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CELLULAR STRUCTURES ON
HECKE ALGEBRAS OF TYPE B

CÉDRIC BONNAFÉ AND NICOLAS JACON

Abstract. The aim of this paper is to gather and (try to) unify several ap-
proaches for the modular representation theory of Hecke algebras of type B. We
attempt to explain the connections between Geck’s cellular structures (coming
from Kazhdan-Lusztig theory with unequal parameters) and Ariki’s Theorem on
the canonical basis of the Fock spaces.

This paper is dedicated to Gus Lehrer, on his sixtieth birthday.
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Introduction

The modular representation theory of Hecke algebras of type B was first studied

by Dipper-James-Murphy [10]: one of their essential tools was to construct a family

of modules (called Specht modules) playing the same role as Specht modules in type

A. Each of these new Specht modules have a canonical quotient which is zero or

simple: one of the main problem raised by this construction is to determine which

one are non-zero. Later, Graham and Lehrer [20] developed the theory of cellular

algebras, which contains, as a particular case, the construction of Dipper-James-

Murphy. The problem of parametrizing the simple modules and computating the

decomposition matrix of Specht modules were then solved by Ariki [1] using the

canonical basis of Fock spaces of higher level. In fact, Ariki’s Theorem provides

different parametrizations of the simple modules of the Hecke algebra: only one of

them (asymptotic case) has an interpretation in the framework of Dipper-James-

Murphy and Graham-Lehrer. Recently, Geck showed that the Kazhdan-Lusztig

theory with unequal parameters should provide a cell datum for each choice of a

weight function on the Weyl group (if Lusztig’s conjectures (P1)-(P15) hold [31,

Conj. 14.2]).

Our main aim in this paper is to present an overview of all these results, focusing

particularly on conjectural connections between Uglov’s point of view on the Fock

space theory and Geck cellular structures. This should (if Lusztig’s conjectures

(P1)-(P15) hold in type B) lead to a unified approach for a better understanding

of the representation theory of Hecke algebras. As a by-product, we should get an

interpretation of all Ariki’s parametrizations of simple modules.

More precisely, if Q and q are two indeterminates, if Hn denotes the Hecke

A-algebra with parameters Q and q (here, A = Z[Q, Q−1, q, q−1]), if ξ is a posi-

tive irrational number (!) and if r denotes the unique natural number such that

r 6 ξ < r + 1, then Kazhdan-Lusztig theory should provide a cell datum Cξ =

((Bip(n), Er ),SBT , Cξ, ∗) where

• Bip(n) is the set of bipartitions of n and Er is a partial order on Bip(n)

depending on r (see §3.2);

• If λ ∈ Bip(n), SBT (λ) denotes the set of standard bitableaux of (bi-)shape

λ (filled with 1,. . . , n);

• If S and T are two standard bitableaux of size n and of the same shape, Cξ
S,T

is an element of Hn coming from a Kazhdan-Lusztig basis of Hn (it heavily

depends on ξ);

• ∗ : Hn → Hn is the A-linear anti-involution of Hn sending the element Tw of

the standard basis to Tw−1;
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(see [6, Conjecture C]). If this conjecture holds then, by the general theory of cellular

algebras, we can associate to each bipartition λ of n a Specht module Sξ
λ endowed

with a bilinear form φξ
λ. If K is the field of fractions of A, then KSξ

λ = K ⊗A Sξ
λ is

the simple KHn-module associated to λ [19, Th. 10.1.5]. Now, if Q0 and q0 are two

elements of C× then, through the specialization Q 7→ Q0, q 7→ q0, we can construct

the CHn-module

Dξ
λ = CSξ

λ/ Rad(Cφξ
λ).

By the general theory of cellular algebras, it is known that the non-zero Dξ
λ give

a set of representatives of simple CHn-modules. At this stage, it must be noticed

that, even if KSξ
λ ≃ KSξ′

λ (where ξ′ is another positive irrational number), it might

happen that Sξ
λ 6≃ Sξ′

λ and Dξ
λ 6≃ Dξ′

λ (it is probable that (Sξ
λ, φ

ξ
λ) ≃ (Sξ′

λ , φξ′

λ ) for all

λ ∈ Bip(n) if and only if we have also r 6 ξ′ < r + 1).

On the other hand, if we assume further that q2
0 is a primitive e-th root of unity,

if Q2
0 = −q2d

0 for some d ∈ Z (which is only well-defined modulo e), and if s =

(s0, s1) ∈ Z2 is such that s0 − s1 ≡ d mod e, then Ariki’s Theorem provides a

bijection between the set of Uglov’s bipartitions Bips
e(n) and the set of simple CHn-

modules. Moreover, the decomposition matrix is given by
(
ds

λµ(1)
)

λ∈Bip(n),µ∈Bips
e(n)

,

where
(
ds

λµ(q)
)

λ,µ∈Bip(n)
is the transition matrix between the standard basis and

Uglov-Kashiwara-Lusztig’s canonical basis of the Fock space (see §2.2). The first

result of this paper insures that [6, Conjecture C] is “compatible” with Ariki’s

Theorem in the following sense:

Theorem. Assume that [6, Conjecture C] holds and assume that s0−s1 ≡ d mod e

and s0−s1 6 r < s0−s1+e. Then Dξ
λ 6= 0 if and only λ ∈ Bips

e(n) and, if λ ∈ Bip(n)

and µ ∈ Bips
e(n), then

[CSξ
λ : Dξ

µ] = ds
λµ(1).

In particular, we have

[CSξ
λ : Dξ

µ] 6= 0 =⇒ λ Er µ

Note that, in the asymptotic case (in other word, if ξ > n−1), then [6, Conjecture

C] holds (see [16]) and the cellular datum Cξ is more or less equivalent to the

one constructed by Dipper, James and Mathas (see the work of Geck, Iancu and

Pallikaros [18]).

