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Abstract: This paper deals with stabilization control of a non-minimum phase under-actuated
Planar Vertical Take-Off and Landing (PVTOL) aircraft. The proposed control approach,
inspired from that proposed in Poulin et al. (2007), is based on a discrete time model of the
PVTOL and receding horizon technique to take into account constraints on the control inputs
(positivity and boundedness). State constraints can also be handled. The computational cost is
reduced by decoupling the optimization problem into two QP problems of reduced dimensions.
The minimized cost functions proposed here extends the previous work by allowing state and
control weight. The proposed control approach is illustrated through simulation case studies
including stabilization and robustness towards parameters uncertainties.

Keywords: PVTOL aircraft, under-actuation, non-minimum phase, receding horizon control,
global stabilization, quadratic optimization.

1. INTRODUCTION

Planar and Vertical Take Off and Landing (PVTOL)
aircrafts are those flying machines which are able to take-
off and land vertically like a helicopter, but have the
ability to fly with the efficiency of an airplane. Their
simplified dynamics, introduced by Hauser et al. (1992a),
with three degree of freedom and two control inputs
has become a benchmark of non-minimum phase control
problems. It can be seen as the projection of a six degree
of freedom flying body into a vertical plane attached to
the body. This dynamics includes many difficulties that
explain the popularity of this model. It is for instance
the under-actuation (three degrees of freedom for only two
controls), or the non-minimum phase property (unstable
zero dynamics). This system also concentrates all the
difficulties of the well known Brockett’s integrator (also
referred the unicycle) that one gets by neglecting the
coupling factor and the gravity. Within this context a
great number of methods have been proposed to control
it. The proposed control approaches can be classified into
two families: trajectory tracking control approaches and
stabilization control approaches.

In the case of trajectory tracking two subclasses exist : lin-
earization based approaches and decomposition based ap-
proaches. Within the first sub-class, Hauser et al. (1992a)
have proposed a feedback control strategy based on an
approximate input/output linearization, where the non-
minimum phase system is approximated by a minimum
phase one. The proposed approach results in bounded
tracking and stabilization for V/STOL aircrafts. Martin

et al. (1996) have proposed an extension of Hauser’s ap-
proach. The proposed control strategy uses Huygens center
of oscillation as a flat output of the VTOL model, then
a dynamic state feedback is used to exactly linearize the
model. The advantage of such a method is that it works
for both small and large coupling parameter. Inspired
from the approach of Okou et al. (1999), Huang and
Yuan (2002) have proposed a control scheme that gen-
erates an input/output linearization while insuring with
Lyapunov arguments. In decomposition based approaches
AL-Hiddabi et al. (1999) have proposed a scheme where
the model is decomposed into a minimum and a non-
minimum phase parts, then a dynamic inversion is used
for the former, while a robust stabilizing feedback control,
based on LQR approach, is applied to the linearized model
around the equilibrium point for the latter.

Stabilization is aimed to take the system states from some
initial condition to the origin. The proposed approaches to
solve this problem could be classified into two sub-classes:
unbounded controls and bounded controls. In unbounded
controls sub-class, Saeki and Sakaue (2001) have proposed
a design method which makes use of the center of oscilla-
tion and a two-step linearization, to stabilize the aircraft.
Olfati-Saber (2002) has addressed the problem of global
configuration stabilization of the PVTOL aircraft with
strong input coupling using smooth static state feedback.
Lin et al. (1999) have proposed a robust stabilization of
the PVTOL aircraft, where the objective is formulated
as an optimal control problem. Within bounded controls
sub-class, the output constraints as well as input control
constraints are taken into account in the design of the con-
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trol approach. For instance, Castillo et al. (2002) propose a
control approach that takes into account inputs constraints
and does not have any singularities. The control algorithm
has been obtained by imposing a desired dynamics to
the x and y sub-systems such that both corresponding
linear acceleration and velocities are bounded. Zavala et al.
(2003); Fantoni et al. (2002) have proposed a global stabi-
lizing control based on the use of nonlinear combinations
of linear saturation functions bounding the thrust input
and the rolling moment to arbitrary saturation limits. The
convergence of these approaches is considerably improved
in (Hably et al., 2006).

In this paper a fast model predictive control is proposed
for stabilization of the PVTOL aircraft. The terminology
”fast” means that the structure of the system is used
in order to design an optimization scheme very suitable
for computation (Alamir, 2006). As in (Poulin et al.,
2007), an exact discrete-time model is given. The PVTOL
aircraft system can then be considered as two intercon-
nected linear systems resulting in two convex optimization
problem that can be solved efficiently and successively
with quadratic programming algorithms (QP). This paper
extends (Poulin et al., 2007) by allowing classical quadratic
cost functions of the control and the states. This reveals
better robustness performances.

