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Abstract Using Malliavin calculus techniques, we derive an analytical formula for
the price of European options, for any model including localvolatility and jump Pois-
son process. We show that the accuracy of the formula dependson the smoothness of
the payoff. Our approach relies on an asymptotic expansion related to small diffusion
and small jump frequency. As a consequence, the calibrationof such model becomes
very fast.
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1 Introduction

The standard Black-Scholes formula (1973) has been derivedunder the assumption
of lognormal diffusion with constant volatility to price calls and puts. However those
hypotheses are unrealistic under real market conditions because we need to use dif-
ferent volatilities to equate different option strikesK and maturitiesT. Besides this,
the market data shows that the shape of the implied volatilities looks like a smile or a
skew.

In order to fit the smile or the skew, Dupire (1994) and Rubinstein (1994) use
a local volatility σloc(t, f ) depending on timet and statef to fit the market. This
hypothesis is interesting for hedging because it maintainsthe completeness of the
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market. Only in few cases, [ACGL01], one has closed formulas. In the case of homo-
geneous volatility, singular perturbation techniques have been used to obtain asymp-
totic expression for the price of vanilla options (call, put) in [HD99]. Other cases had
been derived using an asymptotic expansion of the heat kernel for short maturity in
[Lab05].

But Andersen and Andreasen in [AA00] show that this sole assumption of local
volatility is not compatible with empirical evidences (forinstance, the post crash of
implied volatility for the S&P500 index). Hence, they derived a model with local
volatility plus a jump process to fit the smile (we write it AA model). They calibrate
this model by solving the equivalent forward PIDE. This sortof problem could be
handled numerically using: an ADI-FFT scheme in [AA00], Finite Element Method
in [MvPS03], an explicit implicit PIDE-FFT method for general Lévy processes in
[CV05], predictor corrector methods to improve the accuracy of the PIDE in [BM06].
But in the best case, all these methods lead to a time of calibration of the order of one
minute (see [AA00]). Can we reduce this computational time?Is it possible to reach a
time of calibration as short as the computational time of a closed formula of Merton’s
type [Mer76]? This is the objective reached in this work.

In order to handle even more general situations, we considerfor the one dimen-
sional underlying state process the solution of the stochastic differential equation
(SDE):

dXt = σ(t,Xt−)dWt + µ(t,Xt−)dt+dJt ,X0 = x0. (1.1)

One may think of(Xt)t as the log asset price for instance. Here(Wt)0≤t≤T is a standard
real Brownian motion on a filtered probability space(Ω ,F ,(Ft )0≤t≤T ,P) with the
usual assumption on the filtration(Ft )0≤t≤T and(Jt)0≤t≤T is a compound Poisson
process defined by:Jt = ∑Nt

i=1Yi whereNt is a counting Poisson process with constant
jump intensityλ and(Yi)i∈N∗ are i.i.d. normal variables with meanηJ and volatility
γJ.

Actually, our further analysis relies on a suitable parameterization w.r.t.ε ∈ [0,1]:

dXε
t = ε(σ(t,Xε

t−)dWt + µ(t,Xε
t−)dt +dJt),X

ε
0 = x0, (1.2)

so thatX1
t = Xt . Our first aim is to give an accurate analytic approximation (in some

sense) of the expected payoff (fair price of this option)

g(ε) = E(h(Xε
T)) (1.3)

for a given terminal functionh and for a fixed maturityT, at the value ofε = 1.
The approximation can be applied to the following models:

Example 1.1 AA model on the log-asset.
In that case,(X1

t )t is the logarithm of the underlying,σ its volatility, µ = λ (1−
eηJ+

γ2
J
2 )− σ2

2 in order to guaranty the martingale property for(eX1
t )t . For a call exer-

cised at maturity T,h(x) = e−
∫ T
0 r(u)du(e

∫ T
0 (r(u)−q(u))duex−k)+ wherer is the risk free

rate term andq is the dividend term. This model has been derived in [AA00]. In the
sequel we mainly focus our discussion on this model.
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Example 1.2 Jump diffusion model on the asset.
(X1

t )t is the forward with maturityT, σ its volatility, µ = −λ ηJ. For a call exercised

at maturity T,h(x)= e−
∫ T
0 r(u)du(x−k)+. This model aims at modeling the presence of

price jumps in a market with slow movements, where the implied normal volatility is
traded instead the implied Black Scholes volatility (Japanese markets in [HKLD02]).

