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Subcritical regimes in some models of continuum
percolation

Jean-Baptiste Gouéré *

Abstract

We consider some continuum percolation models. We are mainly interested in
giving some sufficient conditions for absence of percolation. We give some general
conditions and then focuse on two examples. The first one is a multiscale percolation
model based on the Boolean model. It was introduced by Meester and Roy and
subsequently studied by Menshikov, Popov and Vachkovskaia. The second one
is based on the stable marriage of Poisson and Lebesgue introduced by Hoffman,
Holroyd and Peres and whose percolation properties have been studied by Freire,
Popov and Vachkovskaia.

This is a preliminary version: in particular, some parts of the introduction need
to be developped.

1 Introduction and statement of the main results

1.1 Introduction

In this paper, we study some continuum percolation models. We are mainly interested in
giving some sufficient conditions for absence of percolation.

The Boolean model. We center a ball of random radius at each point of a homo-
geneous Poisson point process on the Euclidean space RY. We assume that the radii of
the balls are independent copies of a given positive random variable k. We also assume
that the radii are independent of the point process. We denote by A the density of the
Poisson point process. We denote by 3(\) the union of the balls, by S(A) the connected
component of () that contains the origin and by D(\) the Euclidean diameter of S(\).

When R is bounded, there exists a sharp phase transition (see for example [ff): if the
density A of the point process is below a critical value A. > 0, then S(A) is almost surely
bounded and its diameter D()\) admits exponential moments ; whereas if A is above A,
then S(A) is unbounded with positive probability.

The case where R is unbounded was studied by Hall in [ (see also [[] and [g] for
reviews). Hall proved that if F(R?*¢1) is finite, then the set S()) is almost surely bounded
for small enough \. If E(R?) is infinite, then such behaviour does not happen: whatever

*Postal address: Université d’Orléans MAPMO B.P. 6759 45067 Orléans Cedex 2 France E-mail:
jbgouere@univ-orleans.fr



the value of the density A, the set ¥(\) is almost surely the whole space. The latter result
still holds when the underlying point process is only assumed to be an almost surely non
empty and stationary point process (see [fJ], Proposition 7.3). In [[J], we proved that the
set S(\) is almost surely bounded for small enough A if and only if F(R?) is finite. We
also proved that, for any s > 0, E(D(A)?) is finite for small enough X if and only if
E(R*%) is finite. The idea developped in [ can be adapted to investigate some more
general models. This is the aim of this paper.

A multiscale percolation model. We keep the objects defined in the previous para-
graph. Let (X,())), be a sequence of independent copies of ¥(\). Let a > 1 be a scale
factor. We define a new random set (), a) by:

(N a) = U a ", (N).

We denote by S(A, a) the connected component of 2(), a) that contains the origin.

This model was introduced and studied in a two dimensional setting by Meester and
Roy in [f. In [[d], Menshikov, Popov and Vachkovskaia considered the case where R is
constant. They proved that if ¥()\) is in the subcritical phase then, for large enough a,
S(\, a) is also in the subcritical phase.

In [II], the same authors studied the case where R is unbounded. They considered

the following condition:
P(D(\) > r)r* — 0 as r — oo. (1)

They proved that, if () holds, then, for large enough a, i()\,a) is in the subcritical
phase. This is a generalisation of the previous result. Indeed, when R is bounded, ([l])
holds as soon as () is in the subcritical phase. When R is unbounded, one can make
the following remarks about the conditions under which there exists A > 0 such that ([l])
holds. Let ¢ > 0. Condition ([[) holds as soon as E(D(\)4) is finite. Therefore, by the
result of [f previously cited, there exists A > 0 such that () holds as soon as F(R**¢) is
finite. On the other hand, if () holds then E(D()\)?¢) is finite and therefore E(R??~¢)
is finite. B

In this paper, we prove the following result in which a > 1 is fixed: X(\,a) is in
the subcritical phase for small enough X if and only if E(R?In(R),) is finite. This is a
corollary of a result stated in Subsection [[.3.

Stable marriage of Poisson and Lebesgue. The following model was introduced by
Hoffman, Holroyd and Peres in [[]. Let o > 0 be a parameter called appetite. Let x be
a homogeneous Poisson point process with density 1 on R%. In [[], the authors showed
that there was essentially a unique way to give in a stable way to points of x disjoint
territories of R? of volume at most a. We defer the definition of stability to Subsection
[.d. Very roughly, it means that the distances between points of x and points of their
territories are minimal.

In this paper, we are interested in percolation properties of the union T'(«) of all the
territories. Let S(a) denote the connected component of T'(«) that contains the origin.



In ], Freire, Popov and Vachkovskaia proved, among other things, that S(a) was almost
surely bounded for small enough A. In this paper, we prove the following stronger result,
in which D(«) denotes the Euclidean diameter of S(«). For small enough A, for all n > 0,
E(D(a)™) is finite.

To prove this result, we first show that T'(«) is dominated by a dependent percolation
process. This was already the first step in the proof of [[I]. We then apply to this
dependent percolation process a result stated in Subsection [4 The latter result is the
main theorem of our paper.

1.2 Some notations

For the whole of the paper, we fix an integer d > 1. Let |- | be the Lebesgue measure on
R?. We denote by || - || the Euclidean norm on R? by B(x,r) the open Euclidean ball
centered at x € R? with radius 7 > 0 and by B(x,r) the closed Euclidean ball centered
at z € R% with radius r > 0.