The outline of the paper is as follows. In Section 2 the
dynamic model of the PVTOL aircraft is described. Sec-
tion 3 is devoted to detail the proposed control approach.
Numerical simulations are proposed in Section 4 to illus-
trate the control strategy. Finally, concluding remarks are
drawn in Section 5.

2. DYNAMICAL MODEL OF THE PVTOL
AIRCRAFT

Consider the widely used simplified PVTOL dynamics first
introduced by Hauser et al. (1992b):

ẍ =− sin(θ)u + ε cos(θ)v (1)

ÿ = cos(θ)u + ε sin(θ)v − 1 (2)

θ̈ = v (3)

where x and y represent Cartesian positions of the center
of mass of the aircraft as shown in Figure 1. θ is the roll
angle that the aircraft makes with the horizon. The control
inputs u and v represent normalized quantities related to
the vertical thrust directed upwards with respect to the
aircraft and the rolling moment. ε denotes the coupling
parameter between the rolling moment and the lateral
acceleration of the aircraft. The constant term ′ − 1′ in
(2) corresponds to the normalized gravity.

3. PROPOSED CONTROL SCHEME

3.1 Open-loop control problem formulation

The proposed control law is based on the classical frame-
work of predictive control. This consist, at any time t, in
finding a control function (u(τ), v(τ)), τ ∈ [t, t+tf ] defined
on a time horizon tf that drives the state of the system

from z(t) = (x(t), ẋ(t), y(t), ẏ(t), θ(t), θ̇(t)) to some desired
final state z(t + tf ) = (x(t + tf ), ẋ(t + tf ), y(t + tf ), ẏ(t +

Fig. 1. View of the PVTOL in the frontal plane

tf ), θ(t + tf ), θ̇(t + tf )). The update at each time t of this
control sequence yield a feedback. If many formulations
in continuous time exists, one way to solve this problem
is to discretize it with some sampling period T such that
tf = nT , assuming constant control over sampling periods,
in order to find a control sequence

U(t) = [u0 u1 · · · un−1]
T

, V (t) = [v0 v1 · · · vn−1]
T

that drives the system to its final desired configuration.
In the case of the PVTOL aircraft system, the controls
must in addition verify the constraints 0 ≤ uk ≤ umax and
vmin ≤ vk ≤ vmax with for obvious controllability reasons
umax > 1. In the remainder of the paper, the subscript
k will denote the value at time t + kT . The basic idea of
the control approach is to subdivide the control problem
into two subproblems. In the first one, the control v is
used to stabilize θ and θ̇. While the second one deals
with stabilization of x, y and their derivatives whatever
the choice made for v. This is only possible if the evolution
of θ is sufficiently “rich”. By rich is inferred two main
phenomena. First, due to the positivity of the control u, θ
must evolves positively and negatively on the time interval
[t, t+nT ] in order to preserve the controllability of the rest
of the system even in the case of null coupling. For this,
the dynamic (3) is completed with İθ = θ. If Iθ starts and

ends at the origin, the controllability of the (x, ẋ, θ, θ̇) will
be preserved. The second possible obstruction that we will
discuss later on corresponds to a loss of controllability if θ
vanishes.

Rotational stabilization Consider now the extended sub-
system Θ := (Iθ, θ, θ̇)

T that corresponds to a third order
chain of integrators and takes its discretization:

Θk+1 = AθΘk + Bθvk

By recurrence, Θk can be expressed as:

Θk = Ak
θΘ0 +

(

Ak−1
θ Bθ Ak−2

θ Bθ · · · Bθ

)







v0

...
vk−1






(4)

Let Ṽ (n, Θ(t),Θf ) denote, when it exists, the solution
of the constrained QP problem expressed for the sake of
simplicity in its null-stabilization formulation:

Pv : Ṽ := Argmin
V

n
∑

k=1

ΘT
k QΘk + rv2

k (5)

(with Q, r > 0 are classical weight terms) subject to the
constraints (4), Θ0 = Θ(t), Θn = Θf , and:

vmin ≤ Vi ≤ vmax for i = 0, . . . , n − 1

Any solution of Pv brings after n periods the rotational
subsystem from Θ(t) to Θf with vmin ≤ vi ≤ vmax. By
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convention, if n = 0, Pv admits the empty vector V = (·)
as a solution. All classical arguments of linear optimal
control apply especially the following useful property: if
n is sufficiently large, Pv necessarily admits a non empty
solution (Gauthier and Bornard, 1983).

