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Abstract

We give a new proof of a theorem by Le Gall & Paulin, showing that scaling limits

of random planar quadrangulations are homeomorphic to the 2-sphere. The main

geometric tool is a reinforcement of the notion of Gromov-Hausdorff convergence,

called 1-regular convergence, that preserves topological properties of metric surfaces.

1 Introduction

A planar map is a combinatorial embedding of a connected graph into the 2-dimensional
sphere. Random planar map have drawn much attention in the recent probability litera-
ture due to mathematical physics motivations [2] and a powerful encoding of planar maps
in terms of labeled trees due to Schaeffer [15, 5]. In turn, scaling limits of labeled trees
are well-understood thanks to the works of Aldous, Le Gall and others [1, 8, 9]. Using
this line of reasoning, many results have been obtained on the geometric aspects of large
random quadrangulations (where faces all have degree 4), and other families of maps. Le
Gall [10] showed in particular that scaling limits of random quadrangulations are home-
omorphic to the Brownian map introduced by Marckert & Mokkadem [13], and Le Gall
& Paulin [11] showed that the topology of the latter is that of the 2-dimensional sphere,
hence giving a mathematical content to the claim made by physicists that summing over
large random quadrangulations amount to integrating with respect to a (still ill-defined)
measure over surfaces.

The aim of this note is to give an alternative proof of Le Gall & Paulin’s result. We still
strongly rely on the results established by Le Gall [10], but use very different methods from
those of [11], where the reasoning uses geodesic laminations and a theorem due to Moore
on the topology of quotients of the sphere. We feel that our approach is somewhat more
economic, as it only needs certain estimates from [10] and not the technical statements
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of [11, Lemmas 3.1, 3.2] that are necessary to apply Moore’s theorem. On the other
hand, this is at the cost of checking that quadrangulations are close to being path metric
spaces, which is quite intuitive but needs justification (see definitions below). Our main
geometric tool is a reinforcement of Hausdorff convergence, called 1-regular convergence
and introduced by Whyburn, and which has the property of conserving the topology of
surfaces. We will see that random planar quadrangulations converge 1-regularly, therefore
entailing that their limits are of the same topological nature. In the case, considered
in this paper, of surfaces with the topology of the sphere, the 1-regularity property is
equivalent to [11, Corollary 1], stating that there are no small loops separating large
random quadrangulations into two large parts. We prove this by a direct argument rather
than obtaining it as a consequence of the theorem.

The basic notations are the following. We let Qn be the set of rooted1 quadrangulations
of the sphere with n faces, which is a finite set of cardinality 2 · 3n(2n)!/(n!(n + 2)!), see
[5]. We let qn be a random variable picked uniformly in Qn, and endow the set V (qn)
of its vertices with the usual graph distance dgr

n , i.e. dgr
n (x, y) is the length of a minimal

(geodesic) chain of edges going from x to y.
We briefly give the crucial definitions on the Gromov-Hausdorff topology, referring

the interested reader to [4] for more details. The isometry class [X, d] of the metric space
(X, d) is the collection of all metric spaces isometric to (X, d). We let M be the set of
isometry-equivalence classes of compact metric spaces. The latter is endowed with the
Gromov-Hausdorff distance dGH, where dGH(X, X′) is defined as the least r > 0 such that
there exist a metric space (Z, δ) and subsets X, X ′ ⊂ Z such that [X, δ] = X, [X ′, δ] = X′,
and such that the Hausdorff distance between X and X ′ in (Z, δ) is less than or equal
to r. This turns M into a complete separable metric space, see [6] (this article focuses
on compact R-trees, which form a closed subspace of M, but the proofs apply without
change to M).

Theorem 1 ([11]) A limit in distribution of [V (qn), n−1/4dgr
n ] for the Gromov-Hausdorff

topology, where n → ∞ along some subsequence, is homeomorphic to the 2-sphere.

Remarks. • One of the main open questions in the topic of scaling limits of random
quadrangulations is to uniquely characterize the limit, i.e. to get rid of the somewhat
annoying “along some subsequence” in the previous statement.

• To be perfectly accurate, Le Gall & Paulin showed the same result for uniform 2k-
angulations (maps with degree-2k faces) with n faces. Our methods also apply in this
setting (and possibly to more general families of maps), but we will restrict ourselves to
the case of quadrangulations for the sake of brevity.