When a point process £ on R?¢x]0, +o0o] is given we define the following objects. We

let
Y= U Ble,r).
(er)eg
(When we write (c,7) € & we implicitly assume that ¢ belongs to R? and that r belongs
to ]0, +o0[.) We denote by S the connected component of > which contains 0. (We let
S = if 0 does not belong to X.) We define a random variable M as follows:

M = sup ||z]]. (2)

z€eS

(We let M =0 if S is empty.) We say that percolation occurs if S is unbounded:

{percolation} = {S is unbounded}.

1.3 Boolean model induced by Poisson point processes

Let A > 0 and let p be a locally finite measure on ]0,4o00[. Let £ be a Poisson point
process on R%x]0, +oo[ whose intensity measure is the product of A| - | and . We denote
by Py, E, the associated probability measure and expectation, respectively. As distinct
points of & have distinct coordinates on R?, we can write:

§={(er(0),cexy

where y denotes the projection of ¢ on RY. If the measure p is a probability measure
then y is a Poisson point process on R? whose intensity is A| - |. Moreover, under this
assumption, if we condition on x then the r(c), c € £ are i.i.d. with common distribution
w. We refer to (B, [[3, [ for background on point processes and to [f, fI] for Boolean
models.

We prove the following result:

Theorem 1.1 There exists A\g > 0 such that P, (S is bounded) =1 for all X €]0, Xo| if
and only if the following assertions hold:



Al. The supremum sup ru([r, +o0o|) is finite.
r>0

A2. The integml/ pu(dp) is finite.
[1,400]

Remark. For all p > 1, Assumption Al is equivalent to the following one:

sup ru([r, pr]) < oo
r>0

(see Lemma P.19).

We also prove the following result:

Theorem 1.2 Let s > 0 be a positive real. There exists \g > 0 such that E) ,(M?) is
finite for all X €]0, o[ if and only if the following assertions hold:

Al. The supremum sup reu([r, +00[) is finite.

r>0

A8. The mtegml/

[1,400

B (dB) is finite.
[

Theorems [-]) and [[.9 are essentially consequences of Theorem [[.3 stated in the next
subsection. Theorems [[.1] and are generalization of the main results of [[] in which g
were assumed to be a finite measure.

1.4 Boolean model induced by more general point processes

Let ¢ be a point process on R¢x]0, +o0o[. We assume that the law of ¢ is invariant under
the action of the translations of R?: for all ¢ € RY, the point processes {z — (¢,0),z € ¢}
and £ have the same law. We also assume that the intensity measure of £ is locally finite.
Therefore, the intensity measure of ¢ is the product of the Lebesgue measure on R? by a
locally finite measure on ]0, +-o00[ that we denote by pu.

The main result of this paper is the following:

Theorem 1.3 Let C > 0. There exists D > 0, that depends only on d and C', such that
the following hold.

If the following properties are fulfilled:
BO. for all v > 0 and all x € R\ B(0,Cr) the point processes
EN B(0,r)x]0,7] and &N B(x,r)x]0,7]
are independent;

B1. supr®u([r, +oof) < D;
r>0

B2. the mtegml/ B4u(dpB) is finite,

[1,400[



then the set S is almost surely bounded. Let s be a positive real. If moreover

B3. / B u(dB) < oo
[1,400]
then E(M?) is finite.

Remarks.

1. The independence assumption B0 is fulfilled if £ is a Poisson point process (take
any C' > 2).

2. We give a strenghtened version of Theorem [.3 in Subsection P-3 (see Theorems P17,
2.8 and P.9). In those theorems, the independence assumption is weakened and the
conclusions are strenghtened.

1.5 Multiscale percolation model

Let A > 0 and v be a probability measure on ]0, +00[. We make the following assumption:

A)+ [rdu(d'r) < 00. (3)

Let (£.),>0 be a sequence of independent Poisson point processes on R?x]0, +oo[ whose
intensity is the product of A| - | by v. Let a > 1. We define a new point process by:

g - U a—ngn.
n>0

As in Subsection we associate with £ two random sets ¥ and S. We denote by Py,
the associated probability measure and expectation, respectively.

Lemma 1.4 The point process & is a Poisson point process whose intensity is the product
of A| - | by the locally finite measure p on |0, +oo[ defined by:

w(B) =Y a"v(a"B). (4)

n>0
By Theorem [L1, we get:

Theorem 1.5 There exists A > 0 such that Py (S is bounded) = 1 for all X €]0, Ao[ if
and only if

| sm@was)
[1,+00]
s finite.
Remarks.
1. We can get a similar result about the finiteness of moments by using Theorem [2.

2. We can check that, almost surely, the Lebesgue measure of the complement of ¥
equals 0 (see for example [[0]).



1.6 Stable marriage of Poisson and Lebesgue

The following model was introduced in [[] by Hoffman, Holroyd and Peres. Let y be a
locally finite subset of R?. We call the elements of R? sites and the elements of x centers.
Let o €]0, 00| be a parameter, called the appetite. An allocation of R? to x with appetite
« is a measurable function

YR — y U {oo, A}

such that [ 71(A)| = 0, and [¢p"!(a)] < «a for all @ € y. We call ¥»"!(a) the territory
of the center a. A center a € y is sated if [1)"'(a)| = a and unsated otherwise. A site
r € R? is claimed if 1(z) € ¥, and unclaimed if ¢)(x) = co. The allocation is undefined
at z if ¥(x) = A.

