remains to treat the “Lex”-case, i.e., the case when β and β′ have the
same breadth, and this is what we shall do now. Actually, as was already mentioned
when stating the Key Lemma, in order to maintain an induction hypothesis, we
shall prove a stronger implication: instead of merely proving that the quotient
braid β−1β′ is σ-positive, we shall prove the more precise conclusion that β−1β′ is
σi,n−1-positive for some i related to the last letter in β′. That is why we shall have
to reconsider both the Short- and the Lex-cases.

The main result is the following one—note that, as the case β = 1 is trivially
satisfied, it contains Theorem 3.1.

Proposition 3.23. For β, β′ in B+∗
n with β 6= 1, the relation β <∗ β′ implies

β < β′. Moreover, if the B+∗
n−1-tails of β, β′ are trivial and β−1β′ 6= an−1,n the

braid β−1β′ is σi,n−1-positive, where ai,n is the last letter of β′.

Proof of Proposition 3.23 from the Key Lemma. We use an induction on n. For
n = 2, everything is obvious, as both < and <∗ identify with the standard ordering
of the natural numbers.

From now on, we assume n > 3. Let β and β′ be elements of B+∗
n satisfying

β <∗ β′ and β 6= 1, hence β′ 6= 1 as well. Let (βp, ..., β1) and (β′
q, ..., β

′
1) be the

φn-splittings of β and β′.
Firstly, we observe that, when the n-breadth of β and β′ is at least 2, it is

sufficient to prove that β−1β′

[q,2] is σi,n−1-positive, where ai,n is the last letter

of β′

[r,2]. Indeed, if this is done, then the σi,n−1-positivity of β−1β′

[q,2], plus the

σ-positivity of β′
1, imply the σ-positivity of β−1β′. Moreover, if the B+∗

n−1-tail of β′

is trivial, then β′ equals β′

[q,2], and the σi,n−1-positivity of β−1β′

[q,2] is that of β−1β′.

Assume first p = q. By definition of <∗, there exists an integer r satisfying

(3.18) βt = β′

t for t > r, and βr <∗ β′

r.

We consider three cases : the generic case r > 3, plus the special cases r = 2 and
r = 1.
– Case r > 3. Let β′′ be the quotient β−1

r β′
r. Then we express the quotient β−1β′

as the product of three factors:

β−1β′

[r,2] = β−1
[r−1,1] · φ

r−1
n (β′′) · β′

[r−1,2]

= (β−1
[r−1,1] · δ̂n,r−2) · δ

r−2
n−1 · (δ

−r+2
n · φr−1

n (β′′) · β′

[r−1,2]).(3.19)



22 JEAN FROMENTIN

By Lemma 1.25, the n-breadth of β[r−1,1] is r−1, hence, by Lemma 3.6, the left

factor in (3.19), namely β−1
[r−1,1] δ̂n,r−2, is σn−1-positive. As the middle factor is σ-

positive, it remains the right factor of (3.19). As, by Lemma 1.23 (ii), βr and β′
r are

not trivial, Lemma 1.23 implies that the last letter of βr does not lie in B+∗
n−1. Then

the last letter of β′
r is aj−1,n−1 for some j 6 n−1. Assume β′′ 6= an−2,n−1. The

induction hypothesis implies that β′′ is σj−1,n−2-positive. Then the Key Lemma

implies that last right of (3.19) is σi,n−1-positive. Therefore Relation (3.19) to-

gether with Lemma 3.16 (ii) implies that the braid β−1β′

[r,2] is σi,n−1-positive.

Assume now β′′ = an−2,n−1. For β′

[r−1,2] 6= φr−2
n (an−2,n−1) · ... · φ2

n(an−2,n−1),

Lemma 3.21 implies that the right factor in (3.19) is σi,n−1-positive. Assume

φr−2
n (an−2,n−1) · ... · φ

2
n(an−2,n−1). Then i equals 1, and (3.19) becomes

(3.20) β−1
1 · δnβ−1

2 · ... · δnβ−1
r−1

By Lemma 1.6, there exists k > 0 satisfying δk
n−1β

−1
r−1 = β′

r−1 with β′
r−1 ∈ B+

n−1.
Then we obtain

β−1β′

[r,2] = β−1
1 · δnβ−1

2 · ... · δnδ−k
n−1β

′

r−1

= β−1
1 · δnβ−1

2 · ... · δnδ−1
n−1 δ−k+1

n−1 β′r−1

= β−1
1 · δnβ−1

2 · ... · a1,n δ−k+1
n−1 β′

r−1,

where the underlined factor is σ1,n−1-positive. Thus Lemma 3.16 (ii) implies that

the braid β−1β′

[r,2] is σi,n−1-positive.

– Case r = 2. Let aj−1,n−1 be the last letter of β′
2. Then we have β−1β′

[r,2] =

β−1
1 · φn(β−1

2 β′
2). For β2 6= 1, the induction hypothesis implies that β−1

2 β′
2 is

σj−1,n−2-positive. For β2 = 1 with β′
2 6= an−2,n−1, Lemma 3.18 implies that β′

2

is σj−1,n−2-positive. In these both cases, Proposition3.19 implies that the quo-

tient β−1β′

[r,2] is σi,n−1-positive. For β2 = 1 with β′
2 = an−2,n−1, the quotient

braid β−1
2 β′

2 is σn−2-positive. Then β−1β′

[r,2] is σn−1-positive. We prove nothing

more since the quotient β−1β′ is an−1,n.