• In the work in preparation [14], we provide a generalization of this result to higher
genera, in the framework of Boltzmann-Gibbs distributions on quadrangulations rather
than uniform laws.

1Which means that one oriented edge of the quadrangulation is distinguished as the root
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As we are quite strongly relying on Le Gall’s results in [10], we will mainly focus on
the new aspects of our approach. As a consequence, this paper contains two statements
whose proofs will not be detailed (Proposition 2 and Lemma 2), because they are implicit
in [10] and follow directly from the arguments therein, and also because their accurate
proof would need a space-consuming introduction to continuum tree and snake formalisms.
Taking them for granted, the proofs should in a large part be accessible to readers with
no particular acquaintance with continuum trees or Schaeffer’s bijection.

2 Gromov-Hausdorff convergence and regularity

We say that a metric space (X, d) is a path metric space if every two points x, y ∈ X can
be joined by a path isometric to a real segment (with length d(x, y)). We let PM be the
set of isometry classes of compact path metric spaces, and the latter is a closed subspace
of (M, dGH), see [4, Theorem 7.5.1]. One of the main tools needed in this article is a notion
that reinforces the convergence in the metric space (PM, dGH), which was introduced by
Whyburn in 1935 and was extensively studied in the years 1940’s. Our main source is
Begle [3].

Definition 1 Let (Xn, n ≥ 1) be a sequence of spaces in PM converging to a limit X. We

say that Xn converges 1-regularly to X if for every ε > 0, one can find δ, N > 0 such that

for all n ≥ N , every loop in Xn with diameter ≤ δ is homotopic to 0 in its ε-neighborhood.

There are a couple of slight differences between this definition and that in [3]. In
the latter reference, the setting is that Xn are compact subsets of a common compact
space, converging in the Hausdorff sense to a limiting set X. This is not restrictive as
Gromov-Hausdorff convergence entails Hausdorff convergence of representative spaces in
a common compact space, see for instance [7, Lemma A.1]. It is also assumed in the
definition of 1-regular convergence that for every ε > 0, there exists δ, N > 0 such that
any two point that lie at distance ≤ δ are in a connected subset of Xn of diameter ≤ ε,
but this condition is tautologically satisfied for path metric spaces. Last, the definition
in [3] is stated in terms of homology, so our definition in terms of homotopy is in fact
stronger.

The following theorem is due to Whyburn, see [3, Theorem 6] and comments before.

Theorem 2 Let (Xn, n ≥ 1) be a sequence of elements of PM that are all homeomorphic

to S2. Assume that Xn converges to X for the Gromov-Hausdorff distance, where X is not

reduced to a point, and that the convergence is 1-regular. Then X is homeomorphic to S2

as well.

3 Quadrangulations

Rooted quadrangulations are maps whose faces all have degree 4, and their set is de-
noted by Q :=

⋃

n≥1 Qn with the notations of the Introduction. For q ∈ Q we let
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V (q), E(q), F (q) be the set of vertices, edges and faces of q, and denote by dgr
q the graph

distance on V (q).

3.1 A metric surface representation

One of the issues that must be addressed in order to apply Theorem 2 is that the metric
space [V (q), dgr

q ] is not a surface, rather, it is a finite metric space. We take care of this
by constructing a particular graphical representative of q which is a path metric space
whose restriction to the vertices of the graph is isometric to (V (q), dgr

q ).
Let (Xf , df), f ∈ F (q) be copies of the emptied unit cube “with bottom removed”

Xf = [0, 1]3 \ (0, 1)2 × [0, 1) ,

endowed with the intrinsic metric df inherited from the Euclidean metric (i.e. the distance
between two points of Xf is the minimal Euclidean length of a path in Xf). Obviously
each (Xf , df) is a path metric space homeomorphic to a closed disk of R

2. For each face
f ∈ F (q), we label the four incident half-edges turning counterclockwise as (e1, e2, e3, e4),
where the labeling is arbitrary among the 4 possible labelings preserving the cyclic order.
Then define

ce1
(t) = (t, 0, 0)f , 0 ≤ t ≤ 1

ce2
(t) = (1, t, 0)f , 0 ≤ t ≤ 1

ce3
(t) = (1 − t, 1, 0)f , 0 ≤ t ≤ 1

ce4
(t) = (0, 1 − t, 0)f , 0 ≤ t ≤ 1 .