The following definition, given in [[], is an adaptation of that introduced by Gale and
Shapley [P]. Let a be a center and let = be a site with ¢ (z) ¢ {a, A}. We say that x
desires a if

|lx —al| <[]z — ¥ (z)] or x is unclaimed.

We say that a covets z if
|z — a|| < ||z’ — a| for some ' € 1~ *(a), or a is unsated.

We say that a site-center pair (x,a) is unstable for the allocation v if = desires a and a
covets x. An allocation is stable if there are no unstable pairs.

We now assume that y is a translation invariant Poisson point process on R%. We
assume that its intensity measure is the Lebesgue measure. (We can see by scaling argu-
ments that there is no loss of generality in this assumption.) In [f] it was proved among
other things, that for any such process there exists a.s. a | - |-a.e. unique stable allocation
1 from R? to y. Furthermore we have the following phase transition phenomenon.

1. If @ < 1 (subcritical) then a.s. all centers are sated but there is an infinite volume
of unclaimed sites.

2. If & =1 (critical) then a.s. all centers are sated and | - |-a.a. sites are claimed.
3. If & > 1 (supercritical) then a.s. not all centers are sated but | - |-a.a. sites are
claimed.

Let C be the closure of the union of all territories:

C =9 (x)
In [, Freire, Popov and Vachkovskaia proved, among other things, the following result:
Theorem 1.6 If « is small enough, then a.s. there is no percolation in C.

Let D be the diameter of the connected component of C that contains the origin. In
this paper we give the following consequence of Theorem [.3:

Theorem 1.7 If « is small enough, then for all s > 0, E(D?) is finite.



In order to prove Theorem [[.6, we first define a process that dominates the previous
one. This relies on an idea that appeared in [d] (see the proof of Proposition 11(ii)) and
that is used in the same way as ours in [[] (see Lemma 2.1). For all a € x we define

R(a, x) by: B
R(a,x) =inf{r > 0: acard(x N B(a,2r)) < |B(a,7)|)}.

We let R(a, x) = oo if there is no such r. We assume henceforth that « is strictly smaller
than 27¢. This ensures that, almost surely, all the R(a, ) are finite (see Lemma
for a stronger statement). We can also check that all the R(a, x) are positive. We then
define a point process & on R?x]0, +oo[ by:

¢ ={(a,2R(a,x)),a € x}.
As in Subsection [[.9, we associate with this process a random set Y. We have:

Lemma 1.8 For all o €]0,27¢], the set C is almost surely contained in the set 3.

It is therefore sufficient to study the percolation properties of 3. Theorem [[.7] follows
from an application of Theorem [[.3 to the process £. A full proof is given in Subsection

4.

2 Proofs

2.1 Some notations

For the whole of the section, we fix a point process £&. We assume that £ satisfies the
properties given above Theorem [.3.
For all & > 0,3 > 0 we define a random set (c, (3) by:

S(a,8) = |J  Bler).

(e,r)€€ : re[a,f]

Notice that this set is empty if 3 is strictly smaller than . If = belongs to R¢, we say
that G(z, a, 3) occurs if the connected component of

Yo, B) U Bz, )

containing z is not contained in B(z,203). In other words, G(x, «, ) occurs if one can go
from B(z, 3) to the complement of B(z,203) using balls of the percolation process whose
radii belong to [«, §]. By stationarity of £, the probability of G(z, «, 3) does not depend
on x. We denote it by 7(a, 3):

(. 8) = P(G(0, 0, 3)).
Similarly, for all § > 0, we say that é(ﬁ) occurs if the connected component of

YU B(0,p)



containing 0 is not contained in B(0,2(3). We denote its probability by 7(3):

In order to state some relations between percolation and the various event we already
introduced, we shall need the following two events. For all 5 > 0 and p > 1 we define

H(3) and H(p, §) by:
H(B) = {3(c,r) € € : Ble,r) N B(0,28) # 0 and r > 3}

and:
H(p,B) ={3(c,r) € £ : c € B(0,3pp) and r € [B, pBl}-

We will give a strenghtened version of Theorem [L.3 in which we loose the independance
assumption. To state this result, we shall need the following definition, in which p is
strictly larger that 1 and «, § are as above:

I(p,a, ) = sup [P(G(O, a, B)NG(z, a, ﬁ)) — P(G(O, a,ﬁ))P(G(az, a,ﬁ))].

z€RN\B(0,08)

We will also use the following notation: I (p, a, 3) = max(I(p, «, 3),0).

2.2 Proof of key inequalities

Let us recall that p is defined above the statement of Theorem [[.3 and that M is defined
in Subsection [L3. The aim of this subsection is to prove the following result.

Proposition 2.1 Let p > 2. There exists a constant D > 0, that depends only on the
dimension d and on p, such that the following assertion holds for all « > 0 and all § > 0:

m(a,pB) < Dr(a, B)°+ D [ ru(dr)+ DI (p,a, B). (5)
(8,00

Moreover, for all B > 0, we have:

7(0, 8) = lim m(a, 3), (6)
and
P(M >28) <7(B) < x(0,8)+ D " ['rdmdr)- (7)

Remark. With ([]), we relate percolation probabilities at different scales. Our strategy
is therefore related to multiscale strategies developped for example in [[[{] and [[[T] (which
use some stochastic domination properties) or in [[]] (from which our approach is closer).