Translational stabilization Let ζ := (x, ẋ, y, ẏ)T denote
the translational variables. Then, based on (1) and (2) and
after tedious computations one has:

ζk =









0
0

−
(kT )2

2
−kT









+





1 kT 0 0
0 1 0 0
0 0 1 kT

0 0 0 1



 ζ0

+ (Q1Γk + TQ3ΓkDk)





u0

.

.

.
uk−1





+ ε(Q2Γk + TQ4ΓkDk)





v0

.

.

.
vk−1





(6)

where ε is the coupling parameter, Qi’s are permutation
matrices, Dk = diag(k − 1, . . . , 1, 0). Using the fact the
second time derivative of θ is constant, one has θ(τ) = αk+
βk[τ −(t+kT )]+γk[τ −(t+kT )]2 with τ ∈ [t+kT, t+(k+

1)T ] and αk := θ(t+kT ), βk := θ̇(t+kT ), γk := 1
2
v(t+kT ).

All the terms depending upon θ can be gathered in Γk that
writes:

Γk =







c0 c1 . . . ck−1

s0 s1 . . . sk−1

C0 C1 . . . Ck−1

S0 S1 . . . Sk−1







with sk :=
∫ T

0
sin(θ(τ))dτ , ck :=

∫ T

0
cos(θ(τ))dτ , Sk :=

∫ T

0

∫ τ2

0
sin(θ(τ))dτ1dτ2 and Ck :=

∫ T

0

∫ τ2

0
cos(θ(τ))dτ1dτ2.

These parameters can be very efficiently computed using
the Fresnel integrals s(z) =

∫ z

0
sin
(

π
2
ν2
)

dν and c(z) =
∫ z

0
cos
(

π
2
ν2
)

dν. For instance, the routine proposed by
Zhang and Jin (1996) computes on a 1.8GHz Pentium with
Matlab these two integrals in an average of 5.10−5 s with
22 iterations and a precision of 10−20.

To find an open-loop bounded control sequence U(t), one
needs to invert (6). This requires that Q1Γ + TQ3ΓDn be
full rank, which will not be proved here. This property,
can formally be proved to hold if n > 4, θ(t) 6= θ(t + tf )
and T sufficiently small (Poulin et al., 2007). However,
the condition for small T can probably be relaxed since
Γ, columnwise composed of linearly independent func-
tions, should also be full rank. Let the control sequence
Ũ(n, Ṽ , η(t), ζf ) denote the solution, when it exists, a
solution of the following QP problem with weight terms
O, p > 0:

Pu : Ũ := Argmin
U

n
∑

k=1

ζT
k Oζk + pu2

k−1 (7)

subject to (6), ζ0 = ζ(t), ζn = ζf , and:

0 ≤ Ui ≤ umax for i = 0, . . . , n − 1

Any solution of Pu brings after n periods the translational
subsystem from ζ(t) to ζf with 0 ≤ ui ≤ umax. By
convention, if n = 0 and therefore V is empty, U = {·}
will be considered as a solution of Pu.

3.2 Open-loop singularities avoidance

The idea is to place the system in a configuration that
insures the existence of solutions to (5) and (7). Two
closely related problems are possible. The first one deals
with the singular initial condition θ(t) = θ(t + nT ) = 0,
resulting in a loss of controllability on x. This problem
is classical in nonholonomic control when the linearized
system is not controllable. Unfortunately, handling this
case as a particular case, as often proposed in the literature
on chained form systems, is not satisfactory. Indeed, if
θ(t) and θ(t + tf ) are too close to each other, problem (5)
will fail to have a bounded solution. The second problem
already mentioned above occurs when the constraint on
u is too restrictive with respect to the one on v. If for
all n sufficiently large, one can insure with classical linear
arguments that (5) admits a solution, the problem on ζ
persists. Typically the optimal open-loop trajectory of θ(t)
is to be first of the same sign as θ(0), then of opposite
sign until θ joins the origin where it remains to the end
of the predictive horizon. Hence, if θ vanishes ”too fast”
because of non restrictive constraints (vmin, vmax), it may
be impossible to drive ζ to the origin with a too restrictive
constraint umax and increasing the horizon does not solve
this problem. Hence, the control scheme allows to first
move laterally by forcing θ to be nonzero before going to
the origin. This insures that the system necessary falls in
a configuration from which it can be brought to the origin
by means of an a priori bounded control. Indeed, if for
instance the system starts with some x(0) > 0, bringing θ
to some θd > 0 with v and taking u in order to compensate
the gravity will produce a translation towards x negative
(left). At some distance from the axis x = 0 that depends
upon vmax and vmin, there will exists some control law
that brings the system on the axis x = 0 where Pu and
Pv obviously have a solution. For this, take (Yang et al.
(1997); Marchand et al. (2007)):

y =

(

1 2
1 1

)