– Case r = 1. By induction hypothesis, the quotient β−1
1 β′

1 is σk-positive with

k 6 n−2, then β−1β′ = φn(β−1
1 β′

1) is σ-positive, actually σk+1-positive. We prove
nothing more since the last letter of β′ lies in B+∗

n−1.

Assume now p < q.
– Case p = 1. Then β lies in B+∗

n−1 but β′ does not, that implies β−1β′ is σn−1-
positive, which is the expected result as the last letter of β lies also in B+∗

n−1.

– Case p > 2 with β′

[q,2] 6= δ̂n,q−2. Then we have the decomposition

β−1β′

[q,2] = (β−1 δ̂n,q−2) · (δ̂
−1
n,q−2 β′

[q,2]).

Corollary 3.22 implies that δ̂−1
n,q−2 β′

[q,2] is σi,n−1-positive, where ai−1,n−2 is the last

letter of β′
2. In the other hand, by Proposition 3.6, β−1δ̂n,q−2 is σn−1-positive.

Therefore, by Lemma 3.16 (ii), the quotient β−1β′

[q,2] is σi,n−1-positive.

– Case p > 2 with β′

[q,2] = δ̂n,q−2. Then the last letter of β′

[q,2] is a1,n. Using the
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definition of φn and pushing the power of δn to the left, we find

β−1β′

[q,2] = β−1
1 · φn(β−1

2 ) · ... · φp−1
n (β−1

p ) · δq−1
n δ−q+2

n−1

= β−1
1 · φn(β−1

2 ) · ... · φp−1
n (β−1

p ) · δp−1
n · δq−p−1

n δ−q+2
n−1

= β−1
1 · δn β−1

2 · ... · δn β−1
p · δq−p−1

n δ−q+2
n−1(3.21)

The not underlined factor is σn−1-positive as δn is σn−1-positive and every βi lies

in B+∗
n−1. It remains to prove that the underlined factor is σ1,n−1-positive. For

q > p+2, we have δq−p−1
n δ−q+2

n−1 = δq−p−2
n a1,n δ−q+3

n−1 that is σ1,n−1-positive, and so

is β−1β′

[q,2], by Lemma 3.16 (ii). Otherwise, i.e., for q = p+1, Lemma 1.6 implies

that there exists k > 0 satisfying δk
n−1β

−1
p = β+

p ∈ B+

n−1, and (3.21) becomes

β−1β′

[q,2] = β−1
1 · δnβ−1

2 · ... · δnβ−1
p−1 · δn δ−k

n−1 β+

p · δ−q+2
n−1 ,

= β−1
1 · δnβ−1

2 · ... · δnβ−1
p−1 · a1,n δ−k+1

n−1 β+

p · δ−q+2
n−1 .(3.22)

The underlined factor is σ1,n−1-positive, and so is β−1β′

[q,2] as the not underlined

factor is σn−1-positive. �

Thus, at this point, the main argument is completed, and we are left with proving
the Key Lemma, i.e., Proposition 3.19.

4. Proof of the Key Lemma

The Key Lemma, which claims that certain specific braids are σi,n−1-positive, is
true because φn-splittings have to satisfy some constraints. We already saw a few
such constraints in Lemma 1.23. We shall now establish more. The main result
is, under specific circumstances, the entries in a φn-splitting must contain specific
letters that will be called barriers, and such barriers organize into what will be
called stairs.

4.1. Barriers. If β is a braid of B+∗
n of n-breadth at least 3, and (βp, ..., β1) is its φn-

splitting, then, by Lemma 1.23, the last letter of βr for r > 3 is some letter ak−1,n−1:
in this case, we shall see that the braid βr−1 cannot be an arbitrary braid of B+∗

n−1,
but it has to satisfy constraints involving the integer k, namely containing a letter
called an ak,n-barrier—and this will be the point in the sequel.

Definition 4.1. The letter ai,j is called ak,n-barrier if we have

(4.1) 1 6 i < k < j 6 n−1.

There exists no ak,n-barrier with n 6 3; the only ak,n-barrier for n = 4 is a1,3,
which is an a2,4-barrier.

By definition, if the letter s is an ak,n-barrier, then there exists in the presentation
of B+∗

n given in Proposition 1.2 no relation of the form ak,n · s = s′ · ak,n allowing
one to quasi-commute s and ak,n: so, in some sense, s acts as a barrier to prevent
the migration of ak,n to the right. This fact will be crucial in proving that, if β

contains a ak,n-barrier and has last letter ai,n, then δ−1
n · ak,n · β is σi,n−1-positive

Lemma 4.2. Assume that β is a braid of B+∗
n−1 such that the B+∗

n−1-tail of φn(ak,nβ)
is trivial for k 6 n−2. Then β contains an ak,n-barrier.
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Proof. We assume that β contains no ak,n-barrier, and shall eventually obtain a
contradiction. Let w = ak,nw′ where w′ is the φ-normal form of β, and let S be
the set of all letters ai,j with k < j 6 n−1. As we have φn(B+∗

n−2) ⊂ B+∗
n−1, the

last letter of w′ is some ai,n−1, which is an element of S because, by hypothesis, it
is not an ak,n-barrier. Then the longest suffix v of w that lie in S∗ is nonempty.
Let u the associated prefix. As the first letter of w is ak,n, which is not in S, the
word u is nonempty. Let ag,h be the last letter of u. Two cases are possible: either
u has length 1, and ag,h is ak,n, or it has length 2 at least, and then ag,h is a letter
from w′, hence it satisfies h 6 k as, by construction, it does not lie in S. In both
cases, we have

(4.2) φn(ag,h) ∈ B+∗

n−1.