The key lemma is the following one.

Lemma 2.2 Let p > 2. There exists a positive constant Dy that depends only on the
dimension d and on p such that, for all « > 0 and all 3 > 0, the following holds:

m(a, pB) < Dir(a, B)* + D1l (p, o, B) + P(H(p, B)).



Proof.
e For all » > 0 we denote by S5, the Euclidean sphere centered at the origin with radius
T

S, ={x eR*: ||z| =7}

We fix K and L, two finite subsets of R? such that the following properties hold:
KcS,Cc K+ B(0,1)and L C S, C L+ B(0,1).

We define D; as the product of the cardinalities of the sets K and L.
e Let « > 0 and 8 > 0. In this step, we prove the following inclusion:

G(0,a,pB)\ H(p, B) C (U G(ﬁk,a,m) N (U G(ﬁz,a,m) : (8)

keK leL

We assume that the event G(0, a, p3) occurs but that the event H (p, 5) does not occur.
As G(0,a, pf3) occurs, one can go from S, to Sy,s using only balls of the percolation
process whose radii belong to [a, p]. One can furthermore assume that the center of
each such ball belongs to B(0, p3(3).

One of these balls touches S,3. This ball then touches B(3k, 3) for some k € K. We
then see that one can go from B((k, 3) to the complement of B(Fk,2/) using only balls
whose radii belong to [a, pf] and whose centers belong to B(0, 3p03).

But, as H(p, ) does not occur, the radius of each such ball B(c,r) is less than f.
Therefore, G(Bk, «, 3) occurs. We have proved that the event UpexG(Sk, cv, ) occurs.
We can prove in a similar way that the event U;c G (I, v, 3) occurs. Therefore the
inclusion (§) is proved.

e We then get:

(o, pB) < P(H(p,B))+ > P(G(Bk, o, B)NG(Bl,a, B)).

For all k € K and all | € L, we have ||k — Sl|| > Bp. By stationarity and by definition
of I(p, v, §) and of Dy, we then get:

ﬂ(a,pﬁ) < P(H(p, ﬁ)) + Dl(ﬂ-(a’ﬁ)Q + I(p,a,ﬁ)).
This ends the proof. U

Lemma 2.3 For all § > 0, the following holds:
7(0,8) = lim 7(ax, 9).

a—0

Proof. Let § > 0. As a — X(a, 3) is non-increasing, o — G(0, a, 3) is non-increasing.
Consequently;,

lim 7(a, 3) = P <U G(0, a,ﬁ)) .

a>0

Therefore, it is sufficient to prove the following equality:

| G0, 2, 8) = G(0,0,8).

a>0



If the event G(0, 0, 3) occurs, then one can go from B(0, 3) to the complement of B(0, 2/3)
using balls of the percolation process whose radii belongs to |0, ]. By a compactness
argument, we get the existence of a real a > 0 such that one can go from B(0, ) to
the complement of B(0,2/) using balls of the percolation process whose radii belongs to
[, B]. In other words, G(0, a, 3) occurs. This proves one of the required inclusions. The
other inclusion is straightforward. U

Lemma 2.4 For all 5 > 0, the following inclusion holds:
{M > 25} € G(5) € G(0,0,5) U H(B).

Proof. Let 5> 0. If G(0,0,3) does not occur, then one can not go from B(0, 3) to the
complement of B(0, 2/3) using balls of the percolation process whose radii belongs to ]0, 3].

If moreover H(/3) does not occur, then balls of the percolation process whose radii do not
belong to ]0, 5] will not help to connect B(0, 3) to the complement of B(0,203). Therefore
G(f3) does not occur. This proves one inclusion. The other one is straightforward. U

Lemma 2.5 There exists a positive constant D, that depends only on the dimension d,
such that for all 3 > 0, the following inequality holds:

P(H(B)) < Dy /[5+ [rd,u(dr).

Proof. We have: B
H(B)={£NV(B3) # 0}

where

V(B) ={(c,r) € Rdx]O, +ool: B(e,r) N B(0,25) # () and r > (}.

We therefore have:

P(H(3)) = PENV(B)#0)
< E(card(§n V(ﬁ)))

~ [ somoten

As
V(B) = {(c,7) € R¥x]0, +ool: ||¢|| <7+ 28 and r > B}
we get:
P(ﬁ(ﬁ)) < / |(B(0, 7+ 203)|u(dr)
18,400l
< / | B(0, 3r)|p(dr).

18,+00]

The inequality stated in the lemma is therefore fulfilled with Dy = |B(0, 3)]. O

10



Lemma 2.6 Let p > 2. There exists a positive constant Ds, that depends only on the
dimension d and on p, such that for all 5 > 0, the following inequality holds:

PUH(p 0D < Dy [ siular)
(3,00
Proof. We have:
PUH(p.5) < B (card({(er) €€ ¢ € B0,3p5) and 1 € [5, p3]}))
= |B(0,3p8)|u([8, p3])
= [B(0,3p)|5u([8, pA)).-

The inequality stated in the lemma is therefore fulfilled with D3 = |B(0, 3p)]. O

Proof of Proposition R.1. This is a consequence of Lemmas .4, B.3, .2, B.3 and B.G.
(]

2.3 Proof of Theorem (existence of subcritical behaviour)

We first state three theorems which, together, give a strenghtened version of the first part
of Theorem [[.J. Notice that the conclusion of each of the first two theorems is one of the
assumptions of the following one.