In these notations, we keep the subscript f to differentiate points of different spaces Xf .
In this way, for every e ∈ E(q), we have defined a path ce of length 1 which goes along
one of the four edges of the boundary ∂Xf = ([0, 1]2 \ (0, 1)2) × {0}, where f is the face
incident to e.

We then define an equivalence relation ∼ on the disjoint union ∐f∈F (q)Xf , as the
coarsest equivalence relation such that for every e ∈ E(q), and every t ∈ [0, 1], we have
ce(t) ∼ ce(1 − t). By identifying points of the same class, we glue the boundaries of the
spaces Xf together in a way that is consistent with the map structure. More precisely, the
topological quotient Sq := ∐f∈F (q)Xf/ ∼ is a 2-dimensional cell complex whose 1-skeleton
Eq is a graph representation of q, and where the faces are the interiors of the spaces Xf .
In particular, Sq is homeomorphic to S2. We let Vq be the 0-skeleton of this complex,
i.e. the vertices of the graph. We call the 1-cells and 0-cells of Eq and Vq the edges and
vertices of Sq.

We next endow the disjoint union ∐f∈F (q)Xf with the largest pseudo-metric Dq that
is compatible with df , f ∈ F (q) and with ∼, in the sense that Dq(x, y) ≤ df(x, y) for
x, y ∈ Xf , and Dq(x, y) = 0 for x ∼ y. Therefore, the function Dq : ∐f∈F (q)Xf ×
∐f∈F (q)Xf → R+ is compatible with the equivalence relation, and its quotient mapping
dq defines a pseudo-metric on the quotient space Sq.
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Proposition 1 The space (Sq, dq) is a path metric space homeomorphic to S2. Moreover,

the restriction of Sq to the set Vq is isometric to (V (q), dgr
q ), and any geodesic path in Sq

between two elements of Vq is a concatenation of edges of Eq. Last,

dGH([V (q), dgr
q ], [Sq, dq]) ≤ 3 .

Proof. What we first have to check is that dq is a true metric on Sq, i.e. it separates
points. To see this, we use the fact [4, Theorem 3.1.27] that Dq admits the constructive
expression:

Dq(a, b) = inf

{

n
∑

i=0

d(xi, yi) : n ≥ 0, x0 = a, yn = b, yi ∼ xi+1

}

,

where we have set d(x, y) = df(x, y) if x, y ∈ Xf for some f , and d(x, y) = ∞ otherwise.
It follows that for a ∈ Xf \ ∂Xf , and for b 6= a, Dq(a, b) > min(d(a, b), df(a, ∂Xf )) > 0,
so a and b are separated.

It remains to treat the case a ∈ ∂Xf for some f . The crucial observation is that a
shortest path in Xf between two points of ∂Xf is entirely contained in ∂Xf . Therefore,
the distance Dq(a, b) is always larger than the length of a path with values in the edges
∐∂Xf/ ∼ of Sq, where all edges have total length 1. In particular, points in distinct
classes are at positive distance. One deduces that dq is a true distance on Sq, and by the
compactness of the latter, (Sq, dq) is homeomorphic to S2 [4, Exercise 3.1.14].

From this same observation, we obtain that a shortest path between vertices of Sq is a
shortest path of edges, i.e. is the geodesic distance for the (combinatorial) graph distance.
Thus, (Vq, dq) is indeed isometric to (V (q), dgr

q ). The last statement follows immediately
from this and the fact that diam (Xf , df) ≤ 3, entailing that Vq is 3-dense in (Sq, dq), i.e.
its 3-neighborhood in (Sq, dq) equals Sq. �

3.2 Tree encoding of quadrangulations

We briefly introduce the second main ingredient, the Schaeffer bijection. Let Tn be the set
of pairs (t, l) where t is a rooted planar tree with n edges, and l is a function from the set
of vertices of t to N = {1, 2, . . .}, such that |l(x)− l(y)| ≤ 1 if x and y are neighbors. Then
the set Qn is in one-to-one correspondence with Tn. More precisely, this correspondence
is such that given a graph representation of q ∈ Qn on a surface, the corresponding
(t, l) ∈ Tn can be realized as a graph whose vertices are V (t) = V (q) \ {x∗}, where
x∗ is the origin vertex of the root edge, and l is the restriction to V (t) of the function
l(x) = dgr

q (x, x∗), x ∈ V (q). Moreover, the edges of t and q only intersect at vertices. The
root vertex of t is the tip of the root edge of q, so it lies at dgr

q -distance 1 from x∗.
Let x(0) be the root vertex of t, and given {x(0), . . . , x(i)}, and let x(i+1) be the first

child2 of x(i) not in {x(0), . . . , x(i)} if there is any, or the parent of x(i) if there is not. This
procedure stops at i = 2n, where we are back to the root and have explored all vertices