Our approach consists in expanding the price (1.3) with respect toε. But the ac-
curacy of the expansion is not related toε because the value of interestε = 1 is not
small (and this is a significant difference with singular perturbation techniques). It is
just a tool to derive convenient representations of the derivatives. Actually, using an
asymptotic expansion in the context of small diffusions andsmall jump frequency,
we can exhibit estimates of the derivatives, which allows usto make the contribu-
tion at any order explicit and to control the error. This is achieved using the infinite
dimensional analysis of Malliavin calculus. The key feature of our approach is that
we provide explicit formulas for the terms at any order, explicit upper bounds of the
errors for general forms ofµ ,σ . However, the more the parametersµ ,σ ,λ are small
or the more the maturityT is small, the more the expansion is accurate. On real data,
the accuracy is indeed very good (less than2bp for various strikes and maturities).
As a result of these expansions, we prove that the price (1.3)in our general model
(1.1) equals to the price in the Merton model plus a combination of Greeks (still in
Merton’s model). Hence, all these terms are straightforward to numerically evaluate,
with a computational cost as cheap as the closed Merton formula. The residual terms
(that is the error) is also estimated and their amplitudes depend on the smoothness of
the payoff. We distinguish three cases: smooth, vanilla (call, put) and binary payoffs.
This is our main contribution. Also, we observe from the approximation price that
one may get a volatility smile for short maturities (since weuse Merton’s model as a
proxy) and a volatility skew for long maturities (due to local volatility function).

Comparison with the literature. We refer in particular to Hagan and al in
[HKLD02] for the SABR model, to Fouque and al in [FPS00] for stochastic volatil-
ity models, or to Antonelli-Scarletti in [AS07]. In all these works, as a difference
with our approach, a perturbation analysis w.r.t. the volatility, the mean reversion pa-
rameters or the correlation is performed and this leads to write the price as a main
term (essentially a Black-Scholes price) plus an integral of Greeks over maturities.
In the time homogeneous case, the authors succeed on computing or approximating
this integral, which strongly relies on PDE arguments. In our case, we do not approx-
imate the underlying PDE (or the related operator) but owingto Malliavin calculus,
we directly focus on the law of the random variableX1

T givenX0 = x0 (and not nec-
essarily on the process for any initial condition). Thus, weare able to handle time
inhomogeneous coefficients and jumps as well, without extraefforts.

Outline of the paper. In the following, we give some notations and assumptions
that will be used throughout the paper. The section 2 is aimedat presenting in an
heuristic way our methodology to approximate the expected cost. Rigorous results are
proved in Section 5 and 6. In Section 3, we derive financial modeling consequences
from these formulas. These observations lead to justify simplified choices of the local
volatility, to predict the form of all attainable smiles with their dynamics. In Section
4, we firstly give a methodology to implement the approached formula. Secondly,
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we show how to efficiently use our formula for calibration items using a relevant
algorithm. Finally, we detail numerical applications in calibration for real market
data using our simplified form of local volatility. In Section 5, we give a rigorous
sense to our approach of infinitesimal perturbation; the analysis depends on the kinds
of payoff (smooth payoff in Theorem 5.1, vanilla options in Theorem 5.4, binary
options in Theorem 5.7) and we discuss the impact of the payoff on the accuracy. The
proofs of Theorems 5.1-5.4-5.7 are postponed to Section 6. In Section 7, we bring
together useful results to make our expansion explicit.

Notations.

Notation 1.1 Differentiation.
If these derivatives have a meaning, we write:

– ψ(i, j) = ∂ i+ j ψ
∂xi ∂yj for every functionψ of two variables.

– Xi,t =
∂ iXε

t
∂ε i |ε=0 . These processes play a crucial role in the sequel.

– Xc,1,t for the continuous part of X1,t .

– σt = σ(t,x0),µt = µ(t,x0),σ
(i)
t = σ (0,i)(t,x0),µ (i)

t = µ (0,i)(t,x0).

Definitions. The following sets of functions are used to distinguish the payoff
functionsh.

Definition 1.3 As usual, we defineC ∞
0 (R) as the space of real infinitely differen-

tiable functionsh with compact support (smooth payoffs). A functionh belongs to
H if |h(x)| ≤ c1ec2|x| for anyx, for two constantsc1 andc2. In other words,h has
at most an exponential growth. In practice, the case of vanilla options (call-put) is
associated toh ∈ H andh(1) ∈ H . For binary options, we only requireh to be in
H .

In order to make the approximation explicit, we introduce the following family of
operators indexed by maturityT.

Definition 1.4 Integral Operator.
The Integral operatorω(T) is defined by:

for any integrable functionl , ω(T)l
t =

∫ T
t ludu, ∀t ∈ [0,T].

Its n-times iteration is given by:

for any integrable functions(l1, · · · , ln), ω(T)l1,··· ,ln
t = ω(T)

l1ω(T)l2,··· ,ln
t , ∀t ∈ [0,T].

The following notations are useful to give an interpretation to the correction terms.

Definition 1.5 Greeks.
Let Z be a random variable. Given a payoff function h, we define theith Greek for the
variableZ by the quantity (if it has a meaning) :

Greekhi (Z) =
∂ iE[h(Z+x)]

∂xi |x=0.

Under appropriate smoothness assumptions onh, one also has

Greekhi (Z) = E[h(i)(Z)].
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Assumptions.In order to get accurate approximations, we may assume that co-
efficientsσ ,µ are smooth enough. In what follows,N is an integer greater than 4 and
sometimes 5.
Assumption (RN). The functionσ ,µ are bounded and of class CN w.r.t x and the
derivatives until order N are bounded.
This assumption may be restrictive becauseσ andµ have to be bounded as well their
derivatives. Actually, this statement is made only to simplify a bit our analysis, but we
can prove that our approximation remains valid if some boundedness requirements
are partially relaxed.