Theorem 2.7 Let p > 2 and D' > 0. There exists D > 0, that depends only on d, p and
D', such that the following holds. Assume the existence of:

1. a sequence (av,), of non-negative real numbers which converges to 0

2. and a bounded sequence (3,), of positive real numbers

such that, for all n € N:

sup I (p, a,, 8) < D and sup 39u([f, +o0[) < D (9)
B2Pn B2Bn
sup  m(a,, 3) < D. (10)
BE[Bn,pBn]

Then, the probability (0, 3) is smaller than D" for large enough .

Remarks.
1. In the first assumption, the sequence can be constant equal to 0.

2. If 3 belongs to ]0, af then ¥(a, 3) is empty and therefore G(0, a, 3) can not occur.
The probability 7(«, 3) then equals 0. Therefore, ([[0) is always satisfied when £,
is strictly smaller than ap~t. This is the reason why we introduced this parameter.

Theorem 2.8 Let p > 2. There exists D' > 0, that depends only on d and p, such that
the following holds. Assume the following:

11



1. The probability 7(0, 3) is smaller than D' for large enough (3.
2. I™(p,0,0) tends to 0 as [ tends to infinity.
3. the integral ‘f[l,Jroo[ﬁd’u(dﬁ) is finite.

Then, the probability () tends to 0 as [ tends to infinity. Therefore, there is almost
surely mo percolation.

Theorem 2.9 Let p > 2 and s > 0. Assume the following:

1. The probability 7([3) tends to 0 as [ tend to infinity.
2 [y g 57T (0,0,9)d5 < oo

3. L17+w[ﬁd+sﬂ<dﬁ) < 0.

Then, the integral
+oo

pw(B)dp
0
is finite. Therefore, the moment E(M?) is finite.

The proof of the previous theorems relies on Proposition B.J] and on the following
elementary lemma. There are three items in the lemma. Fach of them corresponds to
one of the previous theorems.

Lemma 2.10 Let [ and g be two measurable functions from ]0,+oo[ to [0, +oo[. Let
p > 1. We assume that, for all B > 0, the following inequality holds:

F(pB) < F(B)* + 9(B). (11)
Then:

1. Let € €]0,1]. If there exists By > 0 such that f(5) < e/2 for all B € [Bo, pPo] and
g(B) < e/4 for all B > By then, for all > By, we have f(F) < &/2.

2. If, for all large enough 3 > 0, the inequality f(5) < 1/2 holds and if g(3) converges
to 0 as (8 tends to infinity then, () converges to 0 as [ tends to infinity.

3. Let s > —1 be a real number. If f is bounded, if f(3) converges to 0 as (3 tends to
infinity and if the integral ffLOO B°g(B)dS is finite then, the integral fOJrOO B f(6)ds
18 finite.

Proof.
e Proof of Item 1. If B > 0 is such that f(3) <e/2 and g(f) < e/4, then :

f(pB) <e®Jd+e/d<e/2.

The result follows.

12



e Proof of Item 2. By ([0]) we get:

limsup f(8) < [limsup f(ﬁ)]2 + lim sup g(53).

p—o0 p—o0 p—o0

By assumption,
limsup f(8) < 1/2 and limsup g(5) = 0.
B—00 B—o0
As f is non-negative, we get that f(3) converges to 0 as [ tends to infinity.
e Proof of Item 3. Let s > —1. By assumption, there exists a real A > p such that:

V8= Apt: (B) < p 2 (12)

For all real r > A, we get, by ([[1)) and ([2):

/ HB)F A8 < / F(Bp)28°d5 + / g(Bp)B°ds
A A A

rp
< pH / F(B)26°48 + o+ / 9(8)8°d3

Ap—1 Ap~—1

rp~! +oo
<2 [ fepass st [ g
p- p-

A +o00

F(B)BdB + p! / 9(8)B°d.

Ap~1

=< 1/2/Arf(ﬁ)ﬁsdﬁ+ 1/2

Ap~1
As f is bounded, the integral [} f(5)5°d is finite. We therefore get:

A +o0

F(8)5°dB + 20 / 9(8)B°d3

Ap—1

/ F(B)Bds <
A

Ap—1

and then
+o00 A

+o0

fowas< [ s@pdsreet [ g@)sds
A Ap—1 1

As f is bounded, the lemma follows. O

Proof of Theorems B.7, B.8 and 29. Let D be the positive constant given by
Proposition P21 For all & > 0 we define a function f,, :]0,4+o00[— [0, +-00[ by:

fa(B) = Dr(a, B)

and a function g, :|0, +o00[— [0, +o0] by:

6a(8) = D*T" (p. 0, 9) + D? /W rutar).
0

By (B) we get, for all @ > 0 and all 3 > 0:

fa(pB) < fa(B)* + ga(B). (13)
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e Proof of Theorem B.]. Let
1 -
€ = min <§, 2D'D) >0

and

D:min( €~ ,i) > 0.
8p2D? 2D

Let us prove that D satisfies the required properties. Let (c,), and (8,), be as in the
statement of the theorem. Let 3, be the supremum of the bounded sequence ((,),,.
Let n € N. By () we get, for all 8 > 3,,

gOm(ﬁ) 52Pdﬁdﬂ([ﬁa +OOD+52[+(/)7 O‘mﬁ)
252pdD
e/4.
By (B) we get, for all 3 € [3,, pfBn),
fan(B) < DD < ¢/2.