On the other hand, no letter ai,j in v is an ak,n-barrier, hence it satisfies k 6 i <
j 6 n−1. By the relations

ag,hai,j ≡





ai,jag,h, for k < i or h < k by (1.3),

ag,jag,h, for i = h = k by (1.4),

aj,nag,h, for i = g = k by (1.4).

the letter ag,h quasi-commutes with v, i.e., there exists a word w′ satisfying ag,hv ≡
v′ag,h. Therefore, ak,n β is right divisible by ag,h. It follows that φn(ag,h) is an
right divisor of φn(ak,nβ), then (4.2) contradicts the hypothesis. �

We saw in Example 3.11 that a
−1
2,3 a1,3 equals a1,3 a

−1
1,2, a σ2-positive expression.

With our current terminology, this shows how the barrier a1,3 can protect us—

namely guarantee σ-positivity—against the dangerous factor a−1
2,3. This protection

phenomenon takes the following general form.

Lemma 4.3. Assume that ai,j is an ak,n-barrier. Then we have

(4.3) δ−1
k,n−1 ai,j = ai,n−1 δi,k−1 δ−1

i,j−1 δ−1
j,n−1.

Proof. We decompose ai,j as δi,k δk,j δ−1
i,j−1 by (1.7) and (1.8), and we obtain

δ−1
k,n−1 ai,j = δ−1

k,n−1 δi,k δk,j δ−1
i,j−1 δj,n−1 δ−1

j,n−1

= δ−1
k,n−1 δi,k δk,j δj,n−1 δ−1

i,j−1 δ−1
j,n−1 by (1.9)

= δ−1
k,n−1 δi,k δk,n−1 δ−1

i,j−1 δ−1
j,n−1 by (1.8)

= δ−1
k,n−1 δi,k δ−1

i,k−1 δi,k−1 δk,n−1 δ−1
i,j−1 δ−1

j,n−1

= δ−1
k,n−1 ai,k δi,k−1 δk,n−1 δ−1

i,j−1 δ−1
j,n−1 by (1.7)

= δ−1
k,n−1 ai,k δk,n−1 δi,k−1 δ−1

i,j−1 δ−1
j,n−1 by (1.9)

= φ−1
n−1

(
φk(ai,k)

)
δi,k−1 δ−1

i,j−1 δ−1
j,n−1 by (1.10)

= ai,n−1 δi,k−1 δ−1
i,j−1 δ−1

j,n−1, by (1.6)

which is the expected result. �

Our aim would be to prove that braids of the form δ−1
n ·φ2

n(ak−1,n−1) ·φn(β) are
σ-positive whenever β belongs to B+∗

n−1 and contains an ak,n-barrier. We decompose
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the letter ak−1,n−1 as δk−1,n−2 an−2,n−1 δ−1
k−1,n−2 and we push δ−1

n to the right of
an−1,n in order to obtain

δ−1
n · φ2

n(ak,n) · φn(β) = φn(δk−1,n−2 an−2,n−1) δ−1
n φn

(
δ−1
k,n−1 β

)
,

= φn(δk−1,n−2) δ−1
n−1 φn

(
δ−1
k,n−1 β

)
.(4.4)

Let us suppose that the φ-normal of β is ai,jw, where ai,j is an ak,n-barrier. Then

we try to apply Lemma 4.3 in order to show that the quotient δ−1
k,n−1ai,j is σn−2-

positive. Here comes a problem.

Example 4.4. By Definition 4.1, the letter a1,3 is an a2,4 barrier and Lemma 4.3
implies

δ−1
2,4 a1,3 = a1,4 δ1,1 δ−1

1,2 δ−1
3,4 = a1,4 a

−1
1,2 a

−1
3,4.

By relation (1.3), the braid a1,4 a
−1
1,2 a

−1
3,4 is equal to a1,4 a

−1
3,4 a

−1
1,2. As the relation

a3,4 a1,4 = a1,3 a3,4 holds, see (1.4), the braid a1,4 a
−1
3,4 is equal to a

−1
3,4 a1,3, that

is σ3-negative, and so is δ−1
2,4 a1,3: in that case, the barrier a1,3 did not protect us

against the dangerous element δ−1
2,4 .

We are thus led to partition barriers into two subclasses:

Definition 4.5. A ak,n-barrier ai,j is said to be strong if we have j = n−1,
otherwise, for j < n−1, it said to be weak.

Lemma 4.6. Assume that ai,j is a strong ak,n-barrier. Then the braid δ−1
k,n−1 ai,j

is σn−2-positive.