One of the problems raised by the previous theorem (in fact, essentially by Ariki’s

Theorem) is the following: if s′ = (s′0, s
′
1) ∈ Z2 is such that s′0−s′1 ≡ s0−s1 mod e,

then the sets Bips
e(n) and Bips′

e (n) are in bijection. Our second result (see Theorem

5.3) is to construct this bijection by means of an isomorphism between the crystals

associated to the simple sub-modules M[s] and M[s′] of the Fock spaces (see §2.1

for the definition of these modules). This shows that the “abstract crystal” of an
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irreducible highest weight module is canonically associated to the representation

theory of Hecke algebras of type B. By contrast, each realization of this crystal is

associated with a natural parametrization of the simple modules.

Once we accept [6, Conjecture C], it is natural to ask whether the matrix
(
ds

λµ(q)
)

can be interpreted as a q-decomposition matrix using Jantzen’s filtration (see our

Conjecture C in §4.5). It would also be interesting to see if it should be possible to

construct different Schur algebras of type B directly from Kazhdan-Lusztig’s theory

(for the asymptotic case, this construction should give rise to an algebra which

is Morita equivalent to the two Schur algebras of type B constructed by Du and

Scott [11] and Dipper, James and Mathas [9]). If so, it is then natural to ask for a

generalization of Varagnolo-Vasserot Theorem for Hecke algebras of type A as well

as a generalization of Yvonne’s Conjecture [35, Conj. 2.13]. Note that a construction

of Schur algebras of type B is provided by the theory of Cherednik algebras [13],

but this does not provide a generic Schur algebra.

If the reader wants more arguments for [6, Conjecture C], he or she is encouraged

to read the original source of this conjecture [6]. Note also that recent works by

Gordon and Martino (see [21], [22]) on Cherednik algebras show other compatibilities

between this conjecture and the geometry of the Calogero-Moser spaces, as well as

with Baby Verma modules of Cherednik algebras at t = 0.

Finally, it is natural to ask whether there exist different cellular structures for

Ariki-Koike algebras associated to the complex reflection groups G(d, 1, n), these

cellular structures being indexed by d-cores (or by d-uples of elements of Z): however,

in this case, no Kazhdan-Lusztig’s theory is available at that time (will there be one

in the future?) so we have no candidate for the different cellular bases.

This paper is organized as follows. In the first section, we present the setting of our

problem. Then, we recall Ariki’s theorem which allow to compute the decomposition

matrices for Hecke algebras of type Bn using objects coming from quantum group

theory. In the third section, we introduce the combinatorial notions that we need to

describe the Kazhdan-Lusztig theory in type Bn. The last two section are devoted

to the main results of our paper. Under some conjectures, we show the existence of

several deep connections between Kazhdan-Lusztig theory and the canonical basis

theory for Uv(ŝle).

Acknowledgements. We would like to thank Bernard Leclerc and Meinolf Geck

for many useful discussions on the topic of this paper.
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1. Notation

Let (Wn, Sn) be a Weyl group of type Bn and assume that the elements of Sn are

denoted by t, s1,. . . , sn−1 in such a way that the Dynkin diagram is given by

i i i · · · i
t s1 s2 sn−1

The length function with respect to Sn will be denoted by ℓ : Wn → N = {0, 1, 2 . . .}.

Let Γ be a torsion-free finitely generated abelian group and let A denote the

group ring Z[Γ]. The group law on Γ will be denoted additively and we shall use an

exponential notation for A: more precisely, A = ⊕
γ∈Γ

Zeγ , where eγeγ′

= eγ+γ′

for all

γ, γ′ ∈ Γ. We also fix two elements a and b in Γ and we denote by Hn the Hecke

algebra of Wn over A associated to the choice of parameters t 7→ b and si 7→ a for

1 6 i 6 n − 1 symbolized by the following diagram:

i i i · · · i

b a a a

t s1 s2 sn−1

More precisely, there exists a basis (Tw)w∈Wn
of the A-module Hn such that the

multiplication on Hn is A-bilinear and completely determined by the following prop-

erties: 




TwTw′ = Tww′, if ℓ(ww′) = ℓ(w) + ℓ(w′),

(Tt − eb)(Tt + e−b) = 0,

(Tsi
− ea)(Tsi

+ e−a) = 0, if 1 6 i 6 n − 1.

All along this paper, we also fix a field k of characteristic 0 and a morphism

of groups θ : Γ → k×: the morphism θ extends uniquely to a morphism of rings

Z[Γ] → k that we still denote by θ. We then set

kHn = k ⊗A Hn

and we still denote by θ the specialization morphism Hn → kHn. Moreover, we

assume that the following holds: there exist natural numbers d and e such that

e > 1 and 



θ(a)2 is a primitive e-th root of unity;

θ(b)2 = −θ(a)2d.

If M is an Hn-module, we denote by kM the kHn-module k⊗AM . The Grothendieck

group of kHn will be denoted by R(kHn) and, if L is a kHn-module, its class in

R(kHn) will be denoted by [L]. Note that the algebra kHn is split.

Since Γ is torsion-free, the ring Z[Γ] is integral and we denote by K its field of

fractions. Then the algebra KHn = K⊗AHn is split semisimple. Its simple modules



6 C. Bonnafé and N. Jacon

are parametrized by the set Bip(n) of bipartitions of n: we shall denote this bijection

by
Bip(n) −→ Irr KHn

λ 7−→ Vλ.

This bijection is chosen as in [19, 10.1.2]. We denote by Bip the set of all bipar-

titions (i.e. Bip =
∐

n > 0

Bip(n)), the empty partition will be denoted by ∅ and the

empty bipartition (∅, ∅) (which is the unique bipartition in Bip(0)) will be denoted

by ∅. Since A is integrally closed (it is a Laurent polynomial ring in several alge-

braically independent indeterminates), there is a well-defined decomposition map

[19, Theorem 7.4.3]

dn : R(KHn) −→ R(kHn).