By the first item of Lemma P.10, we then get the inequality f,, (5) < e/2 for all g > ,.
Therefore, for all 5 > (., we have:

(o, 3) < D'

The theorem follows thanks to Lemma P.3.
e Proof of theorem [2.§. Let

VAN VAR VAN

D' = i~ > 0.
2D

Let us check that D’ satisfies the required properties. By the first assumption of the
theorem, we know that the inequality 7 (0, 3) < D’ holds for large enough 3. Therefore,
we have fo(3) < 1/2 for large enough (. By the second and the third assumptions, we ge
that go(/3) converges to 0 as 3 tends to infinity. By the second item of Lemma R.10, we
then get that fo(() also converges to 0. Therefore, 7(0, 3) converges to 0. The theorem
follows thanks to the third assumption and to (7).
e Proof of theorem [2.9. For all § > 0, we have 7(0, ) < 7(3). By the first assumption
of the theorem, we then have the convergence of (0, 3) to 0. Therefore, fy(3) converges
to 0. Let us notice the following:

/1“" dﬁﬁs_l/moo[#(dr)rd = /[1700[,u(d7“)rd /1 435!

< / p(dr)s™trdts
[1,00]
< o0 (14)
by the third assumption. Using also the second assumption, we then get that the integral
1+Oo B35 1g0(B)dp is finite. By the third item of Lemma P.10, we then get that the integral
O+OO B~ fo(B)d@3 is finite. The integral
“+oo
| ee.pas (15)
0
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is therefore also finite. But by ([]) we have, for all g > 0:

#(B) < 7(0,8) + D rp(dr).
[B,+00[

By ([4) and ([[@) , we thus get that the integral f;roo B717(B8)d3 and then the integral

[,7°7 B*=1%(B)dp is finite. The theorem follows by the first inequality of (). O

Proof of Theorem [.3. Let p = max(4C,2). Let D’ be the constant given by
Theorem P.§. Let D be the constant given by Theorem R.7q. Let us check that D satisfies
the required properties.

Let « > 0 and 8 > 0. Let us notice that, for all z € R? the event G(z,a,[)
only depends on £ N B(x,30)x]0,5]. Therefore, the event G(x,a, 3) only depends on
¢ N B(x,30)x]0,30]. By Assumption B0 we then get that G(0, «, ) and G(z, a, 3) are
independent as soon as ||z|| > 38C. By definition of p, we thus get:

I(p, e, B) = 0. (16)

Let n be a positive integer. We let o, = n~! and 8, = «a,(2p)"!. For all 8 €
(B, pBnl, O belongs to |0, o, Therefore the set Y (c,, 3) is empty and consequently the
event G(0, av,,, B) does not occur. As a consequence, ([[() holds.

Property (f) holds because of ([§) and Assumption B1 of Theorem [[.3. By Theorem
R4, we then get that (0, 3) is smaller than D’ for large enough 3. In other words, the
first assumption of Theorem holds. The second assumption of this theorem holds
because of ([ld). The third one holds because of Assumption B2 of Theorem [[.3. We then
get that S is almost surely bounded and that the first assumption of Theorem .9 holds.
By ([[), the second assumption of Theorem P.g holds. If Assumption B3 holds, we then
get, by Theorem R.9, that E(M?) is finite. O

2.4 Proof of Theorems [I.1 and

Lemma 2.11 Let p be a locally finite measure on |0, 4o0[. If f[1 +m[ﬁdu(dﬁ) is infi-

nite then, for all X > 0, we have Py ,-almost surely > = Re. If s > 0 is such that
f[l +Oo[ﬁd+s,u(dﬁ) is infinite then, for all A\ >0, E\ ,(M?®) is infinite.

Proof. Let p be a locally finite measure on ]0, +oo[ and A > 0.
e We first prove that, for all » > 0, the following inequality holds:

Pyu(3c € x: B(0,r) C B(c,r(c))) > 1—exp (—)\2_d|B(O, 1) ﬁd,u(dﬁ)) . (17)

[27,+00]
Let r > 0. We have:

Py ,(3c € x: B(0,r) C B(e,r(c))) = P(ENA#D)
where

A={(c,0)e&: 0= |lc] +7}.

15



Therefore:

Py,(3c € x: B(0,r) C B(e,r(c))) = 1—exp (—A/Rdu [llell +r, +oo[)d)
~t-on (im0 i)
> t-en ([ B0 luian)
> 1o (- / . |BO.B/DIud0).

The relation ([[7) is proved.
o If f[17+m[ﬁdﬂ(dﬁ) is infinite then, by ([7), we get, for all r > 0:

Py, (3c € x: B(0,7) C B(ce,r(c))) = 1.

Therefore, almost surely, we have ¥ = RY,
. Lejc s > 0. We AssuIne now that f[1,+m[5d+sﬂ(dﬁ) is infinite. 'If f[17+w[ﬁflﬂ(dﬁ) is
infinite, the desired result is a consequence of what we have proved in the previous step.