Proof. By Lemma 4.3, we obtain

δ−1
k,n−1 ai,j = ai,n−1 δi,k−1 δ−1

i,n−2,

where the only negative factor, namely δ−1
i,n−2, does not involve the (n−1)th strand

while ai,n−1 does. �

In the sequel, we shall the symbol δi,j for the braid word σi ... σj−1 and for the
braid represented by its word.

Before addressing the problem of weak barriers, we conclude this section with
an additional technical result. Above we considered the question of proving that
δ−1
k,n−1ai,j is possibly σ-positive. Actually, in the general case, we have to consider

a more general situation of the type δ−1
k,n−1wai,j , where w is a word containing no

ak,n-barrier. This is not difficult, because a braid containing no ak,n-barrier has

good properties under conjugation by δ−1
k,n−1.

Lemma 4.7. Assume β is a braid of B+∗
n−1 that can be represented by a word

containing no ak,n-barrier. Then there exists a word w representing δ−1
k,n−1 β δk,n−1,

such that every ak,n-barrier occurring in w is a strong barrier.

Proof. Let w′ be a braid word representing β that contains no ak,n-barrier. If w′

is empty, the result is obvious, since β is trivial. Assume that w′ consists of one
letter ai,j . By hypothesis, the letter ai,j is not an ak,n-barrier. Hence the integers
i et j satisfy either 1 6 i < j 6 k, or k 6 i < j 6 n−1. Assume 1 6 i < j 6 k
holds. From (1.10), we deduce

δ−1
k,n−1 ai,j δk,n−1 = φ−1

n−1

(
φk(ai,j)

)
,
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which is ai,n−1 for j = k, and ai,j for j < k. In this case, only ai,n can be an
ak,n-barrier, and it is a strong one. Assume k 6 i < j 6 n−1 holds. By definition
of φn−1 and φn−k−2, we obtain

δ−1
k,n−1 ai,j δk,n−1 = φk−1

n−1(δ
−1
n−k−2 ai−k−1,j−k−1 δn−k−2)

= φk−1
n−1

(
φ−1

n−k−2(ai−k−1,j−k−1)
)
,

which is aj−1,n−1 for i = k, and ai−1,j−1 for i > k. The letters aj−1,n−1 and
ai−1,j−1 are not ak,n-barriers, since j−1 > k and i−1 > k hold respectively in this
case.

Assume that w is a word of length ℓ with ℓ > 1. We decompose w′ as α1 ... αℓ,
where the letters αi are not ak+1,n-barrier. Then we obtain

(4.5) δ−1
k,n−1w

′δk,n−1 = δ−1
k,n−1α1δk,n−1 ... δ−1

k,n−1αℓδk,n−1,

using the above result. �

4.2. Stairs. We have seen above that every braid β of B+∗
n−1 such that the φn-

splitting of φn(ak,nβ) is trivial, contains an ak,n-barrier. As was explained, we

intend to use such a barrier to guarantee that, when we multiply by a δ−1
k,n−1 on the

left of β, then the negative factors cannot destroy the overall σn−2-positivity. Ac-
tually, we saw that only strong barriers achieve this goal: as shown in Example 4.4,
a weak barrier is not sufficient.

Fortunately, we shall now see that, under the same hypotheses about the braid β,
the latter does not only contain one barrier, but also a sequence of overlapping bar-
riers that, taken altogether, will achieve the expected protection against dangerous
elements. Such sequences of overlapping barriers are what we shall call stairs.

Notation 4.8. We note Bn the set of the word on the alphabet {σ±

1 , ..., σ±

n−1},

and B
+

n the set of the word on the alphabet {σ1, ..., σn−1}.

Definition 4.9. We say that a word w of Bn−1 is an ak,n-stair of height t lent

on ai−1,n−1, if there exists a decomposition

(4.6) w = w0 s1 w1 ... wt−1 st wt,

and a sequence k = k1 < k2 < ... < kt+1 = n−1 such that
(i) for each r 6 t, the letter sr is an akr ,n-barrier of the form a..,kr+1

,

(ii) for each r < t, the word wr lies in ∗B
+

n−1 and contains no akr,n-barrier,

(iii) the word w represents a σi−1,n−2-positive braid.

Example 4.10. Let β be the braid a1,3a4,5a2,4a2,4a3,5a4,5. We claim that the φ5-
splitting of β is (a1,4, a3,4a1,3a1,3a2,4a3,4, 1) = (β3, β2, β1) and that the φ-normal
word of β2 is u = a3,4a1,3a1,3a2,4a3,4. We shall see that the φ-normal word
of β2 is an a2,5-stair lent on a3,4. We recall that the φ-normal form of β2 is
u = a3,4a1,3a1,3a2,4a3,4. From the left, the first a2,5-barrier occurring in u is a1,3.
Then we put w0 = a3,4 and s1 = a1,3. The remaining word is v = a1,3a2,4a3,4.
From the left, the first a1,5-barrier occurring in v is a2,4. Then we put w1 = a1,3

and s2 = a2,4. The latter barrier involves the 4th strand, so the decomposition ends
with w2 = a3,4. As β2 is different from a3,4, Lemma 3.18 implies that the braid

β2 is σ3,3-positive. Hence the φ-normal form of β2 is an a2,5-stair of height 2 lent
on a3,4.
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It will be helpful to represent the generators ai,j as a vertical line form the ith
line to the jth line on an n-line stave.