(

T 2

2

3T 2

2
T T

)−1
(

θ − θd

θ̇

)

and the following control with v̄ := min(vmax,−vmin) and
0 < γ1 < γ2 < 1:

v =
−v̄

γ1 + γ2

[

γ1 sat

(

y1(γ1 + γ2)

v̄

)

+ γ2 sat

(

y2(γ1 + γ2)

v̄

)]

(8)

The sign of θd must clearly be the same as x and |θd|
must be not to large in order to be able to compensate the
weight using:

u = max

(

0, satumax

(1 − ε sin θ

cos θ

)

)

(9)

New control sequences Û(n, δ, V̂ , z(t), zf ) and

V̂ (n, δ, Θ(t),Θf ) follow when the controls (8-9) are first ap-
plied during δ sampling period before the control sequences
Ũ(n, Ṽ , ζ(t + δT ), ζf ) et Ṽ (n, Θ(t + δT ),Θf ) defined as
above.

3.3 The closed-loop stabilizing feedback

The main result is introduced in the following theorem:

Theorem 1. Let (ζf ,Θf ) = (xf , 0, yf , 0, 0, 0, 0) be some
desired final configuration. Then the following algorithm,

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

1749



applied at each sampling period to (ζ(kT ),Θ(kT )), glob-
ally asymptotically stabilizes the PVTOL aircraft to
(ζf ,Θf ):

Algorithm:

• Step 0: Take a prediction horizon tf := NT
• Step 1: Compute with Pu and Pv the set C of

admissible control profiles defined by:

C(ζ(kT ), Θ(kT ), ζf , Θf , N, ∆) =
{

(Û(n, δ, V̂ , ζ(kT ), zf )

V̂ (n, δ, Θ(kT ), Θf )

)

, δ ∈ {0, . . . , ∆} , n ∈ {0, . . . , N}

}

• Step 2: If C = ∅ 1 , which means that there is no
control (U, V ) fulfilling the constraints that drives the
system from (ζ(kT ),Θ(kT )) to (ζf ,Θf ) in the time
NT , then increase N an go back to step 1. Other-
wise, C contains the admissible open-loop control. Let
(Uopt, V opt) be defined by:

(

Uopt(kT )

V opt(kT )

)

:= Arg min
(U

V )∈C

J(U, V ) (10)

with J(U, V ) = UT U + µV T V and µ > 0 and by
convention J((·), (·)) = 0 if (U, V ) = (·, ·).

• Step 3: The closed loop control is then given by:
⋄ if (Uopt, V opt) are empty vectors:

{

u(ζ(kT ),Θ(kT )) := 1
v(ζ(kT ),Θ(kT )) := 0

⋄ otherwise, the control to apply is the first element
of (Uopt, V opt):

{

u(ζ(kT ),Θ(kT )) := u
opt
0

v(ζ(kT ),Θ(kT )) := v
opt
0

Note that J can be chosen linear in U instead of quadratic.
As mentioned above, this choice highly depends on the
relation between the thrust and the electrical fuel or any
other used energy.

Proof : The key element of the proof consists in estab-
lishing the Bellman’s invariance principle of the proposed
scheme. In other words, we will check that for all k, the op-
timal solution of (10) at time kT , shifted by one sampling
period, remains in the set of admissible control profiles
C(ζ((k + 1)T ),Θ((k + 1)T ), ζf ,Θf , N, δmax, β) where the
optimal solution at time (k+1)T is searched. This property
enables then to conclude on the stability of the proposed
scheme.
Invariance principle: Let (Uopt(kT ), V opt(kT )) be the so-
lution of (10) at time kT and nopt the corresponding
prediction horizon. Let (Uopt

s (kT ), V opt
s (kT )) denote the

control sequence (Uopt(kT ), V opt(kT )) without its first
element that correspond to the time instant kT :

(

Uopt
s (kT )

V
opt
s (kT )

)

:=

(

U
opt
1 (kT ), . . . , Uopt

nopt(kT )