2. Fock space, canonical basis and Ariki’s Theorem

The aim of this section is to recall Ariki’s Theorem relating the canonical basis of

the Fock space and the decomposition matrix dn. The main references are [2], [14]

and [36].

2.1. The Fock space. Let v be an indeterminate. Let h be a free Z-module with

basis (h0, . . . , he−1, d) and let (Λ0, . . . , Λe−1, δ) be its dual basis in h∗ = HomZ(h, Z).

The quantum group Uv(ŝle) is defined as the unital associative C(v)-algebra gener-

ated by elements {ei, fi | 0 6 i 6 e − 1} and {kh | h ∈ h} subject to the relations

given for example in [32, chapter 6]. We denote by Uv(ŝle)
′ the subalgebra of Uv(ŝle)

generated by ei, fi, khi
, k−1

hi
for i ∈ {0, 1, ..., e − 1}.

We fix a pair s = (s0, s1) ∈ Z2. To s is associated a Fock space (of level 2) Fs:

this is an Uv(ŝle)-module defined as follows. As a C(v)-vector space, it has a basis

given by the symbols |λ, s〉 where λ runs over the set of bipartitions:

Fs = ⊕
λ∈Bip

C(v) |λ, s〉.

The action of the generators Uv(ŝle) is given for instance in [34]. By [27], Fs is an

integrable Uv(ŝle)-module.

If m ∈ Z, we denote by m̄ the unique element of {0, 1, . . . , e−1} such that m ≡ m̄

mod e. We then set

∆(s) =
1

2

1∑

j=0

sj − s̄j

e
(sj + s̄j − e).

Since |∅, s〉 is a highest weight vector of Fs and as Fs is an integrable module,

it follows that the submodule Uv(ŝle)|∅, s〉 generated by |∅, s〉 is an irreducible



Cellular structures on Hecke algebras of type B 7

module. We denote it by M[s] and it is isomorphic to the irreducible Uv(ŝle)-

module with highest weight −∆(s)δ + Λs̄0 + Λs̄1. In addition, the submodule

Uv(ŝle)
′|∅, s〉 generated by |∅, s〉 is also an irreducible highest weight module with

weight −∆(s)δ + Λs̄0 + Λs̄1. We denote it by M[s]′.

Remark 2.1 - If M and N are simple Uv(ŝle)
′-modules with highest weight Λ

and Λ′ respectively, then M ≃ N if and only if Λ ≡ Λ′ mod Zδ. Therefore, if

s′ = (s′0, s
′
1) ∈ Z2, then M[s]′ ≃ M[s′]′ if and only if (s0, s1) ≡ (s′0, s

′
1) mod eZ2 or

(s0, s1) ≡ (s′1, s
′
0) mod eZ2 . �

2.2. Uglov’s canonical basis. We shall recall here Uglov’s construction of a canon-

ical basis of the Fock space, which contains as a particular case the Kashiwara-

Lusztig canonical basis of the simple Uv(ŝle)-module M[s] (which is the same as the

one of M[s]′). The reader may refer to Uglov’s original paper [34] for further details.

First, recall that there is a unique C-linear involutive automorphism of algebra

: Uv(ŝle) −→ Uv(ŝle) such that, for all i ∈ {0, 1, ..., e − 1} and h ∈ h, we have

v = v−1, kh = k−h, ei = ei, fi = fi.

It is C(v)-antilinear (with respect to the restriction of ? to C(v)).

One of the main ingredient in Uglov’s construction is a C(v)-antilinear involution

: Fs −→ Fs

which is defined using the wedge realization of the Fock space. This involution is

Uv(ŝle)-antilinear, that is, for all u ∈ Uv(ŝle) and f ∈ Fs, we have

(2.2) u · f = u · f.

Moreover, recall that

(2.3) |∅, s〉 = |∅, s〉.

Now, if λ ∈ Bip, there exists a unique G(λ, s) ∈ Fs satisfying




G(λ, s) = G(λ, s),

G(λ, s) ≡ |λ, s〉 mod vC[v].

The proof of this result is constructive and gives an algorithm to compute this

canonical basis. This algorithm has been improved by Yvonne [37]. Let us write,

for µ ∈ Bip,

G(µ, s) =
∑

λ∈Bip

ds
λ,µ(v) |λ, s〉,

where ds
µ,µ(v) = 1 and ds

λ,µ(v) ∈ vC[v] if λ 6= µ.
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Finally, recall that there exists a unique subset Bips
e of Bip such that

(2.4)
(
G(λ, s)

)
λ∈Bips

e
coincides with Kashiwara-Lusztig canonical basis of M[s].

We set

Bips
e(n) = Bips

e ∩Bip(n).

2.3. Ariki’s Theorem. We shall recall here the statement of Ariki’s Theorem,

using the later construction of Uglov:

Ariki’s Theorem. Assume that d ≡ s0 − s1 mod e. Then there exists a unique

bijection

Bips
e(n) −→ Irr kHn

µ 7−→ Ds
µ

such that

dn[Vλ] =
∑

µ∈Bipσ
e (n)

ds
λ,µ(1) [Ds

µ]

for all λ ∈ Bip(n).

This theorem, together with the algorithm for computing the Kashiwara-Lusztig

canonical bases [24], provides an efficient tool for computing the decomposition map

dn.

3. Domino insertion

We shall review here some combinatorial results about the domino insertion al-

gorithm: the reader may refer to [28], [29] and [33] for further details.

3.1. Domino tableaux, bitableaux. Let r ∈ N. We denote by δr the 2-core

(r, r − 1, . . . , 1), with the convention that δ0 = ∅. Let P denote the set of all

partitions and let Pr denote the set of partitions with 2-core δr. We denote by

Pr(n) the set of partitions of 2-weight n and 2-core δr, so that

Pr =
∐

n > 0

Pr(n)

and P =
∐

r > 0

Pr.