1

5

w0 w1 w2s1 s2

Figure 5. An a2,5-stair. The gray line represents the structure of the stair.

In Example 4.10, we have seen that the φ-normal form of β2 is an a2,5-stair let

on a3,4, where φ−1
5 (a2,5) = a1,4 is the last letter of β3 and a3,4 is the last letter

of β2. This is actually a general result, that we shall prove in Proposition 4.12
below. In order to do that, we begin with a preparatory lemma that shows that,
after certain letters in a φ-normal form, there always exist a barrier. Applying this
lemma repeatedly will allow us to obtain a stair.

Lemma 4.11. Assume that w lies in ∗B
+

n−1 and that ai,j is a letter with j 6 n−2
such that the B+∗

n−1-tail of φn(ai,jw) is trivial. Then w contains an aj,n-barrier.

Proof. As, by hypothesis, the B+∗
n−1-tail of φn(ai,jw) is trivial, the last letter of w

exists and is some am,n−1. Let S be the set of the letters ak,ℓ with j < ℓ. Let v the
greatest suffix of ai,jw lying in S∗, and, u the associated prefix. As ai,j is not in S
and the last letter of w is, the words u and v are not empty. Let ag,h be the last
letter of u, which, by construction, satisfies h 6 j. Assume that every letter ak,ℓ

of v satisfies k > j. Using the relations

ag,hak,ℓ =

{
ak,ℓag,h for k > j or h < j,

ag,ℓag,h for k = h = j,

we establish ag,hv ≡ v′ag,h, where v′ is a word of ∗B
+

n. It follows that φn(ag,h)
is an right divisor of φn(ai,jw), which contradicts the hypothesis on w, since the
relation h 6 j < n−1 implies φn(ag,h) ∈ B+∗

n−1. �

We can now show that, provided the braid β satisfies a mild condition, its φ-
normal form is a stair.

Proposition 4.12. Assume that β belongs to B+∗
n−1 and k 6 n−2 is an integer

such that the B+∗
n−1-tail of φn(ak,nβ) is trivial. Let ai,n−1 be the last letter of β.

Then, the φ-normal form of β is an ak,n-stair lent on ai,n−1.

Proof. Lemma 4.2 guarantees that the φ-normal form of β can be decompose as
w0s1w

′
1 where w0 contains no ak,n-barrier and s1 is an ak,n-barrier, namely ag,h.

As the B+∗
n−1-tail of φn(ak,nβ) is trivial, the B+∗

n−1-tail of φn(ag,hw′
1) is trivial..

Assume that s1 is not a strong barrier, i.e., h < n−1 holds, Lemma 4.11 implies
that w′

1 can be decompose as w1s2w
′
2, where w2 contains no ah,n-barrier, and the

letter s2 is an ah,n-barrier. We continue this process until we find a decomposition
w0s1w1 ... spw

′
p with sp a strong barrier, and we put w′

p = wp. If wp is empty then
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sp is the last letter of β, then the last letter of w′ is this of β. In the both cases
the last letter of spwp is ai−1,n−1. As an−2,n−1 is not a barrier, the braid β is not
an−2,n−1. Then Lemma 3.18 implies that β is σin−1-positive. �

In this way, we obtained the expected constraint about the entries in a φn-
splitting: they contain stairs.

Corollary 4.13. Assume that β belongs to B+∗
n . Let (βp, ..., β1) be the φn-splitting

of β. Assume p > r > 3 and that the last letter of βr is ak−1,n−1 with k 6 n−2. Let

ai−1,n−1 be the last letter of βr−1. Then the φ-normal form of βr−1 is an ak,n-stair

lent on ai−1,n−1.

Proof. As a right divisor of β is an right divisor of β′β, Condition (1.19) implies that
the B+∗

n−1-tail of φ2
n(ak−1,n−1)φn(βr−1) is trivial, i.e., the B+∗

n -tail of φn(ak,nβr−1) is
trivial. Then Proposition 4.12 implies that the φ-normal form of βr is an ak,n-stair
lent on ai−1,n−1. �

4.3. Stairs protect against dangerous elements. We are now ready to prove
that stairs have the expected property, namely that a ak,n-stair protects against
an ak,n-dangerous element, this meaning that, if β∗ is ak,n-dangerous and β is

represented by an ak,n-stair, then the quotient β∗β is σn−2-positive—as stated in
Proposition 4.16 below.

The proof will use an induction on the height of the stair. We begin with the
case of height 1.

Lemma 4.14. Assume that β∗ is ak,n-dangerous and β can be represented by

an ak,n-stair of height 1 lent on aj−1,n−1. Then β∗ β is represented by an ak,n-stair

of height 1 lent on aj−1,n−1.