2For the natural order inherited from the planar structure of t
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of the tree. We let Ci = dgr
t (x(i), x(0)), and Li = l(x(i)). Both C and L are extended

by linear interpolation between integer times into continuous functions, still called C, L,
with duration 2n. The contour process C of t is the usual Harris walk encoding of the
rooted tree t, and the pair (C, L) determines (t, l) completely. In the sequel, we will use
the fact that x(i) can be identified with a vertex of q.

A simple consequence (see [10, Lemma 3.1]) of the construction is that for i < j,

dgr
q (x(i), x(j)) ≤ Li + Lj − 2 min

i≤k≤j
Lk + 2 . (1)

3.3 Estimates on the lengths of geodesics

Our last ingredient is a slight rewriting of the estimates of Le Gall [10] on geodesic paths in
quadrangulations in terms of encoding processes. Precisely, let Cn, Ln be the contour and
label process of a uniform random element tn of Tn, and let qn be the quadrangulation
that is the image of this element by Schaeffer’s bijection. In particular, qn is a random
uniform element of Qn. Also, recall that a graphical representation Tn of tn can be drawn
on the representation Sqn

of Sect. 3.1, in such a way that the vertices of Tn are Vqn
\{x∗},

where x∗ is the root vertex, and Tn intersects edges Eqn
only at vertices. For simplicity

we let Vn = V (qn), dgr
n = dgr

qn

, Sn = Sqn
, dn = dqn

.
The main result of [9] says that the convergence in distribution in C([0, 1], R)2 holds:

(

(

1√
2n

Cn
2nt

)

0≤t≤1

,

(

(

9

8n

)1/4

Ln
2nt

)

0≤t≤1

)

(d)−→
n→∞

(e, Z) , (2)

where (e, Z) is the Brownian snake conditioned to be positive introduced by Le Gall &
Weill [12]. Moreover, it is shown in [10] that the laws of [Vn, n

−1/4dgr
n ] form a relatively

compact family in the set of probability measures on M endowed with the weak topology.
Since Vn is 3-dense in Sn, the same holds for [Sn, n−1/4dn]. We argue as in [10], and
assume by Skorokhod’s theorem that the trees tn (hence also the quadrangulations qn)
are defined on a common probability space on which we have, almost-surely

• [Sn, n−1/4dn] → [S, d], some random limiting space in PM, along some subsequence
nk → ∞, and

• the convergence (2) holds a.s. along this subsequence.

From this point on, we will always assume that n is taken along this subsequence. In
particular, we have that diamS = limn n−1/4diamSn ≥ limn sup n−1/4Ln = sup Z > 0
a.s., so S is not reduced to a point and Theorem 2 may be applied if we check that the
convergence is 1-regular. We are going to rely on proposition 4.2 of [10], which can be
rephrased as follows.

Proposition 2 The following property is true with probability 1. Let in, jn be integers

such that in/2n → s, jn/2n → t in [0, 1], where s, t satisfyes = inf
s∧t≤u≤s∨t

eu < et .
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For n ≥ 1, let γn be a path in qn between x(in) and x(jn) with the notation of Sect. 3.2.

Then it holds that

lim inf
n→∞

n−1/4length(γn) > 0 .

In [10], this proposition was a first step in the proof of the fact that a limit in dis-
tribution of (Vn, d

gr
n ) can be expressed as a quotient of the continuum tree with contour

function e: this lemma says that two points of the latter such that one is an ancestor of
the other are not identified. Le Gall completed this study by exactly characterizing which
are the points that are identified.

4 Proof of Theorem 1

Lemma 1 Almost-surely, for every ε > 0, there exists a δ ∈ (0, ε) such that for n large

enough, any simple loop γn made of edges of Sn, with diameter ≤ n1/4δ, splits Sn in two

Jordan domains, one of which has diameter ≤ n1/4ε.