To perform the infinitesimal analysis, we rely on smoothnessproperties which
are not given by the payoff functions, but the law of the underlying stochastic models
(this is related to Malliavin calculus). The next assumption on the volatility combined
to (RN) guaranties these smoothness properties.
Assumption (E). σ satisfies an uniform ellipticity condition

∀(t,x) ∈ [0,T]×R, σ(t,x) ≥ Iσ

for a real positive number Iσ .

2 Smart Taylor Development

Our perturbation approach lies in the framework of small diffusion and small jump
frequency that isσ(t,x) = ∆s(t,x), µ(t,x) = ∆m(t,x) andλ ≤ ∆ , with a small pos-
itive number∆ . All the next results would remain valid if the jump size weresmall
(|ηJ| andγJ small) but it is more natural in the AA model to assume few jumps of
arbitrary size than arbitrary number of jumps with small size.
Under assumption(R5), for any t, Xε

t is almost surelyC4 w.r.t ε (this is an easy

extension of [Kun84]). If we putXε
i,t =

∂ iXε
t

∂ε i , we get

dXε
1,t =σ(t,Xε

t−)dWt + µ(t,Xε
t−)dt +dJt

+εXε
1,t−(σ (0,1)(t,Xε

t−)dWt + µ (0,1)(t,Xε
t−)dt),Xε

1,0 = 0. (2.1)

From the definitions,Xi,t ≡ ∂ iXε
t

∂ε i |ε=0, σ (i)
t ≡ σ (0,i)(t,x0) andµ (i)

t ≡ µ (0,i)(t,x0), we
easily get

dX1,t =σtdWt + µtdt+dJt ,X1,0 = 0,

dX2,t =2X1,t−(σ (1)
t dWt + µ (1)

t dt),X2,0 = 0.

Now we use the Taylor formula twice: firstly, forX1
T at the second order w.r.tε around

x0, secondly for smooth functionh at the first order w.r.tx aroundx0+X1,T . One gets:

E[h(X1
T)] =E[h(x0 +X1,T +

X2,T

2
+ ...)]

=E[h(x0 +X1,T)]+E[h(1)(x0 +X1,T)
X2,T

2
]+ ...
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Because ofX1,T =
∫ T

0 (σtdWt + µtdt)+JT is a drifted Brownian motion plus a com-
pound Poisson process, the cost can be approximated by a summation of two terms
:

– E[h(x0 + X1,T)]: The leading order which corresponds to the Merton price (BS
price whenλ = 0) for call or put option.

– E[h(1)(x0 +X1,T)
X2,T

2 ]: The correction term which will be made explicit using the
next proposition.

Theorem 2.1 (Main approximation price formula).
Under assumptions(R5),(E), one has:

E[h(XT)] ≈ E[h(x0 +X1,T)]

+
3

∑
i=1

αi,TGreekhi (x0 +X1,T)+
3

∑
i=1

βi,TGreekhi (x0 +X1,T +Y′), (2.2)

where

α1,T =

∫ T

0
µtω(T)

µ(1)

t dt,

α2,T =

∫ T

0
(σ2

t ω(T)
µ(1)

t + µtω(T)σσ (1)

t )dt,

α3,T =
∫ T

0
σ2

t ω(T)σσ (1)

t dt,

β1,T =λ ηJ

∫ T

0
tµ (1)

t dt,

β2,T =λ
∫ T

0
t(γJµ (1)

t + ηJσtσ
(1)
t )dt,

β3,T =λ γJ

∫ T

0
tσtσ

(1)
t dt,

and Y′ is an independent copy of the variables(Yi)i∈N∗ .

The accuracy of the approached formula is stated in Theorems5.1-5.4-5.7.

To prove Theorem 2.1, it remains to show thatE[h(1)(x0 + X1,T)
X2,T

2 ] is equal
to the last two terms of (2.2). The reader familiar with Malliavin calculus for the
computations of Greeks (see [FLLL01], [Gob03], . . . ) may recognize in the expan-
sion of E[h(1)(x0 + X1,T)

X2,T
2 ] the generic form of some derivatives (or Greeks) of

E[h(1)(x0 + X1,T)], derivative which is written as the expectation ofh(1)(x0 + X1,T)
multiplied by a random weight. This is indeed our methodology to explicitly com-
pute the correction terms in the formula (2.2). It relies on the following key lemmas,
which are stated for any smooth functionl with compact support and for any square
predictable (resp. deterministic) process(ut) (resp.(vt),(νt)).
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Lemma 2.2 One has:

E[(

∫ T

0
utdWt)l(

∫ T

0
vtdWt)] = E[(

∫ T

0
vtutdt)l (1)(

∫ T

0
vtdWt)].

In the case of deterministic u, it is equal to
∫ T

0 vtutdt Greekl1(
∫ T

0 vtdWt).

Lemma 2.3 One has :

E[(

∫ T

0
νtXc,1,tdt)l(

∫ T

0
vtdWt)] =

∫ T

0
vtσtω(T)ν

t dt Greekl1(
∫ T

0
vtdWt)

+

∫ T

0
µtω(T)ν

t dt Greekl0(
∫ T

0
vtdWt).