Proof. Let w be an ak,n-stair of height 1 lent on aj−1,n−1 that represents β. By

definition of dangerous, t is sufficient to prove that, for u ∈ B
+

n−1 or u = δ−1
k−1,n−1

there exists an ak,n-stair w′ lent on aj−1,n−1 of height 1 satisfying u w ≡ w′ v.
By hypothesis, the word w can be decomposed as w0s1w1 where w0 contains no
ak,n-barrier and s1 is an ak,n-barrier.
– Case u ∈ B

+

n−1. Then u contains no ak,n-barrier, actually no barrier. Therefore
the word u w is an ak,n-stair of height 1 lent on aj−1,n−1.

– Case u = δ−1
k−1,n−1. By Lemma 4.7, there exists a word w′

0 lying in B
+

n−1 such that

δ−1
k−1,n−1 w0 is equivalent to w′

0 δ−1
k−1,n−1. Moreover, w′

0 contains no ak,n-barrier, ex-
cept maybe strong ones. Le us denote by ai,n−1 the letter s1. Then, by Lemma 4.3,

we have δ−1
k−1,n−1 ai,n−1 ≡ ai,n−1 δi,k−1 δ−1

i,n−2, and we obtain

(4.7) δ−1
k−1,n−1 w ≡ w′ = w′

0ai,n−1δi,k−1δ
−1
i,n−2 w1,

that is an ak,n-stair. It remains to prove that w′ represents a σj−1,n−2-positive
braid. If w1 is empty or an aj−1,n−1-dangerous word, then i = j−1 holds and it

follows that the underlined subword in (4.7) represents an σj−1,n−2-positive braid.

Otherwise w1 represents an σj−1,n−2-positive braid. In both case, the remaining
property is satisfied as the not underlined factor is positive. �

Example 4.15. We consider B+∗
5 . Let β∗ be δ−2

2,4 and β be a1,4. The letter a1,4 is

an a2,5-barrier. As, by Lemma 3.18, the braid β is σ1,3-positive, it is represented

by an a2,5-stair of height 1 lent on a1,4. We shall prove that δ−2
2,4 · a1,4 is also an
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a2,5-stair of height 1 lent on a1,4. By Lemma 4.3, the quotient δ−1
2,4 · a1,4 is equal

to a1,4δ
−1
1,3. Then, again by Lemma 4.3, the braid δ−2

2,4 · a1,4 becomes a1,4δ
−2
1,3. The

latter can be represented by ε ·a1,4 ·δ
−2
1,3, that is an a2,5-stair of height 1 lent on a1,4.

Here comes the main statement of this section:

Proposition 4.16. Assume that β∗ is ak,n-dangerous and β can be represented by

an ak,n-stair lent on aj−1,n−1. Then β∗ β is a σj−1,n−2-positive braid.

Proof. Let w be an ak,n-stair lent on aj−1,n−1 representing β. We use an induction

on the height h of w. By definition, β∗ is represented by u+

1 δ−1
k,n−1u

+

2 ...u+

d−1δ
−1
k,n−1u

+

d

with u+

r ∈ B
+

n−1 for r = 1, ..., d. Lemma 4.3 implies directly the case h = 1.
Assume h > 2. Then w can be decomposed as w0s1w1 ... shwh. Let

(4.8) w′ = w0s1, w′′ = w1s2w2 ... stwt, u′ = u+

1 δ−1
k,n−1u

+

2 ... u+

d−2δ
−1
k,n−1u

+

d−1.

As u+

d lies in B
+

n−1, it contains no ak,n-barrier, actually no barrier, and so is w′
0 =

u+

dw0. Lemma 4.7 implies the existence of a word w′′
0 lying in B

+

n−1 such that

δ−1
k,n−1 w′

0 ≡ w′′
0 δ−1

k,n−1 holds and w′′
0 contains no ak,n-barrier, excepted strong ones.

Let us denote by ag,h the letter s1. As the height of w is at least 2, the letter s1 is

not a strong barrier. Then we find δ−1
k,n−1 w′ ≡ w′′

0 δ−1
k,n−1ag,h, and ,by Lemma 4.3,

we obtain

(4.9) δ−1
k,n−1 w′ ≡ (w′′

0 ag,n−1 δg,k−1 δ−1
g,h−1) δ−1

h,n−1 = v δ−1
h,n−1.

We note that the word v is an ak,n-stair of height 1 lent on ag,n−1. Then, by
Lemma 4.14, the braid β′ = u′ v is an ak,n-stair lent on ag,n−1, that is, in par-

ticular, σn−2-nonnegative. In the other hand, w′′ is an ah,n-stair of height h−1

lent on aj−1,n−1, and δ−1
h,n−1 is ah,n-dangerous. Then, by induction hypothesis,

δ−1
h,n−1w

′′ represents an σj−1,n−2-positive braid. Finally, Lemma 3.16 (ii) implies
the expected result. �

Example 4.17. We prove in Example (4.10) that the word u = a3,4a1,3a1,3a2,4a3,4

is an a2,5-stair of height 2 lent on a3,4 . Let us show that δ−3
2,4 · u is σ3,3-positive.

1

5

a2,5-staira2,5-dangerous

Figure 6. Encounter of the a2,5-dangerous braid δ−3
2,4 and the a2,5-

stair u: the vertical descending arrow from the jth line to the ith line

of the stave represents the braid δ−1
i,j .