Proof. We argue by contradiction, assuming there exist simple loops γn made of edges
of Sn, with diameters o(n1/4) as n → ∞, such that the two Jordan domains bounded by
γn are of diameters ≥ n1/4ε, where ε > 0 is some fixed constant. Let ln be the minimal
label on γn, i.e. the distance from the root vertex x∗ to γn. Then all the labels of vertices
that are in a connected component Dn of Sn \ γn not containing x∗ are all larger than ln,
since a geodesic from x∗ to any such vertex must pass through γn.

The intuitive idea of the proof is the following. Starting from the root of the tree Tn,
follow a maximal simple path in Tn that enters in Dn at some stage. If all such paths
remained in Dn after entering, then all the descendents of the entrance vertices would
have labels larger than that of the entrance vertex, a property of zero probability under
the limiting Brownian snake measure, see [10, Lemma 2.2] and Lemma 2 below. Thus,
some of these paths must go out of Dn after entering, but they can do it only by passing
through γn, which entails that strict ancestors in Tn will be at distance o(n1/4), and this
is prohibited by Proposition 2. This is summed up in Figure 1, which gathers some of the
notations to come.

We proceed to the rigorous proof. Take a vertex yn in Dn. As a vertex of Tn, it
can be written in the form x(jn) for some jn. Let j′n be the first integer j ≥ jn such
that x(j) is at dn-distance ≤ 1 from γn. Such a j exists because of the way edges of Tn

are drawn (entailing that the ancestral path in Tn from xn to the root of Tn must itself
pass at distance ≤ 1 from γn, since the root of Tn is at distance 1 from x∗ and xn lies
in Dn) and the label l(x(j′n)) is at most maxz∈γn

l(z) + 1 = ln + o(n1/4). Moreover, for
k ∈ [jn, j′n], the vertex x(k) is in Dn, and in particular, its label is ≥ ln. Applying the
bound (1) to the times jn, j

′
n, we get that dn(yn, x(j′n)) ≤ l(yn) + ln − 2ln + o(n1/4). Since

by hypothesis the diameter of Dn is at least n1/4ε, it is thus possible to choose yn with
label l(yn) ≥ ln + n1/4ε/2.

We let xn be the first ancestor of yn in Tn lying at dn-distance ≤ 1 from γn, so
that l(xn) = ln + o(n1/4). Take in < jn such that in is a time encoding xn, so that
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��

a′

n

Dn

yn

bn

an

xn

Figure 1: Illustration of the proof. The surface Sn is depicted as a sphere with a bottleneck
circled by γn (thick line). The root edge of the quadrangulation is drawn at the bottom,
and the tree Tn originates from its tip. In dashed lines are represented the two branches
of Tn that are useful in the proof: one enters the component Dn, and the other goes out
after entering, identifying strict ancestors in the limit

Cn
in = infin≤r≤jn

Cn
r . Up to further extraction, we may and will assume that

(9/8n)1/4ln → l , in/2n → s , jn/2n → t .

Then s ≤ t and es ≤ eu for u ∈ [s, t]. More precisely, we have Zs = l and Zt ≥
l +(9/8)1/4ε/2, which implies s < t, and es < et. In terms of the continuum tree encoded
by e, this amounts to the fact that s, t encode two vertices such that the first is an ancestor
of the second, and that are not the same because the snake Z takes distinct values at
these points. We will need the following technical statement:

Lemma 2 Assume that s > 0. With probability 1, there exist η > 0 and integers i′n, kn, rn

with in ≤ i′n < kn < rn < jn such that i′n/2n → s′ ∈ [s, t), that satisfy for n large enough:

Cn
i′
n

= inf
i′
n
≤r≤jn

Cn
r , Cn

rn

= inf
kn≤r≤jn

Cn
r ,

and

(2n)−1/2Cn
i′
n

→ es′ = es ,
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so that i′n, kn, rn encode vertices x′
n, an, bn of Tn such that xn ≺ x′

n ≺ bn ≺ yn and bn ≺ an,

where ≺ denotes “is an ancestor of”. Moreover, dn(xn, x
′
n) = o(n1/4) and the labels satisfy

l(bn) = Ln
rn

> Ln
in + ηn1/4 = l(xn) + ηn1/4 ,

and

l(an) = Ln
kn

≤ Ln
in − ηn1/4 = l(xn) − ηn1/4 .