V
opt
1 (kT ), . . . , V opt

nopt(kT )

)

Clearly (Uopt
s (kT ), V opt

s (kT )) steers the system from
(ζ((k +1)T ),Θ((k +1)T )) to (ζf ,Θf ) in nopt−1 sampling
period and with the control constraints fulfilled. Moreover,
Uopt

s (kT ) is a solution of Pu(T, nopt − 1, V opt
s (kT ), ζ((k +

1)T ), ζf ). We rule out the trivial case when nopt = 0
meaning that the target final state is already reached,

1 If U = (·) and V = (·) are solutions of C, we will consider that
C 6= ∅

since the control law here clearly insures that the sys-
tem will remain at the final state with an associated
zero cost J . Then it follows clearly from the defini-
tion of C that (Uopt

s (kT ), V opt
s (kT )) belongs to C(ζ((k +

1)T ),Θ((k + 1)T ), ζf ,Θf , N − 1, δmax, β) and hence to
C(ζ((k + 1)T ),Θ((k + 1)T ), ζf ,Θf , N, δmax, β).
Stability: The stability follows from the above point. In-
deed, taking J as Lyapunov function, one has:

• J is necessarily decreasing : This clearly follows from
the above property. The cost Jk+1 is necessarily
lower to the cost associated to the shifted solution
(Uopt

s (kT ), V opt
s (kT )) and therefore to the cost Jk.

• N can not increase on the closed loop trajectories
of the system: Indeed, N is increased if and only if
C = ∅. If a solution exists at time k, then the shifted
solution (Uopt

s (kT ), V opt
s (kT )) belongs to the set of

admissible control at time (k+1)T which is therefore
necessarily not empty.

• J necessarily converges to 0 : From the definition of J ,
Jk = Jk+1 if and only if (uopt

0 (kT ), vopt
0 (kT )) = (0, 0).

Therefore, if J remains constant, necessarily it implies
that a null control is applied. Under this control, the
aircraft falls under the influence of the gravity and
therefore moves away from the target point. But a
constant cost J also implies that it remains possible
to join this target point a the finite time lower than
noptT with a bounded control. Therefore, invoking
a Lasalle’s invariance principle argument, J can not
remain constant forever except if J = 0.

With the above items, one may conclude to stability. Ineed,
once J has converged to zero, it is straightforward that
(z,Θ) converges in less that NT to (zf ,Θf ) where it
remains.

4. ILLUSTRATIVE SIMULATIONS

This section is devoted to simulation results obtained
by application of the proposed control approach. For
that two simulations were considered, the first one deals
with the stabilization of the aircraft, while the second
one concerns the robustness study of the proposed con-
trol scheme towards parameters uncertainty. The used
parameters are ε = 0.25 for the coupling parameter,
tf = 20 s as prediction horizon, T = 0.5 s as sampling
period, umax = 4 and vmax = −vmin = 0.5 as con-
trol bounds, δ = 1 as singularity avoidance parameter.
The weight on Θ in (5) is Qk = I3×3, on V in (5) is
R = 5Ik×k, on ζ in (7) is Ok = I4×4, and the weight
on U in (7) is P = 5Ik×k. The initial conditions are as in

(Fantoni et al., 2002) (x(0), ẋ(0), y(0), ẏ(0), θ(0), θ̇(0)) =
(30, 0, 20, 0, 3π

5
, 0). Since θ exceeds π

2
many other methods

like (Hauser et al., 1992b; Olfati-Saber, 2002) can not be
used.

Scenario 1 : stabilization Figures 2-6 display the evo-
lution of the system in a stabilization scheme. Figures 2
and 3 respectively show the translational and rotational
movment of the PVTOL aircraft. The corresponding con-
trols are plotted on figure 4, and the evolution of the cost
function J on Figure 5. Finally, strobe snapshots of the
moving aircraft in the plane are depicted on Figure 6. The
convergence takes approximatively 13 s. In terms of energy
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consumption, the integral of u2 needed to reach a ball of
radius 0.05 around the final state is 65% less than that
of Fantoni et al. (2002). This fact is related to the needed
time to join the proposed neighborhood, which is half with
the proposed scheme (≈ 13sec).