Cellular structures on Hecke algebras of type B 9

Note that partitions in Pr(n) are partitions of 2n +
r(r − 1)

2
. Let q : P → Bip the

map sending a partition to its 2-quotient. By composition with the bijection

Bip −→ Bip

(λ0, λ1) 7→

{
(λ0, λ1) if r is even
(λ1, λ0) if r is odd

the restriction of q to Pr induces a bijection

qr : Pr
∼

−→ Bip .

The restriction of qr to Pr(n) induces a bijection

Pr(n)
∼

−→ Bip(n)

that we still denote by qr if no confusion may arise.

Let SDTr(n) denote the set of standard domino tableaux whose shape lies in

Pr(n) (and filled with dominoes with entries 1, 2,. . . , n) and let SBT (n) denote

the set of standard bitableaux of total size n (filled again with boxes with entries

1, 2,. . . , n). We denote by q̃r : SDTr(n) → SBT (n) the bijection obtained as a

particular case of [8, Theorem 7.3]. If λ : SBT (n) → Bip(n) (resp. ∆) sends a

bitableau (resp. a domino tableau) to its shape, then the diagram

(3.1)

SDTr(n)
q̃r

∼
//

∆

��

SBT (n)

λ

��

Pr(n)
qr

∼
// Bip(n)

is commutative.

3.2. Orders between bipartitions. The bijection qr allows us to define several

partial orders on the set of bipartitions. First, let E denote the dominance order on

P. We then define the partial order Er on Bip as follows: if λ, µ ∈ Bip, then

λ Er µ ⇐⇒ q−1
r (λ) E q−1

r (µ).

Remark 3.2 - If r ≥ n − 1 and s ≥ n − 1, then the partial orders Er and Es

coincide on Bip(n). In fact, they coincide with the classical dominance order on

bipartitions that we shall denote by E∞ . �

Example 3.3 - Here are the orders E0 and E1 = E2 = · · · = E∞ on Bip(2):

(∅; 11) E0 (11; ∅) E0 (1; 1) E0 (∅; 2) E0 (2; ∅)

(∅; 11) E∞ (∅; 2) E∞ (1; 1) E∞ (11; ∅) E∞ (2; ∅)
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Example 3.4 - Here are the orders E0 , E1 and E2 = E3 = · · · = E∞ on Bip(3).

In the diagram, we put an arrow between two bipartitions λ −→ µ if µ Ei λ and if

there is no other bipartition ν such that µ Ei ν Ei λ.

E0 E1 E∞

(3; ∅)

��

(3; ∅)

��

(3; ∅)

��

(∅; 3)

��

(21; ∅)

��

(21; ∅)

yyttttttttt

%%LLLLLLLLLL

(2; 1)

%%KKK
KK

KKK
KK

yysss
sss

ss
ss

(2; 1)

��

(2; 1)

%%JJJJJJJJJ
(111; ∅)

yyrrrrrrrrrr

(1; 2)

��
**UUUUUUUUUUUUUUUUUUUUU (21; ∅)

��ttiiiiiiiiiiiiiiiiiiii
(∅; 3)

��

(11; 1)

��

(∅; 21)

%%KKK
KKK

KK
KK

(11; 1)

yyss
ss

ss
sss

s

(1; 2)

��

(1; 2)

yyttttttttt

%%LLLLLLLLLL

(1; 11)

��

(11; 1)

��

(1; 11)

%%JJJJJJJJJ
(∅; 3)

yyrrrrrrrrrr

(111; ∅)

��

(111; ∅)

��

(∅; 21)

��

(∅; 111) (1; 11)

��

(∅; 111)

(∅; 21)

��

(∅; 111)

3.3. Domino insertion algorithm. Recall that r ∈ N is fixed. If w ∈ Wn, then

the domino insertion algorithm, as described for instance in [28], associates to w a

standard domino tableau Pr(w) ∈ SDTr(n). We set

Sr(w) = q̃r(Pr(w)).
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Then Sr(w) is a standard bitableau of total size n. We also set

Qr(w) = Pr(w
−1) and Tr(w) = Sr(w

−1) = q̃r(Qr(w)).

It turns out that Pr(w) and Qr(w) have the same shape, as well as Sr(w) and Tr(w).

Also, if we set

SBT (2)(n) = {(S, T ) ∈ SBT (n) × SBT (n) | λ(S) = λ(T )},

then the map

(3.5)
Wn −→ SBT (2)(n)
w 7−→ (Sr(w), Tr(w))

is bijective. If w ∈ Wn, then we set

λr(w) = λ(Sr(w)) ∈ Bip(n).

Note that

(3.6) λr(w) = λ(Tr(w)) = λr(w
−1).

Remark 3.7 - If r, r′ > n − 1, then the bijection Wn → SBT (2)(n), w 7→

(Sr′(w), Tr′(w)) coincides with the bijection 3.5. We shall denote it by Wn →

SBT (2)(n), w 7→ (S∞(w), T∞(w)). Similarly, we shall set λ∞(w) = λ(S∞(w)). �

4. Kazhdan-Lusztig theory

The aim of this section is to show that Kazhdan-Lusztig theory with unequal

parameters should provide cellular data on Hn which are compatible with Ariki’s

Theorem. The reader may refer to [31] for the foundations of this theory.

We denote by Hn → Hn, h 7→ h the unique automorphism of ring such that

eγ = e−γ and Tw = T−1
w−1 for all γ ∈ Γ and w ∈ Wn. It is an A-antilinear involutive

automorphism of the ring Hn.

4.1. Kazhdan-Lusztig basis. From now on, we fix a total order 6 on Γ which

endows Γ with a structure of ordered group.