We assume henceforth that f[1 +Oo[ﬁdu(dﬁ) is finite. Let C' be defined by:

C'=x271B(0,1)] Bu(dp).
[1,400]

This constant is finite. By ([7) we get, for all > 1/2, the following inequality:

Py,u(3ce x:B(0,r) C B(ce,r(c))) > C'(1 — exp(—C))A24B(0,1)] B4u(dB)

(27,400

and then

P(M > 7) > C7H(1 — exp(—=C))A277|B(0, 1) Bu(dp). (18)

[2r,4o0]

As f[17+oo[ﬁd+s,u(dﬁ) is infinite, the integral

+oo
s—1 d d d
/1/2 (r /[27%00[5 1 ﬁ)) r

is infinite. Therefore, by ([§), the integral f0+oo rs Py (M > r)dr is infinite. The
moment E) ,(M?) is then infinite. O

Lemma 2.12 Let p be a locally finite measure on |0, 4+o00[. Let p > 1. We have:

sup ryu([r, pr) < suprp([r, +o0]) < ——— sup iy, pr))
>0 >0 — P r>0
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Proof. The first inequality is straightforward. Let us prove the other one. Let r > 0.
We have:

riu(frrool) = Y p e e rp" )
n>0
< > psup su(fs, sp))
n>0 s>0
< ! (Is, o)
S su su([s, spl).
o 1 - P S>IO) M p
The lemma follows. U

Lemma 2.13 Let i be a locally finite measure on |0, +oc[. If sup,oriu([r, +oo|) is
infinite, then for all X > 0, we have Py ,(S unbounded) > 0.

Proof. Let u be a locally finite measure on |0, +oo[ and A > 0. Let . > 0 be the critical
value for the classical Boolean model when all radii equal 1. In other word, when pu = 41,
S is almost surely bounded when A\ < A. and S is unbounded with positive probability
when A > A..

Let p = 2. By assumption and by Lemma P.13, there exists 79 > 0 such that:

Argp([ro, rop]) > Ae.

We define a new Poisson point process as follows:

£ ={(c,ro) : ¢ € x such that r(c) € [ro, rop|}-

The intensity measure of this point process is the product of the measure \uu([ro, rop])| - |
by the probability measure ¢,,. Let 5 be associated with E as in Subsection [.2. Let
us notice that 3 is a subset of . It is therefore sufficient to prove that 3 is in the
supercritical phase. The random set 7 IS is associated with the following Poisson point
process

rot€ = {(cry ', 1) s ¢ € x such that r(c) € [ro, rop]}

whose intensity measure is the product of 7d\u([ro, 7op])| - | by the probability measure
01. By our choice of 7y and by definition of A\, we get that ry Z and therefore Z is in
the supercritical phase. This ends the proof. O

Proof of Theorems [I.1] and [.3. e Proof of sufficient conditions. Let C' = 2. Let
D > 0 be the constant given by Theorem [.3. Assumption B0 of Theorem [.] is satisfied
because of independence properties of Poisson point processes. Since, under Py ,, the
intensity measure of £ is the product of the Lebesgue measure and of the measure Ay,
the required results follow from Theorem [[.3

e Proof of necessary conditions. This is a consequence of Lemmas P.13 and R.11]. 0

17



2.5 Proof of Lemma [.4 and Theorem [I.5

Proof of Lemma [I.4. Let us first notice that, for each n > 0, a="¢, is a Poisson point
process whose intensity measure is the product of a"@)\| - | by the measure v, defined by
Vn(B) = v, (a"B). The measure y defined by ([]) therefore satisfies y = > a™,,.

It remains to check that the measure p is locally finite. Let k € Z. It is sufficient to
prove that u([a*, a**1[) is finite. We have:

pllh ) = 3 aM o)
n>0
< / zla " y(dz).
[a¥,+o00]
As f}o +Oo[xd1/(d:1:) is finite, the result follows. O

Proof of Theorem [I.5. Let  be the measure defined by ([]). Thanks to Theorem [[.]]

is it sufficient to check the following:
1. Condition A1 holds.
2. Condition A2 holds if and only if f[1 +Oo[ﬁd In(B)r(dp) is finite.

Let us notice that, for all f :]0, +oo[— R measurable and non-negative, we have:

/]O s =Y |t sman),

n>0 10,+00[

Let us check the first item. Let » > 0. We have:

Fu(d) = S a [ de(Ba (B ) v(as)

[r,ra] n>0 10,400
= / Z Lirra) (ﬁa_n)ﬁd’/(dﬁ)
10,400[ n>0

< 28%%(d3).
< /MOO[BV(@

The first item then follows from Lemma by (B).
Let us check the second item. As above, we get:

[ nan = et [ (e g )
(1,400 >0 10,400
_ / S L sof(Ba~) 30(dB)
}0,—}—00[”20

[ (e £ ),

The second idem follows. This concludes the proof. O
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2.6 Proof of Lemma and Theorem [I.7]

Let us recall the definition of £&. We assume that y is a Poisson point process on R? whose
intensity measure is the Lebesgue measure. For all a € x we define R(a, x) by:

R(a,x) = inf {r > 0: acard(x N B(a,2r)) < |B(a,r)|)}.

(We let R(a, x) = oo if there is no such r.) Using some elementary properties of the map
defined by r +— acard(x N B(a, 2r)) —|B(a, )|, we get that R(a, x) is always positive and
that:

R(a,x) =min{r >0:|B(0,r)| € aN and acard(y N B(a,2r)) = |B(a,r)|}.

Among other things, this remark enables us to easily solve some measurability issues. We
define a point process & on R?x]0, +o0] by:

¢ ={(a,2R(a, x)),a € x}.