Lemma 2.4 One has:

E[(
∫ T

0
νtJtdt)l(JT)] = λ (ηJ

∫ T

0
tνtdt Greekl0(JT +Y′)

+ γJ

∫ T

0
tνtdt Greekl1(JT +Y′)),

such that Y′ is an independent copy of the variables(Yi)i∈N.

The proofs of these technical lemmas are postponed to section 7. We now complete
the proof of Theorem 2.1.

Proof We define the new function of two variables :G(x,y) = h(x+y+x0+
∫ T
0 µtdt).

Using that the set{t ∈ [0,T],X1,t 6= X1,t−} is of measure zero (see [Sat99]), one has:

E[
X2,T

2
h(1)(x0 +X1,T)] = E[

X2,T

2
G(1,0)(

∫ T

0
σtdWt ,JT)]

= E[(

∫ T

0
X1,t(σ

(1)
t dWt + µ (1)

t dt))G(1,0)(

∫ T

0
σtdWt ,JT)].

BecauseJT is independent of(Wt)t∈[0,T] and by Lemma 2.2, one has:

E[
X2,T

2
h(1)(x0 +X1,T)] = E[(

∫ T

0
σtσ

(1)
t Xc,1,tdt)G(2,0)(

∫ T

0
σtdWt ,JT)]

+E[(
∫ T

0
µ (1)

t Xc,1,tdt)G(1,0)(
∫ T

0
σtdWt ,JT)]

+E[(

∫ T

0
σtσ

(1)
t Jtdt)G(2,0)(

∫ T

0
σtdWt ,JT)]

+E[(

∫ T

0
µ (1)

t Jtdt)G(1,0)(

∫ T

0
σtdWt ,JT)].

Apply lemmas 2.3 and 2.4 and use Definition 1.5 of Greeks to getthe result. ⊓⊔

Remark 2.5The above approximation of the price is a summation of three terms:



8

1. E[h(x0 + X1,T)]: The leading order which corresponds to the price when the pa-
rametersσ ,µ are deterministic. We know that in this case, there is a closed for-
mula : Merton closed formula for call(put), or by FFT tools for any other payoff
because the characteristic function ofX1,T is explicit. For instance, the formula
for a call in the Merton model (see [Mer76]) on the log asset is:

∞

∑
i=0

(λT)i

i!
e−λ T−

∫ T
0 r(u)duCallBS

(

ex0+
∫ T
0 (r(u)−q(u))du+λ (1−eηJ+

γ2
J
2 )T+i(ηJ+

γ2
J
2 ),K,T,

√

∫ T

0

σ2(t,x0)

T
dt+ iγ2

J

)

,

whereCallBS(S,K,T,v) is the Black-Scholes price for a call on an underlyingSt

with initial conditionS0 = S, with strikeK, volatility v and exercised at maturity
T, where the risk free rate and the dividend yield are set to 0%.

2. ∑3
i=1 αi,TGreekhi (x0 + X1,T): The volatility and drift correction term which de-

pends on the first derivatives ofµ andσ . This term can be computed as easily as
the main term.

3. ∑3
i=1 βi,TGreekhi (x0+X1,T +Y′): The jump correction term which depends on the

first derivatives ofµ , σ and on the jump parameters. SinceY′ is also Gaussian and
independent ofX1,T , the computation of theses Greeks are similar to the previous
ones, by adding to the mean

∫ T
0 µtdt and variance

∫ T
0 σ2

t dt the quantitiesηJ and
γJ.

Remark 2.6In the AA model on the log-asset, one has:

α1,T =
1
2

∫ T

0
σ2

t ω(T)σσ (1)

t dt+ λ (eηJ+
γ2

2 −1)

∫ T

0
tσtσ

(1)
t dt,

α2,T =− 3
2

∫ T

0
σ2

t ω(T)σσ (1)

t dt−λ (eηJ+
γ2

2 −1)

∫ T

0
tσtσ

(1)
t dt,

α3,T =
∫ T

0
σ2

t ω(T)σσ (1)

t dt,

β1,T =−λ ηJ

∫ T

0
tσσ (1)

t dt,

β2,T =λ (ηJ− γJ)

∫ T

0
tσtσ

(1)
t dt,

β3,T =λ γJ

∫ T

0
tσtσ

(1)
t dt.

Thus, the computation of these constants simply reduces to that of
∫ T

0 tσtσ
(1)
t dt and

∫ T
0 σ2

t ω(T)σσ (1)

t dt.

We mention that we could perform higher order approximationformulas, still ex-
plicit. The only difference is that the number of random variables used as argument
for the Greeks will increase at each order, and it is in the set(X1,T +Y′

1+ · · ·+Y′
i )i∈N.

We refer to [Miri] for higher order terms.
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3 Financial Modeling Consequences

For simplicity, we consider the AA model on the log-asset (ananalogous statement
would be available for the jump diffusion model on the asset).
The standard Gaussian framework as developed by Black-Scholes (1973), Merton
(1976) is realized by making the volatility functionσ constant (the result is still
available for a function dependent on time only). In order tomanage on fixed income
(without jump) Andersen and Andreasen [AA02] take a parametric form for σ , Piter-
barg1 [Pit05] also uses the same shape for Power Reverse Dual Currency swaps in
order to handle the skew for the FX:

σ(t,x) = ν(t)e(β (t)−1)x, (3.1)

whereν(t) the relative volatility function,β (t) is a time-dependent constant elasticity
of variance.