Scenario 2 : robustness test As mentioned by Hauser
et al. (1992b), the coupling parameter is generally not
well known. Furthermore, in some flying machines (such
as biomimetic robots with flapping wings), this parameter
may not be constant. Therefore, the robustness with
respect to an uncertainty on this parameter was tested
using to compute the control a coupling parameter εu =
ε + ∆ε ; ∆ε = 50%. Simulation results are displayed on
figures 7-10, for both nominal and uncertain system. It
is worth to note that the obtained trajectories for the
uncertain system are very close to those of the nominal
one, despite the big amount of uncertainty considered
(50% of nominal value). This interesting result reflect
clearly the robustness of the proposed control scheme.

5. CONCLUSION

In this paper, a global stabilizing receding horizon control
approach is proposed for a PVTOL aircraft. The pro-
posed scheme takes into account bounds on both control
inputs,namely the thrust and the rolling moment, more-
over, it enables stabilization to any point in the space.
An other interesting feature of the proposed scheme lies
in the very low computational cost, which is obtained
by formulation of the control problem as two quadratic
optimization problems of reduced dimensions. Since the
optimization function is convex, a convergence to the op-
timum is insured. The stability analysis of the closed-loop
system under the proposed control approach is formally
established. Illustrative simulations are proposed to show
the stabilization of the PVTOL aircraft. Furthermore to
attest the robustness of the proposed control scheme, a
simulation case study for stabilization of the system under
parameter uncertainties is proposed.

0 5 10 15 20 25 30

0

10

20

30

40

Time [sec]

X
 &

 Y

Cartesian coordinates

 

 

0 5 10 15 20 25 30
−10

−5

0

5

10

Time [sec]

d
X

 &
 d

Y

 

 

X

Y

dX

dY

Fig. 2. Evolution of cartesian coordinates and velocities
versus time

REFERENCES

S. AL-Hiddabi, J. Shen, and N. H. McClamroch. A study
of flight maneuvers for the PVTOL aircraft model. In
Proc. American Control Conference, pages 2727–2731,
1999.

0 5 10 15 20 25 30
−1

0

1

2

Time [sec]

θ

0 5 10 15 20 25 30
−1

−0.5

0

0.5

1

Time [sec]

d
θ

Fig. 3. Evolution of θ position and velocity versus time

0 5 10 15 20 25 30
0

1

2

3

4

Time [sec]

U
0 5 10 15 20 25 30

−0.5

0

0.5

Time [sec]

V

Fig. 4. Evolution of the control inputs versus time

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

Time [sec]

J

Fig. 5. Evolution of the cost function versus time

−5 0 5 10 15 20 25 30 35
−5

0

5

10

15

20

25

30

35

X

Y

The PVTOL momvment in the vertical plane

Fig. 6. Stick figures of the aircraft movement in the plane

M. Alamir. Stabilization of Nonlinear Systems Using
Receding-Horizon Control Schemes : A Parametrized
Approach for Fast Systems. Lecture Notes in Con-
trol and Information Sciences. Springer-Verlag, London,
2006.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

1751



0 10 20 30
−10

0

10

20

30

Time [sec]

X

 

 

0 10 20 30
−5

0

5

10

15

20

Time [sec]

Y

 

 

0 10 20 30
−6

−4

−2

0

2

Time [sec]

d
X

/d
t

 

 

0 10 20 30
−3

−2

−1

0

1

Time [sec]

d
Y

/d
t

 

 

uncertain

nominal

uncertain

nominal

uncertain

nominal

uncertain

nominal

Fig. 7. Evolution of cartesian coordinates and velocities
versus time

0 5 10 15 20 25 30
−1

−0.5

0

0.5

1

1.5

2

Time [sec]

θ

 

 

0 5 10 15 20 25 30
−1

−0.5

0

0.5

1

Time [sec]

d
θ

 

 

nominal

uncertain

nominal

uncertain

Fig. 8. Evolution of θ position and velocity versus time

0 5 10 15 20 25 30
0

1

2

3

4

Time [sec]

U

 

 

0 5 10 15 20 25 30
−0.5

0

0.5

Time [sec]

V

 

 

nominal

uncertain

nominal

uncertain

Fig. 9. Evolution of the control inputs versus time

P. Castillo, R. Lozano, I. Fantoni, and A. Dzul. Control
design for the PVTOL aircraft with arbitrary bounds
on the acceleration. In 41st IEEE conf. on Decision and
Control, CDC’02, 2002.

I. Fantoni, A. Zavala, and R. Lozano. Global stabilization
of a PVTOL aircraft with bounded thrust. In Proc.
IEEE Conf. on Decision and Control, pages 4462–4467,
2002.

J. P. Gauthier and G. Bornard. Commande multi-
variable en présence de contraintes de type inégalité.
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