The letter a3,4 is not an a2,5-barrier. Then we have to cross throughout it. By

Lemma 4.7, we obtain δ−1
2,4 a3,4 = a2,3 δ−1

2,4, next δ−1
2,4 a2,3 = a2,4 δ−1

2,4, and finally

δ−1
2,4 a2,4 = a3,4 δ2,4. Then δ−3

2,4 ·u is equivalent to the word a3,4 ·δ
−3
2,4 ·a1,3a1,3a2,4a3,4,
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where the underlined factor is an a2,5-stair lent on a3,4. The letter a1,3 is an a2,5-

barrier. Lemma 4.3 implies that δ−1
2,4 a1,3 is equal to a1,4 δ−1

1,2δ
−1
3,4. Then we obtain

(4.10) δ−3
2,4 · u = a3,4 · δ

−2
2,4 a1,4 · δ

−1
1,2 · δ−1

3,4 a1,3a2,4a3,4 (see Figure 7)

1

5

a2,5-dangerous against a2,5-stair a3,5-dangerous against a3,5-stair

σ4-nonegativeσ4-nonegative

Figure 7. Emerging of two stair: when the dangerous part crosses

the first barrier, a new stair appears, and, then, it absorbs remaining

old dangerous fragment, while a new dangerous fragment appears.

The first underlined factor in (4.10) is an a2,5-stair of height 1 and Example 4.15

gives δ−2
2,4 a1,4 = a1,4 · δ

−2
1,3 . As u is an a2,5-stair of height 2 lent on a3,4, the second

underlined factor in (4.10) is an a3,5-stair of height 1 lent on a3,4. By Lemma 4.7,

the quotient δ−1
3,4 a1,3 equals a1,4 δ−1

3,4. As a2,4 is an a3,5-barrier, Lemma 4.3 implies

δ−1
3,4 a2,4 = a2,4 δ−1

2,3 . Finally we obtain

(4.11) δ−3
2,4 · u = a3,4 · a1,4δ

−2
1,3 · δ

−1
1,2 · a1,4 a2,4δ

−1
2,3 · a3,4,

which is σ3,3-positive since a2,4 δ−1
2,3 is σ2,3-positive.

Corollary 4.18. Assume that β belongs to B+∗
n . Let (βp, ..., β1) be the φn-splitting

of β. Assume p > r > 3 and that the last letter of βr is ak−1,n−1 with k 6 n−2.
Let ai−1,n−1 be the last letter of βr−1. Then for each ak,n-dangerous braid β∗, the

braid β∗ βr−1 is σi−1,n−2-positive.

Proof. Coroallary 4.13 guarantees that βr−1 is an ak,n-stair lent on ai−1,n−1. Then

Proposition 4.16 implies that β∗ βr−1 is σi−1,n−2-positive. �

Thus, at this point, we know that we have stairs, and that stair achieve their
protecting role against dangerous elements.

4.4. Proof of the Key Lemma. From that point, proving the Key Lemma 3.19
is easy. We recall the statement we wish to establish.

Proposition (Key Lemma). Assume that (βp, ..., β2, 1) is the φn-splitting of a

braid β in B+∗
n with p > 2. Let ai−1,n−1 be the last letter of βp and aj,n this of β.

Then for every σi−1,n−2-positive braid β′, the braid

(4.12) δ−p+2
n · φp−1

n (β′) · φp−2
n (βp−1) · ... · φn(β2)

is σj,n−1-positive.
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The proof of the Key Lemma (Proposition 3.19) uses an induction on the n-
breadth p of the input braid β.

We shall treat the cases p 6 3 separately, because the entries β2 and β1 of
the φn-splitting of β may be trivial, and do not obey the same constraints as the
other entries. For instance, if β has n-breadth 3 with β2 = β1 = 1, then the
braid φn(β2) ·β1 does not satisfy the hypotheses of the Key Lemma, and, therefore,
such cases must remain outside the main induction.

Proof of Proposition 3.19 from Corollary 4.18. We consider four cases. We start
with the generic one.

– Case p > 4, or p = 3 with j 6= 1. Then the braid β[p−1,2] is not trivial. Assume
i 6 n−2. By hypothesis, β′ can be decomposed as β′∗

an−2,n−1β
′
∗, where β′∗ is

σn−2-nonnegative and β′
∗ is ai−1,n−1-dangerous. First, we compute

δ−p+2
n φp−1

n (β′∗
an−2,n−1) = φn(β′∗

an−2,n−1) δ−1
n δ−p+3

n

= φn(β′∗) δ−1
n−1 δ−p+3

n ,

which is σn−1-nonnegative. Then we are now left with

(4.13) δ−p+3
n · φp−1

n (β′

∗) · φ
p−2
n (βp−1) · ... · φn(β2).

The underlined factor in (4.13) is equal to φp−1
n

(
φn(β′

∗) · βp−1)
)
. As φn(β′

∗) is

ai,n-dangerous, Corollary 4.18 implies that β′′ = φn(β′
∗) · βp−1 is σj−1,n−2-positive,

where aj−1,n−1 is the last letter of βp−1. The expression (4.13) becomes

(4.14) δ−p+3
n · φp−2

n (β′′) · φp−3
n (βp−2) · ... · φn(β2),

that is exactly of the form (4.12). Therefore, we conclude using the induction
hypothesis. Assume i = n−1. Then, by Defintion 3.15, the braid β′ can be
decomposed as β′′ · an−2,n−1, where β′′ is a σk−1,n−2-positive braid for some k.