Because ofµ = λ (1− eηJ+
γ2
J
2 )− σ2

2 , the approximation formula (2.2) depends
only on σ(t,x0),σ (0,1)(t,x0),λ ,ηJ,γJ. The volatility given in equation (3.1) may
generate all possible values of the following time-dependent functionsσ(t,x0) =
ν(t)e(β (t)−1)x0, σ (0,1)(t,x0) = (β (t)− 1)ν(t)e(β (t)−1)x0, because it has two degrees
of freedomν(t), β (t). So this kind of volatility may create all attainable pricesin
this class of models, and thus all attainable Black Scholes smiles. This justifies the
interest for the volatility (3.1).

Attainable Black Scholes smiles of the model.Can we predict what is the gen-
eral form of the smiles generated by this model?

– For short maturity: according to our approach, the model is close to the Merton
model related tox0 +X1,T . So the shape of implied volatilities forms a smile cen-

tered in a point close to the money, which is at the left whenηJ +
γ2
J
2 > 0 (at the

right whenηJ +
γ2
J
2 < 0 ).

Formal Proof: Using the approximation formula, the correction terms are O(
√

T).
So when T decreases to zero, the price converges to the Mertonprice. The second
statement is easy to check. One can follow the approach done in [Gat02,Mat00]
using characteristic functions, or can prove it directly using some derivations of
the Merton formula [Mer76].

– For long maturity: the smile becomes a skew which is due to thelocal volatility
function (because the smile for the Merton model flattens forlong maturity).

Smile’s Dynamics.According to [HKLD02], the smile created by a given model
would be compatible with real market if it had the same dynamics as the forward.
Is this property fulfilled in this context? The model has the Merton model as a good
proxy. The implied volatilities for the Merton model are increasing and depend only
on the ratio between the forward and the strike. Therefore, the smile should move in
the same direction as the forward.

1 If σPit is the local volatility used in [Pit05] andL(t) = e
∫ t
0(r(u)−q(u))du, one hasσ(t,x) = σPit (t,Lt ex).
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4 Numerical Experiments

In this section, we give details of the implementation for the approximation (2.2).
After that, a generic bootstrap algorithm for calibration purpose is derived. Finally, a
numerical application of this algorithm is applied to market data (Index Option).

4.1 Numerical Implementation

The case of homogeneous parametersσ(t,x0),σ (0,1)(t,x0),µ(t,x0),µ (0,1)(t,x0) gives
us the coefficientsα,β exactly. This result is still valid for higher orders.
In addition, when these parameters are time-dependent, there are two cases.
Either the data are smooth. In which case, we use a Gauss-Legendre curvature for-
mula (see [PTVF]) for the calculus of the termsα,β .
Or the data are piecewise constant. In this case, we can give explicit expressions of
α,β as function of the piecewise constant data. LetT0 = 0≤ T1 ≤ ·· · ,≤ Tn = T such
that σ(t,x0),σ (0,1)(t,x0),µ(t,x0),µ (0,1)(t,x0) are constant at each interval]Ti ,Ti+1]

and are equal respectively toσTi+1,σ
(1)
Ti+1

,µTi+1,µ (1)
Ti+1

. Before giving the recurrence

relation, we need to introduce the following functions:ω̃1,t = ω(t)σ2

0 , ω̃2,t = ω(t)µ
0 .

Proposition 4.1 Recurrence calculus.
For piecewise constant coefficients, one has:

α1,Ti+1 =α1,Ti +(Ti+1−Ti)µ (1)
Ti+1

ω̃2,Ti +
(Ti+1−Ti)

2

2
µTi+1µ (1)

Ti+1
,

α2,Ti+1 =α2,Ti +(Ti+1−Ti)(µ (1)
Ti+1

ω̃1,Ti + σTi+1σ (1)
Ti+1

ω̃2,Ti )

+
(Ti+1−Ti)

2

2
(σ2

Ti+1
µ (1)

Ti+1
+ µTi+1σTi+1σ (1)

Ti+1
),

α3,Ti+1 =α3,Ti +(Ti+1−Ti)σTi+1σ (1)
Ti+1

ω̃1,Ti +
(Ti+1−Ti)

2

2
σ3

Ti+1
σ (1)

Ti+1
,

β1,Ti+1 =β1,Ti + λ ηJ
(T2

i+1−T2
i )

2
µ (1)

Ti+1
,

β2,Ti+1 =β2,Ti + λ
(T2

i+1−T2
i )

2
(γJµ (1)

Ti+1
+ ηJσTi+1σ (1)

Ti+1
),

β3,Ti+1 =β3,Ti + λ γJ
(T2

i+1−T2
i )

2
σTi+1σ (1)

Ti+1
,

ω̃1,Ti+1 =ω̃1,Ti +(Ti+1−Ti)σ2
Ti+1

,

ω̃2,Ti+1 =ω̃2,Ti +(Ti+1−Ti)µTi+1.
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Proof According to Theorem 2.1, one has:

α1,Ti+1 =
∫ Ti

0
µtω(Ti+1)

µ(1)

t dt+
∫ Ti+1

Ti

µtω(Ti+1)
µ(1)

t dt

=α1,Ti +
∫ Ti

0
µtω(Ti+1)

µ(1)

Ti
dt+

∫ Ti+1

Ti

µtω(Ti+1)
µ(1)

t dt

=α1,Ti + ω(Ti+1)
µ(1)

Ti

∫ Ti

0
µtdt+

∫ Ti+1

Ti

µtω(Ti+1)
µ(1)

t dt

=α1,Ti +(Ti+1−Ti)µ (1)
Ti+1

ω̃2,Ti +
(Ti+1−Ti)

2

2
µTi+1µ (1)

Ti+1
.

The other terms are calculated analogously.⊓⊔

4.2 Algorithm of Calibration

For this kind of model (AA model on the log asset or on the assetitself), calibration is
still challenging as this model has no analytical formula. We can still do a numerical
calibration using the forward PIDE as explained in [AA00], but the time of calibra-
tion remains quite long (about one minute). With our approach, we can shorten the
duration of calibration to be less than one second. We can do that by a simple boot-
strapping algorithm using the path dependent formula.

Bootstrap algorithm for piecewise data .Suppose that we want to fit option
prices forn maturitiesT0 = 0 ≤ T1 ≤ ·· · ≤ Tn andm strikesK1, · · · ,Km. First, we
search the best fitted parametersλ ,ηJ,γJ. At each interval]Ti−1,Ti ], the dataσ , σ (0,1),

µ , µ(0,1) are constant, equal respectively toσTi , σ (1)
Ti

, µTi , µ (1)
Ti

and depending on the
vectorχi = (ν(Ti),β (Ti)) (see formula 3.1). Starting ati = 1, we express the coeffi-
cientα andβ as a function ofχi using Proposition (4.1). We apply a minimization
algorithm (for instance, the Levenberg-Marquardt as described in [PTVF]) in order
to fit the implied volatilities for all strikesK1, · · · ,Km at maturityTi using our approx-
imation (2.2). Once the vectorχi is found, we go to the next stepi +1, updateα and
β and computeχi+1.

4.3 Numerical application

4.3.1 Accuracy of the approximation

Here, we give a short example of the performance of our method. The jump parame-
ters have been set to:λ = 30%,ηJ =−8%,γJ = 35%. These parameters are not small
ones, especially for the intensity of the Poisson processλ , and the volatility of the
jump γJ. The piecewise constant functionsν andβ are equal respectively at each in-
terval of the form[ i

20,
i+1
20 ] to 25%− i×0.11%,1− i×0,75%. The spot, the risk free

rate and the dividend yield are set respectively to 100,4%,0%.
We observe in the table below that the errors of implied BlackScholes volatilities
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between our approximation and the price calculated using a PIDE method do not ex-
ceed2 bp for a large range of strikes and maturities. The computational time of our
formula is less than 4 milliseconds on a 2,6 GHz Pentium PC. The accuracy of our
formula turns to be excellent.

Table 4.1 Error in implied Black Scholes volatilities (in bp) betweenthe approximation formula and the
PIDE method expressed as function of maturities in fractionof years and relatives strikes.

T/K 70% 85% 100% 120% 150%

3M 0.02 -0.03 -0.92 -0.07 -0.12
1Y 0.04 0.06 0.15 -0.11 0.01
3Y 0.22 -0.23 0.11 0.41 0.31
5Y 1.39 1.06 -0.01 1.85 1.76

4.3.2 Calibration issues

Here, we calibrate the EURO STOXX 50 Index. The surface of implied B-S volatility
is given in the table 4.2.

Table 4.2 Implied B-S volatilities for the EURO STOXX Index expressedas function of maturities in
fraction of years and relatives strikes. The risk free rate is equal to 4.08%.

T/K 95% 97.5% 100% 102.5% 105%

3M 20.88% 19.47% 18.13% 16.91% 15.85%
6M 21.12% 20.07% 19.26% 18.55% 17.70%
9M 21.30% 20.47% 19.86% 19.33% 18.65%
1Y 21.39% 20.67% 20.16% 19.71% 19.11%
1.5Y 21.46% 20.90% 20.61% 20.40% 19.92%
2Y 21.89% 21.41% 21.18% 21.02% 20.61%

The jump parameters for the calibrated model areλ = 28.52%,ηJ = −31.32%
andγJ = 5.11%. The diffusion parametersν andβ for the calibrated model are given
in the table 4.3. These values are realistic. The errors between the implied volatilities
generated by the calibrated model and the market data are given in the table 4.4.

Table 4.3 Calibrated values of the piecewise constant functionsν andβ .

T ν β

3M 21.48% 94.36%
6M 18.73% 95.63%
9M 21.46% 93.81%
1Y 21.41% 93.39%
1.5Y 18.06% 96.60%
2Y 18.15% 98.38%



13

Table 4.4 Errors between implied B-S volatilities for the EURO STOXX 50 Index and those calculated
within the calibrated model (in bp) expressed as function ofmaturities in fraction of years and relatives
strikes. The risk free rate is equal to 4.08%.