A60 = ⊕
γ 6 0

Zeγ and A<0 = ⊕
γ<0

Zeγ .

Then A60 is a subring of A and A<0 is an ideal of A60. We also set

H<0
n = ⊕

w∈Wn

A<0Tw.

It is a sub-A60-module of Hn.
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If w ∈ Wn, then [31, Theorem 5.2] there exists a unique element C6

w ∈ Hn such

that 



C6

w = C6

w ;

C6

w ≡ Tw mod H<0
n .

Also, (C6

w)w∈Wn
is an A-basis of Hn and this basis depends on the choice of the order

6 on Γ. We define the preorders 6L,6 , 6R,6 and 6LR,6 on Wn as in [31, §8.1] and we

denote by ∼L,6 , ∼R,6 and ∼LR,6 the equivalence relations respectively associated

to these preorders. Here, the exponents or the indices 6 stands for emphasizing the

fact that the objects really depends on the order 6 on Γ.

4.2. Bonnafé-Geck-Iancu-Lam conjectures. From now on, we shall assume that

the parameters a, b in Γ are strictly positive and that b 6∈ {a, 2a, . . . , (n − 1)a}.

If b < (n − 1)a, then we denote by r the unique natural number such

that ra < b < (r + 1)a. If b > (n− 1)a, then we may choose for r any

value in {n − 1, n, n + 1, . . . } ∪ {∞}.

Note that the flexibility on the choice of r whenever b > (n− 1)a will not change

the statements below (see Remarks 3.2 and 3.7). Note also that, once a and b are

fixed elements of Γ, then the number r depend only on the choice of the order 6

on Γ (again with some flexibility if b > (n − 1)a).

Conjecture A. With the above definition of r, we have, for all w,

w′ ∈ Wn:

(a) w ∼L,6 w′ if and only if Tr(w) = Tr(w
′).

(b) w ∼R,6 w′ if and only if Sr(w) = Sr(w
′).

(c) w ∼LR,6 w′ if and only if λr(w) = λr(w
′).

(c+) w 6LR,6 w′ if and only if λr(w) Er λr(w
′).

Remark 4.1 - First, note that the statements (a) and (b) in Conjecture A are

equivalent. Note also that, if Lusztig’s Conjectures P1-P15 in [31, Chapter 14]

hold, then (a) and (b) imply (c).

Note also that the statements (a), (b) and (c) have been proved whenever b >

(n − 1)a (asymptotic case: see [7, Theorem 7.7] and [5, 3.9]): the statement (c+)

has been proved only if w and w′ have the same t-length (i.e. if the numbers of

occurrences of t in a reduced expression of w and w′ are equal), see [5, 3.8].

Statements (a), (b) and (c+) have also been proved whenever a = 2b or 3a = 2b

(see [6, Theorem 3.14]).

Finally, we must add that Conjecture A is “highly probable”: they have been

checked for n 6 6 and are compatible with many other properties of Kazhdan-Lusztig
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cells and other Conjectures of Lusztig. For a detailed discussion about this, the

reader may refer to [6]. �

From now on, and until the end of this paper, we assume that Conjecture A holds.

We shall now define a basis of Hn which depends on a, b and 6 as follows. If

(S, T ) ∈ SBT (2)(n), let w be the unique element of Wn such that S = Sr(w) and

T = Tr(w): we then set

C6

S,T = (C6

w)†,

where † : Hn → Hn is the unique A-algebra involution such that T †
s = −T−1

s for all

s ∈ Sn. Now, if λ ∈ Bip(n), we denote by SBT (λ) the set of standard bitableaux

of shape λ (i.e. SBT (λ) = λ−1(λ)). Finally, we denote by Hn → Hn, h 7→ h∗ the

unique A-linear map such that

T ∗
w = Tw−1

for all w ∈ Wn. It is an involutive anti-automorphism of the A-algebra Hn. Then

we have constructed a quadruple ((Bip(n), Er ),SBT , C6, ∗) where

• (Bip(n), Er ) is a poset;

• For each λ ∈ Bip(n), SBT (λ) is a finite set;

• SBT (2)(n) =
∐

λ∈Bip(n)

SBT (λ) × SBT (λ) and the map

C6 : SBT (2)(n) −→ Hn

(S, T ) 7−→ C6

S,T

is injective and its image is an A-basis (C6

S,T )(S,T )∈SBT (2)(n) of Hn;

• The map ∗ : Hn → Hn is an A-linear involutive anti-automorphism of the

ring Hn such that (C6

S,T )∗ = C6

T,S for all (S, T ) ∈ SBT (2)(n).

The next conjecture is taken from [6, Conjecture C].

Conjecture B. The quadruple ((Bip(n), Er ),SBT , C6, ∗) is a cell

datum on Hn, in the sense of Graham-Lehrer [20].

Remark 4.2 - For a discussion of some evidences for this conjecture, see again [6].

Note that if Lusztig’s Conjectures P1-P15 in [6, Chapter 14] hold and if Conjecture

A above holds, then Conjecture B holds by a recent work of Geck [15]. �

In the rest of this paper, we shall give some more evidences for Conjectures A and

B, towards their compatibilities with Ariki’s Theorem.

Hypothesis: From now on, and until the end of this paper, we assume

that Conjectures A and B hold. We shall denote by C6 the cell datum

((Bip(n), Er ),SBT , C6, ∗).
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4.3. Interpretation of Ariki’s Theorem. Since we assume that Conjectures A

and B hold, the general theory of cellular algebras [20] shows that the cell datum

C6 provides us with a family of Specht modules S6

λ associated to each bipartition λ

of n. Moreover, S6

λ is endowed with a bilinear form φ6

λ : S6

λ × S6

λ → A such that,

for all h ∈ Hn and x, y ∈ S6

λ , we have

(4.3) φ6

λ(h · x, y) = φ6

λ(x, h∗ · y).