Let us notice that the law of ¢ is invariant under the action of the translations of RY
and that the intensity measure of ¢ is locally finite. The intensity measure is therefore
the product of the Lebesgue measure on R? by a locally finite measure on 0, +0c]. We
denote this measure on |0, +00] by p. Let us notice that p is a probability measure.

Lemma 2.14 There exists an absolute constant K > 0 and a function F :]0,27%—
10, +00[ that depends only on the dimension d such that:

1. limgy—o F(a) = +o00.
2. For all a €)0,27¢] and all r > 0, we have: p(|r, +o0]) < K exp(—F(a)r?).
Proof. Assume « €]0,27¢]. Let r > 0. By definition of y and & we have:

u(r,+oc]) = FE (Card(f N[0, 1]%x]r, +oo]))

= K Z 12R(a,x)>r

aexN[0,1]¢
= K Z 12R(0,Xfa)>r
aexN[0,1]¢
As the Palm measure of the Poisson point process x is the law of y U {0}, we get:
p(lr, +00]) = P(2R(0, x U{0}) > 7).
By definition of R(0, x U {0}), we then get:

p(lr,+o<]) < P (acard((x u{0})n F(O,T)) > | B(0, 7“/2)|)
= P(a(N(r)+1) > wer2™?)
= P(N(r) > a twgri2 ™ — 1)
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where N (r) = card(y N B(0,7)) and wy = | B(0, 1)|.
If
1 < atwgr®27%(1 — Va2d) (19)
we have:

p(]r, +oc]) < P (N('r’) > wd'rd\/@_l> .

As N(r) is a Poisson random variable with mean wgr? we then get, using Chernoff’s
bound:
u(Jr, +00]) < exp(—war®g(Va2d))

where g :]0, 1[— R is defined by:
o(z) = (o — 1~ In(z)) /2

The previous inequality holds as soon as ([J) holds. It therefore holds as soon as
war? > a24(1 — Va24)~L. For all » > 0 we thus have:

u(]r, +oc]) < exp(h(Va2?)) exp(—warg(Va24))
where h :]0, 1[— R is defined by:
h(z) = 2°(1 — ) 'g(z).
As h is bounded and as lim,_,¢ g(z) = +o00, the lemma follows. t

We assume henceforth that « is strictly smaller than 27¢. By the previous lemma, we
can therefore consider that € is a point process on R%x]0, +oo[ and that p is a probability
measure on |0, +oc[. We are therefore in the same framework as in Subsection [.4. We
associate with £ a random set ¥ and a random variable M.

Proof of Lemma [[.§. We work on a full event on which there exists an a.e. unique
stable allocation and denote by i one of those allocations. Let a € y. Let us recall
that R(a, ) is finite. To simplify notations, we write R instead of R(a, x). To prove the
lemma, it suffices to check that 1~*(a) is a subset of B(a, R). We have :

acard(x N B(a,2R)) = |B(a, R)|.

Let ¢ > 0 be such that there is no point of x in the shell B(a,2R + 2¢) \ B(a,2R). We
then have: B
acard(y N B(a,2R + 2¢)) < |B(a, R+ ¢)|.

Therefore: B
|07 (x N B(a,2R + 2¢))| < |B(a, R+ ¢)].

As a consequence, there exists z in B(a, R + ¢) such that ¢)(x) belongs to x U {oo} and
does not belong to B(a,2R + 2¢). If ¢(x) € x, we have:

|l —¥(x)|| > R+¢ and ||z —al| < R+e.

In particular, = desires a. Otherwise, that is, if ¢)(z) = oo, then x also desires a. As v is
stable, we therefore get that a does not covet z. As a consequence, 1~!(a) is contained
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in B(a, |z — al|) and therefore in B(a, R+ ¢). As this result holds for arbitrary small
e > 0, we get that ¢y"!(a) is contained in B(a, R). The lemma follows. O

Proof of Theorem [[.7. Thanks to Lemma [.§, it suffices to check that ¢ satisfies the
assumptions of Theorem [[.3.

B0. We show that the assumption is fulfiled with C' = 7. Let r > 0. For all a € y we
let:

R(a,x) = inf{s € [0,7] : acard(x N B(a,2s)) < |B(a, s)|)}.
(We let R(a,) = r if there exists no such s.) Let us notice that, for all a € Y,

we have R(a,x) = R(a, ) as soon as R(a,x) < r or R(a,x) < r Therefore, for all
x € RY,

ENRE X [0,7[= ENRE x [0, 7]
where E is defined by B B
¢ ={(a,2R(a,x)),a € x}.
As a consequence, we see that £ N B(z,r) x [0, 7] only depends on x N B(x,3r). By
the independance property of Poisson point processes, we then get that, if x belongs
to R4\ B(0,6r), the point processes £ N B(0,7) x [0,r[ and £ N B(x,r) x [0, r[ are
independent. The required result follows.

B1l. By Lemma .14, we have:

supru([r,+ool) < supriu(ir/2, +ool)
r>0 >0
< supr?K exp(—F(a)r‘2™?)
>0
= K2'F(a) 'supxexp(—x).
z>0

As F(«) tends to infinity when « tends to 0, Assumption Bl is fulfiled for small
enough .

B2 and B3. By Lemma P.14, we get that f}o +Oo[rd+8u(d7’) is finite for all s > 0.

When « is small enough, we can thus use Theorem [.3. We get that F(M*®) is finite for
all s > 0. By Lemma [[.§ we then get that E(D?) is finite for all s > 0. O
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