T/K 95% 97.5% 100% 102.5% 105%

3M 9 25 14 -16 54
6M 2 -5 1 7 -13
9M 8 -6 -3 5 -8
1Y 22 1 -2 2 -13
1.5Y 22 -4 -4 4 -15
2Y 30 2 -2 2 -20

The errors show that our model is a good model for the Index EURO STOXX 50.
Within our relevant algorithm, we are able to fit a 6×5 grid of quoted prices of Index
options in less than400 milliseconds.

5 Infinitesimal Perturbation

In the following, we make some notations that will be used throughout the theorems
and the proofs. Then, we perform a general expansion of the price g(1) at any order,
making explicit the order of magnitude of each term. After detailing some formal
calculus for smooth payoff, we show how to extend this resultto Lipschitz payoffs
(case of call, put) under suitable conditions related to theellipticity of σ . Finally, we
extend the result to irregular payoffs (case of binary options) under similar suitable
conditions. We discuss the form of the accuracy of the three analysis.

Notations.

Notation 5.1 Let n∈N , i ∈N, , l1, · · · , ln ∈C i(R), a∈R+ andψ1, · · · ,ψn ∈C i(R2),
we set:

Mi
l1,··· ,ln = max(|l ( j)

1 |∞, · · · , |l ( j)
n |∞, j ≤ i),

Mi
ψ1,··· ,ψn,a = max(|ψ(0, j)

1 |∞, · · · , |ψ(0, j)
n |∞,a, j ≤ i).

Notation 5.2 – if (Z)t∈[0,T ] is a c̀adlàg process, we define Z∗ by Z∗t = sup
s≤t

|Zs|,∀t ∈

[0,T].
– The Lp norm of a process(Z)t∈[0,T ] at time t is denoted as usually by‖Zt‖p =

E[(|Zt |)p]1/p.

Notation 5.3 Generic Constants and Polynomials.
We keep the same notation C for all non negative non decreasing constant depending
on a number p≥ 1 arising in Lp estimates, on|σ |∞, |µ |∞, |σ (0,1)|∞, |µ (0,1)|∞, λ , |ηJ|,
γJ, T and on universal constants.
We denote by Pgenany polynomial whose coefficients are generic constants andwhose

variables are(M j
σ ,µ,λ ) j .

Notation 5.4 General Differentiation.
If these derivatives have a meaning, we write:
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– Xε
i,t = ∂ iXε

t
∂ε i , Yε

T = Xε
T − (x0 + εX1,T), Yε

k,i,T =
∂ i((Yε

T )k)

∂ε i , Yk,i,T = Y0
k,i,T ;

– Rk,i,T =

∫ 1
0 Y(1−λ)

k,i+1,Tλ idλ
(i)! .

5.1 Smooth Payoff

Theorem 5.1 Asymptotic expansion for the price of smooth payoff ( h∈ C ∞
0 (R)).

For m≥ 2 assume that(Rm+2) holds. Then one has

E[h(X1
T)] = E[h(x0 +X1,T)]+

m

∑
i=2

Ordi +Residm,

where different terms are as follows.

– The contribution for order i∈ J2,mK is : Ordi = ∑
[ i
2 ]

k=1E[h(k)(x0 +X1,T)
Yk,i,T
k!i! ] and

it is estimated by

|Ordi| ≤ PgenM
[ i

2 ]−1

h(1)

i

∏
j=1

(M j
σ ,µ,λ

√
T).

– The residual for order m is : Residm = E[∑
[ m

2 ]

k=1h(k)(x0 +X1,T)
Rk,m,T

k!

+
(Y1

T )
[ m

2 ]+1

([ m
2 ])!

∫ 1
0 h([ m

2 ]+1)(vX1
T +(1−v)(x0+X1,T))(1−v)[

m
2 ]dv], such that

|Residm| ≤ PgenM
[ m

2 ]

h(1)

m+1

∏
j=1

(M j
σ ,µ,λ

√
T).

Remark 5.2Multiplicative case (σ(t,x) = ∆s(t,x), µ(t,x) = ∆m(t,x) andλ ≤ ∆ )
In that case,M j

σ ,µ,λ = O(∆). Thus, one has for alli ∈ J2,mK :

Ordi = O((∆
√

T)i),

Residm = O((∆
√

T)m).

For example, at the second order the price can be approximated in the multiplicative
case by:

E[h(X1
T)] = E[h(X1,T)]+E[h(1)(X1,T)

X2,T

2
]+O((∆

√
T)3).

We recall that the second term is explicitly computed in Theorem 2.1. For higher
terms, see [Miri].