We denote by kφ6

λ the specialization of φ6

λ to kS6

λ (through θ : Γ → k×). We then

set

D6

λ = kS6

λ / rad(kφ6

λ).

By 4.3, rad(kφ6

λ) is a kHn-submodule of S6

λ , so that D6

λ is a kHn-module. We set

Bip6

(k)(n) = {λ ∈ Bip(n) | D6

λ 6= 0}.

Then, by the theory of cellular algebras [20, Thm. 3.4], (D6

λ )
λ∈Bip6

(k)
(n) is a family of

representatives of isomorphism classes of irreducible kHn-modules.

Remark 4.4 - Note that the kHn-modules D6

λ , as well as the Hn-modules S6

λ ,

depend heavily on the choice of the order 6 on Γ (they depend on r): several choices

for 6 will lead to non-isomorphic kHn-modules. In particular, the set Bip6

(k)(n) does

depend on 6 . �

Recall that θ is the specialization morphism Hn → kHn such that there exist

natural numbers d and e such that e > 1 and




θ(a)2 is a primitive e-th root of unity;

θ(b)2 = −θ(a)2d.

The following result is a generalization of [1] and [17] (see also [15]).

Theorem 4.5. Assume that Conjectures A and B hold. Let λ ∈ Bip(n). Then:

(a) KS6

λ ≃ Vλ.

(b) Let p be the unique integer such that

d + pe 6 r < d + (p + 1)e.

Put

s = (d + pe, 0)

then Bip6

(k)(n) = Bips
e(n) and

[kS6

λ : D6

µ ] = ds
λ,µ(1)
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for all µ ∈ Bip6

(k)(n). In other words, D6

µ ≃ Ds
µ and

dn[Vλ] =
∑

µ Bip6

(k)
(n)

ds
λ,µ(1)[D6

µ ].

Proof. (a) follows from [15, Ex. 4.4]. Assume that p is the unique integer such that

d + pe 6 r < d + (p + 1)e.

and put

s = (d + pe, 0)

Let µ ∈ Bips
e(n). Then, because of the above condition on p, we can use the same

strategy as in the proof of [17, Theorem 5.4] to show that:

G(µ, s) = |µ, s〉 +
∑

λ Er µ, λ6=µ

ds
λ,µ(v) |λ, s〉,

Now, assume that ν ∈ Bip6

(k)(n). Then by Ariki’s theorem there exists µ ∈ Bips
e(n)

such that for all λ ∈ Bip(n):

dλ,ν = ds
λ,µ(1),

where dλ,ν = [kS6

λ : D6

ν ]. We have :

dµ,ν = 1 and dλ,ν = 0 if µ Er λ and µ 6= λ

By the property of cellular algebras [20, Prop. 3.6], this implies that ν = µ. As we

have a bijection between Bip6

(k)(n) and Bips
e(n), this implies that these two sets are

equal. The rest of the theorem is now obvious. �

Remark 4.6 - The above theorem gives a conjectural interpretation of Ariki’s

parametrization of simple kHn-modules in terms of a new cellular structure on Hn

(coming from Kazhdan-Lusztig’s theory). �

4.4. Uglov bipartitions. The bipartitions in Bips
e(n) are known as Uglov bipar-

titions. They are constructed by using the crystal graph of the associated Fock

space representation (see for example [2] for details on crystal graphs). In general,

we only have a recursive definition for them. However, there exist non recursive

characterizations of such bipartitions in particular cases:

• in the case where −e ≤ d + pe < 0, see [12] and [25, Prop. 3.1] (the Uglov

bipartitions are then called the FLOTW bipartitions)

• in the case where d+pe > n−1−e, see [3], [4] (the Uglov bipartitions are then

called the Kleshchev bipartitions). Note that this includes the “asymptotic

case”, that is, the case where b > (n − 1)a.
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4.5. Jantzen filtration. Once we believe in Conjectures A and B, it is natural to

try to develop the theory as in the type A case. For instance, once can define a

Jantzen filtration on kS6

λ as follows. First, there exists a discrete valuation ring

O ⊂ K containing A such that, if we denote by p the maximal ideal of O, then

p ∩ A = Ker θ. Since K is the field of fractions of A, the map θ : A → k extends to

a map θ̃ : O → k with kernel p and we have

kHn = k ⊗O OHn

where OHn = O⊗A Hn. Similarly, if λ ∈ Bip(n), then OS6

λ is an OHn-module and

the extension of scalars defines a bilinear form Oφ6

λ on OS6

λ . We then set, for all

i > 0,

OS6

λ (i) = {x ∈ OS6

λ | ∀ y ∈ OS6

λ , Oφ6

λ(x, y) ∈ pm}.

We then set

kS6

λ (i) =
(
OS6

λ (i) + pS6

λ )/pS6

λ .

Then there exists m0 such that kS6

λ (m0) = 0 and the S6

λ (i)’s are kHn-submodules

of kS6

λ . Moreover, kS6

λ (0) = kS6

λ and kS6

λ (1) = rad kφ6

λ . The Jantzen filtration of

kS6

λ is the filtration

0 = kS6

λ (m0) ⊆ kS6

λ (m0 − 1) ⊆ · · · ⊆ kS6

λ (1) ⊆ kS6

λ (0) = kS6

λ .

The next conjecture proposes an interpretation of the polynomials ds
λ,µ as a v-

decomposition matrix. This is a generalization of a conjecture by Lascoux, Leclerc

and Thibon [30, §9].

Conjecture C. Let λ ∈ Bip(n) and µ ∈ Bip6

(k)(n). Let p be the unique

integer such that

(d + pe)a < b < (d + (p + 1)e)a.

Put

s = (d + pe, 0),

then

ds
λ,µ(v) =

∑

i > 0

[kS6

λ (i)/kS6

λ (i + 1) : D6

µ ] vi.