Hence the relation (4.12) becomes

δ−p+2
n · φp−1

n (β′) · β[p−1,2] = δ−p+2
n · φp−1

n (β′′ · an−2,n−1) · β[p−1,2]

= φn(β′′ · an−2,n−1) · δ
−1
n · δ−p+3

n · β[p−1,2]

= φn(β′′) · δ−1
n−1 · δ

−p+3
n · β[p−1,2](4.15)

Assume β[p−1,3] = δ̂n,p−3. Then relation (4.15) becomes

(4.16) δ−p+2
n · φp−1

n (β′) · β[p−1,2] = φn(β′′) · δ−p+2
n−1 · φn(β2).

As β′′ is σk−1,n−2-positive, the braid φn(β′′) is σk,n−1-positive, and also σ1,n−1-

positive, by Lemma 3.16 (iii). Then the underlined factor is σ1,n−1-positive. If
β2 is trivial, the last letter of β is a1,n, i.e., j = 1 holds, and the braid (4.16) is

σ1,n−1-positive. If the last letter of β2 is an−2,n−1, i.e., j = n−1 holds, then the

braid (4.16) is σn−1,n−1-positive. If the last letter of β2 is not an−2,n−1, then, by

Lemma 1.23, the braid β2 is σj−1,n−1-positive and (4.16) is σj,n−1-positive since the

underlined factor is, in particular, σn−1-nonnegative. Assume β[p−1,3] 6= δ̂n,p−3. Let
r be the greatest index such that βr 6= an−2,n−1. Assume r > 3. Then, by (3.14),
the underlined factor in (4.15) becomes

(4.17) δ−p+r+1
n−1 · δ−r+2

n · β[r,2].
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The not underlined factor in (4.15) and (4.17) are σn−1-nonnegative. Lemma 1.23
implies that the braid βr is ak−1,n−1-dangerous, where ak−1,n−1 is the last letter
of β. As the underlined factor in (4.17) is exactly of the form (4.12) with r replac-
ing p, we conclude by induction hypothesis.
– Case p = 3 with j = 1. Then the braids β1 and β2 are trivials and the last letter
of β3 is an−2,n−1, i.e., i = n−1 holds. Hence we can decompose β′ as β′′

an−2,n−1

where β′′ is σk−1,n−2-positive for some k. Then (4.12) becomes

(4.18) δ−1
n · φ2

n(β′) = φn(β′) · δ−1
n = φn(β′′ · an−2,n−1) · δ

−1
n = φn(β′′) · δ−1

n−1.

As β′′ is σk−1,n−2-positive, the braid φn(β′′) is σk,n−1-positive, and also σ1,n−1-

positive, by Lemma 3.16 (iii). Therefore, as φn(β′′) is σn−1-nonnegative, the braid

δ−1
n · φ2

n(β′) is σ1,n−1-positive, which is the expected result.
– Case p = 2. Then we have β = φn(β2) and the last letter of β2 is aj−1,n−1.

The braid (4.12) becomes φn(β′). As β′ is σj−1,n−2- positive, the braid φn(β′) is

σj,n−1-positive, which is the expected result. �

So the Key Lemma is proved, and so are Theorem 3.1 and its corollaries listed
in Section 3.1.

5. Open questions.

We conclude with a few open questions directly inspired by the previous results.

5.1. The φn-splitting. With the φn-splitting, we associated with every braid
of B+∗

n a unique sequence in B+∗
n−1. In this paper, we have seen that a φn-splitting

satisfies various constraints: the latter are necessary conditions, but, so far, we do
not know whether they are sufficient.

Question 5.1. Is there a simple characterization of the sequences in B+∗
n−1 that are

the φn-splitting of a braid in B+∗
n ?

Of course, we can recognize whether a sequence (βp, ..., β1) is a splitting by
computing its product (with the necessary rotations inserted) and determining its
splitting, but, here, we ask for a direct criterion, for instance a syntactic one, in the
vein of the following easy result, that we state without proof:

Proposition 5.2. A sequence (a
ep

1,2, ..., a
e1

1,2) is a B+∗
2 -splitting if and only if the

condition er > 1 is satisfied for r > 3.

The monoid B+∗
n includes the monoid B+

n for n > 3. Then we can compute the
φn-splitting of a braid lying in B+

n.

Question 5.3. What are the specific properties of the φn-splitting of a braid be-

longing to B+

n?

5.2. Sigma-representative word. The main open questions involve the com-
plexity of the process described in this paper. Indeed, our proof is effective, and,
starting with two braid words in the generators ai,j—hence, in particular, starting

with two braid words in the generators σi—we obtain a σ-positive or σ-negative
representative of the quotient.

Conjecture 5.4. For each n, the algorithm associated with the current construc-

tion, running on n-braid words of length ℓ, terminates in time O(ℓ2), and returns

a final word of length at most O(ℓ2).



THE CYCLING NORMAL FORM IN DUAL BRAID MONOIDS 33

Proving this conjecture amounts to precisely analysing all steps of the compu-
tation. In principle, this task is easy, but it requires some care, and we keep it for
further research.
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