The statement says roughly the following: there exist subtrees of Tn branching on a
vertex bn of the ancestral line from xn to yn that attain labels that are significantly smaller
(in the scale n1/4) than l(yn), but such that l(bn) is significantly larger than l(yn). As
mentioned in the Introduction, a rigorous proof needs some prerequisites on continuum
trees, and is really a re-writing of the proof of [10, Proposition 4.2, pp.649–650], using
the fact [10, Lemma 2.2] that the positive Brownian snake has no increase points except
0. We only explain in detail the role of i′n in the statement. Introducing i′n 6= in may be
necessary if it happens that two macroscopic subtrees branch just above xn. This happens
if e attains a local minimum equal to es at a time s′ ∈ (s, t), which is the most pathological
situation that can occur since local minima of a Brownian motion are pairwise distinct
and realized only once. In this case, we take i′n so that i′n/2n → s′ and Cn

2n· achieves a
local minimum at i′n. Then, the vertex encoded by i′n is encoded by another time i′′n < i′n
such that i′′n/2n → s, which together with (1) implies the property dn(xn, x′

n) = o(n1/4).
If es < eu for every u ∈ (s, t], we simply take i′n = in.

Now back to the proof of Lemma 1. Because of the property of the label of an, it does
not lie in Dn, however, its ancestor bn does because it is on the ancestral path from xn to
yn. Hence some ancestor of an must belong to γn, and let a′

n be the youngest of these (the
highest in the tree), and take k′

n ∈ (kn, rn) encoding a′
n. Since xn is at distance at most 1

from γn, we obtain that dn(a′
n, xn) = o(n1/4). However, if k′

n/2n → v, rn/2n → u, taking
again an extraction if necessary, then we have es < eu ≤ ev because of the ancestral
relations Cn

in ≤ Cn
rn

≤ Cn
k′

n

, and the fact

Zs = lim
n→∞

(9/8n)1/4Ln
in = l < l + (9/8)1/4η ≤ lim

n→∞
(9/8n)1/4Ln

rn

= Zu .

Now the statements dn(a′
n, xn) = o(n1/4) and es < ev together can only hold with zero

probability by Proposition 2.
It remains to rule out the possibility that s = 0, i.e. that γn lies at distance o(n1/4)

from x∗. To see that this is not possible, argue as in the beginning of the proof and
take xn, yn respectively in the two disjoint connected components of Sn \ γn, and with
labels l(xn) ∧ l(yn) ≥ n1/4ε/2. By symmetry, assume that xn = x(in) and yn = x(jn)
with in < jn. Now take the least integer kn ∈ [in, jn] such that x(k) belongs to γn. Such
a k has to exist because any path from xn to yn in Sn must pass through γn. Then
Ln

kn

= l(x(kn)) = o(n1/4). Up to extraction, assume in/2n → s, kn/2n → u, jn/2n → t.

Then Zu = 0 < Zs ∧Zt, so that s < u < t, and this contradicts the fact that Z is strictly
positive on (0, 1), which is a consequence of [12, Proposition 2.5]. �
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We claim that this lemma is enough to obtain 1-regularity of the convergence, and
hence to conclude by Theorem 2 that the limit (S, d) is a sphere. First choose ε < diam S/3
to avoid trivialities. Let γn be a loop in Sn with diameter ≤ n1/4δ. The boundary of the
union of the closures of faces of qn that are hit by γn is made of pairwise disjoint simple
loops of edges of Sn. If x, y are elements of this union of faces, and since a face of Sn

has diameter less than 3, there exist points x′, y′ of γn at distance at most 3 from x, y
respectively, so that the diameters of these loops all are ≤ n1/4δ+6. By the Jordan Curve
Theorem, each of these loops splits Sn into two simply connected components, one of which
has diameter ≤ n1/4ε, and one of which contains γn entirely. It suffices to justify that
these two properties (being of diameter ≤ n1/4ε and containing γn) hold simultaneously
for some loop in the family to conclude that γn is homotopic to 0 in its ε-neighborhood.
So assume the contrary: the component not containing γn of every loop is of diameter
≤ n1/4ε. By definition, any point in the complement of the union of these components is
at distance at most 3 from some point of γn. Take x, y such that dn(x, y) = diam (Sn).
Then there exist points x′, y′ in γn at distance at most n1/4ε + 3 respectively from x, y,
and we conclude that dn(x′, y′) ≥ diam (Sn) − 6 − 2n1/4ε > n1/4δ for n large enough by
our choice of ε, a contradiction.
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