It would also be very interesting to find an analogue of Jantzen’s sum formula.

This formula could be obtained using the matrix described by Yvonne in [36, §7.4].
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4.6. An example: the asymptotic case. Assume here, and only in this subsec-

tion, that b > (n − 1)a (in other words, if r > n − 1). Then Theorem 4.5 holds

without assuming that Conjectures A and B are true in this case. However, note

that, at the time this paper is written, the Conjecture A is not fully proved. As

it is explained in Remark 4.1, only (a), (b) and (c) are proved and part of (c+).

However, we can define an order E′
∞ on Bip(n) as follows: if λ, µ ∈ Bip(n), we

write λ E′
∞ µ if w 6LR,6 w′ for some (or all) w and w′ in Wn such that λ∞(w) = λ

and λ∞(w′) = µ. Then, by the work of Geck-Iancu [16] and Geck [15], we have that

((Bip(n), E′
∞ ),SBT , C6, ∗) is a cell datum on Hn and it is easily checked that the

proof of Theorem 4.5 remains valid if we replace everywhere Er by E′
∞ .

Note also that the cell datum ((Bip(n), E′
∞ ),SBT , C6, ∗) is roughly speaking

equivalent to the cell data constructed by Graham and Lehrer [20, Thm. 5.5] or

Dipper, James and Mathas [9, Thm. 3.26].

5. Generic Hecke algebra

In the last section, we have shown that, if we assume that conjectures A and B

hold, the choice of a pair (a, b) ∈ Γ2 and the choice of a total order on Γ lead to

an “appropriate” representation theory for the associated Hecke algebra of type Bn.

In this section, we show that these results can be applied to find several “Specht

modules” theories for the same algebra: we shall work with the group Γ = Z2, with

a = (1, 0) and b = (0, 1) and the main theme of this section will be to make the

order 6 vary.

Hypotheses and notation: From now on, we assume that Γ = Z2,

a = (1, 0) and b = (0, 1). We set Q = eb and q = ea so that A =

Z[Q, Q−1, q, q−1].

In this case, Hn is called the generic Hecke algebra of type Bn. Recall that

(Tt − Q)(Tt + Q−1) = (Tsi
− q)(Tsi

+ q−1) = 0

for all i ∈ {1, 2, . . . , n − 1}. Now, any choice of elements Q0 and q0 in k× define a

unique morphism θ : Γ → k×, a 7→ v0, b 7→ V0.

5.1. Orders on Z2. Our main theme in this section is to use the possibility of

endowing Γ = Z2 with several orders. For instance, if ξ ∈ R>0 \ Q (a positive

irrational number), then we can define

(m, n) 6ξ (m′, n′) if and only if m + ξn 6 m′ + ξn′.
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This defines a total order on Z2. Moreover, 0 <ξ a and 0 <ξ b, so that all the results

of this paper can be applied. If r denotes the entire part [ξ] of ξ, then

ra < b < (r + 1)a.

For simplification, we shall denote by Sξ
λ the Hn-module S

6ξ

λ and Dξ
λ the kHn-

module D
6ξ

λ . We also set Bipξ

(k)(n) = Bip
6ξ

(k) (n). We also assume that the following

holds: there exist natural numbers d and e such that e > 1 and




θ(a)2 is a primitive e-th root of unity;

θ(b)2 = −θ(a)2d.

We can now restate the Theorem 4.5 in this case:

Theorem 5.1. Assume that Conjectures A and B hold. Let λ ∈ Bip(n). Then:

(a) KSξ
λ ≃ Vλ.

(b) Let p be the unique integer such that

d + pe < ξ < d + (p + 1)e.

Put

s = (d + pe, 0)

then Bipξ

(k)(n) = Bips
e(n) and

[kSξ
λ : Dξ

µ] = ds
λ,µ(1)

for all µ ∈ Bipξ

(k)(n). In other words, Dξ
µ ≃ Ds

µ and

dn[Vλ] =
∑

µ∈Bipξ

(k)
(n)

ds
λ,µ(1)[Dξ

µ].

This Theorem shows that, if Conjectures A and B hold, then the different choices

of ξ (or of other orders on Z2) lead to:

• Different cellular structures on Hn;

• Different families of Specht modules;

• Different parametrizations of the simple kHn-modules,

• Different “v-decomposition matrices” as defined in 4.5 (despite the fact that

the decomposition matrices must be equal up to permutations of the rows

and the columns).

For instance, if ξ and ξ′ are two positive irrationnal numbers, then the KHn-modules

KSξ
λ and KSξ′

λ are isomorphic, but the Hn-modules Sξ
λ and Sξ′

λ might be non-

isomorphic.
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Remark 5.2 - If ξ > n− 1, then Geck, Iancu and Pallikaros [18] have shown that

the Specht modules Sξ
λ are isomorphic to the ones constructed by Dipper, James

and Murphy [10]. �

5.2. Crystal isomorphisms. Let ξ1 and ξ2 be irrationnal numbers. Let r1 and r2

be the natural numbers such that

r1 < ξ1 < (r1 + 1) and r2 < ξ2 < (r2 + 1).

Then if we use the order 6ξ1 , we obtain a complete set of non isomorphic simple

modules for the specialized algebra kHn:

{Dξ1
λ | λ ∈ Bipξ1

(k)}.

On the other hand, if we use the order 6ξ2 , we obtain a complete set of non iso-

morphic simple modules for the same algebra:

{Dξ2
λ | λ ∈ Bipξ2

(k)}.

By Theorem 5.1, there exist s1 ∈ Z2 and s2 ∈ Z2 such that:

Bipξ1
(k)(n) = Bips1

e (n) and Bipξ2
(k)(n) = Bips2

e (n)

and we have a bijection

c : Bips1

e (n) → Bips2

e (n)

which is uniquely determined by the condition that:

For all µ ∈ Bips1

e (n), Dξ1
µ ≃ Dξ2

c(µ).

In this section, we want to explicitely determine the bijection c. To do this, we first

note that this map induces a bijection between the vertices of the crystal graphs of

M[s1] and M[s2].

The modules M[s1]′ and M[s2]′ are isomorphic as Uv(ŝle)
′ modules. As a conse-

quence, the crystal graphs of M[s1] and M[s2] are also isomorphic. This bijection

may be obtained by following a sequence of arrows back to the empty bipartition in

the crystal graph of M[s1] and then applying the reversed sequence from the empty

bipartition of M[s2]. One can also define it as follows. Let

Bs1 := {G(µ, s1) | µ ∈ Bips1

e }

be the elements of the canonical basis of M[s1] and let

Bs2 := {G(µ, s2) | µ ∈ Bips2

e }

be the elements of the canonical basis of M[s1]. Then if we specialize the element

of Bs1 or Bs2 to v = 1, we obtain a basis of the same irreducible highest weight

U(ŝle)-modules. Hence, for all µ ∈ Bips1

e (n), there exists γ(µ) ∈ Bips2

e (n) such that

for all λ ∈ Bip(n), ds1

λ,µ(1) = ds2

λ,γ(µ)(1).
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Then we have a bijection

γ : Bips1

e (n) → Bips2

e (n).

This bijection has been explicitely described, in a non recursive way in [25] (see also

the generalisation in [26]).

Theorem 5.3. Assume that Conjectures A and B hold. Then for all µ ∈ Bips1

e (n),

we have

c(µ) = γ(µ).

Proof. Let r1 (resp. r2) denote the entire part of ξ1 (resp. ξ2). Let µ ∈ Bips1

e (n).

By Ariki’s theorem and the theory of cellular algebras, c(µ) is the maximal element

with respect to Er2 such that |c(µ), s1〉 appears with non-zero coefficient in G(µ, s1).

We have [CSξ
λ : Dξ1

µ ] = [CSξ
λ : Dξ2

c(µ)] and [CSξ
λ : Dξ1

µ ] = ds1

λ,µ(1) = ds2

λ,γ(µ)(1) =

[CSξ
λ : Dξ2

c(µ)]. Hence γ(µ) is the maximal element with respect to Er2 such that

ds1

γ(µ),µ(1) 6= 0

This implies that

c(µ) = γ(µ).

This concludes the proof. �

Remark 5.4 - Note that using the non-recursive parametrization of Bips
e(n) known

in particular cases (see §4.4), it is possible to obtain nice characterizations of Bips
e(n)

in all cases by applying the above bijection.

Example 5.5 - Assume that n = 4 and that θ(a)2 = θ(b)2 = −1. Then θ(a) is a

primitive 2-root of unity and we have θ(b)2 = −θ(a)0. If 0 < ξ1 < 2 < ξ2 < 4 (i.e.

r1 ∈ {0, 1} and r2 ∈ {2, 3}), then we have

Irr(CH4) = {Dξ1
µ | µ ∈ Bip

(0,0)
2 (4)}.

Irr(CH4) = {Dξ2
µ | µ ∈ Bip

(2,0)
2 (4)}.

To compute Bip
(0,0)
2 (4) (resp. Bip

(2,0)
2 (4)), we compute the crystal graph associated

to the action of the quantum group Uv(ŝl2) on the Fock space F (0,0) (resp. F (2,0)).

The submodule generated by the empty bipartition gives an irreducible highest

weight module M[0, 0] (resp. M[2, 0]) with highest weight 2Λ0. We only give the

part of both crystals containing the bipartitions up to rank 4. They are computed

as explained in [25, 2.1, 2.2]:
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By Theorem 4.5, we then have

Irr(CH4) = {Dξ1
(4,∅), D

ξ1
(31,∅), D

ξ1
(3,1), D

ξ1
(2,2)}

= {Dξ2
(4,∅), D

ξ2
(31,∅), D

ξ2
(3,1), D

ξ2
(2,2)}

and, by Theorem 5.3, we have

Dξ1
(4,∅) ≃ Dξ2

(4,∅),

Dξ1
(31,∅) ≃ Dξ2

(31,∅),

Dξ1
(3,1) ≃ Dξ2

(3,1),

Dξ1
(2,2) ≃ Dξ2

(2.1,1).
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Uq(ŝl(n)) at q = 0, Comm. Math. Phys. 136 (1991), 543–566.
[28] T. Lam, Growth diagrams, domino insertion, and sign-imbalance, Journal of Combinatorial

Theory 107 (2004), 87–115.
[29] M. vanLeeuwen, The Robinson-Schensted and Schutzenberger algorithms, an elementary

approach, The Foata Festschrift, Electron. J. Combin. 3 (1996), Research Paper 15.
[30] A. Lascoux, B. Leclerc and J-Y Thibon, Hecke algebras at roots of unity and crystal

bases of quantum affine algebras. Comm. Math. Phys. 181 (1996), 205-263.
[31] G. Lusztig, Hecke algebras with unequal parameters, CRM Monographs Ser. 18, Amer.

Math. Soc., Providence, RI, 2003.
[32] A. Mathas, Iwahori-Hecke algebras and Schur algebras of the symmetric group, University

Lectures Series, AMS, Providence, 15, 1999.
[33] M. Shimozono and D. E. White, Color-to-spin ribbon Schensted algorithms, Discrete

Math. 246 (2002), 295–316.

http://arxiv.org/abs/math/0703150
http://arxiv.org/abs/math/0703153
http://arxiv.org/abs/0706.0680


Cellular structures on Hecke algebras of type B 23

[34] D. Uglov, Canonical bases of higher-level q-deformed Fock spaces and Kazhdan-Lusztig
polynomials, Kashiwara, Masaki (ed.) et al., Boston: Birkhäuser. Prog. Math. 191 (2000):
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