IDEA OF THE PROOF:
Let ∆ be a small positive number parameterizing the functionσ ,µ and the size of the jump frequency
λ : σ(t,x) = ∆s(t,x), µ(t,x) = ∆m(t,x) andλ ≤ ∆ .
Under assumption(Rm+2), Xε

t is Cm+1 w.r.t ε . From Equation (2.1) the first derivative satisfies:

dXε
1,t = ∆ (s(t,Xε

t−)dWt +m(t,Xε
t−)dt)+dJt +∆ (εXε

1,t−(s(0,1)(t,Xε
t− )dWt +m(0,1)(t,Xε

t− )dt)),Xε
1,0 = 0.
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Then, it is not difficult to show that the first derivative is ofthe order of∆
√

T: for any p≥ 1,

sup
ε∈[0,1]

‖Xε
1,T‖p = O(∆

√
T).

We can also prove similar results for the second and third derivatives :

sup
ε∈[0,1]

‖Xε
2,T‖p = O((∆

√
T)2), sup

ε∈[0,1]

‖Xε
3,T‖p = O((∆

√
T)3).

Then, the residualR1,2,T is of order of(∆
√

T)3.
Using a Taylor expansion twice (see the beginning of Section2), one has:

E[h(X1
T)] =E[h(x0 +X1,T +

X2,T

2
+R1,2,T)]

=E[h(X1,T)]+E[h(1)(x0 +X1,T)
X2,T

2
]

+E[h(1)(x0 +X1,T)R1,2,T ]+
∫ 1

0
E[h(2)((1−v)(x0 +X1,T)+vX1

T)
(

X2,T
2 +R1,2,T)2

2
](1−v)dv

(5.1)

=E[h(x0 +X1,T)]+E[h(1)(x0 +X1,T)
X2,T

2
]+O((∆

√
T)3).

Therefore, the main term of the price isE[h(x0 + X1,T)] and the first correction term isE[h(1)(x0 +

X1,T)
X2,T

2 ] which is already of order(∆
√

T)2.
The advantage of the multiplicative case is to give a clear view on how computations should be carried.
Nevertheless, this is a simplified setting because in general the derivatives of functionsσ ,µ may be
not of the same magnitude than the functions themselves (forexample|σ (0,1)|∞ is not necessary of
the same magnitude than|σ |∞). We show in the postponed proof in the paragraph 6.1 that theorder
(∆

√
T)i has to be replaced by∏i

j=1(M
j
σ ,µ ,λ

√
T) in the general case.⊓⊔

5.2 Vanilla Options

The payoffh for this kind of option is not necessarily smooth, it is almost everywhere
differentiable and belongs to the spaceH . Therefore we introduce some new vari-
ables in order to represent higher contributions only usingh(1) (and not higher order
derivatives).

Lemma 5.3 Assume (E) and (RN) for N ≥ 4. Let i∈ J1, [N+2
3 ]K,v∈ [0,1]. There exist

three variables Gi ,Si , Ii,v ∈ ∩p≥1Lp such that for any l∈ C ∞
0 (R), one has

E[l (1)(x0 +X1,T)Gi ] =
i−1

∑
k=1

1
k!

E[l (k)(x0 +X1,T)
Yk,k+i−1,T

(k+ i −1)!
],

E[l (1)(x0 +X1,T)Si ] =
i−1

∑
k=1

1
k!

E[l (k)(x0 +X1,T)Rk,k+i−1,T ],

E[l (1)(vX1
T +(1−v)(x0+X1,T))Ii,v] =E[

(Y1
T )i

(i −1)!
l (i)(vX1

T +(1−v)(x0+X1,T))],
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and they are estimated in the Lp norm by:

‖Gi‖p ≤ Pgen

(M0
σ ,µ,λ )(i−2)(2i−3)(∏2(i−1)

l=1 Ml
σ ,µ,λ )

i−2
2(i−1)

I2(i−1)(i−2)
σ

(
2(i−1)

∏
l=1

(Ml
σ ,µ,λ

√
T))

i
2(i−1) ,

‖Si‖p + sup
v∈[0,1]

‖Ii,v‖p ≤ Pgen

(M0
σ ,µ,λ )(i−1)(2i−1)(∏2(i−1)+1

l=1 Ml
σ ,µ,λ )

i−1
2(i−1)+1

I2(i−1)i
σ

(
2(i−1)+1

∏
l=1

(Ml
σ ,µ,λ

√
T))

i+1
2(i−1)+1 .

Theorem 5.4 Asymptotic expansion for the price of vanilla payoff (h ∈ H and
h′ ∈ H ).
For m≥ 2 assume that(R3m−2) holds. Then one has

E[h(X1
T)] = E[h(x0 +X1,T)]+

m

∑
i=2

Ordi +Residm, (5.2)

where different terms are as follows.

– The contribution for order i∈ J2,mK is Ordi = E[h(1)(x0 +X1,T)Gi ] and it is esti-
mated by:

|Ordi| ≤Pgen‖h(1)(x0 +X1,T)‖2

(M0
σ ,µ,λ )(i−2)(2i−3)(∏2(i−1)

l=1 Ml
σ ,µ,λ )

i−2
2(i−1)

I2(i−1)(i−2)
σ

(
2(i−1)

∏
l=1

(Ml
σ ,µ,λ

√
T))

i
2(i−1) . (5.3)

– The residual for order m is Residm = E[h(1)(x0+X1,T)Sm]+
∫ 1
0 E[h(1)(vX1

T +(1−
v)(x0 +X1,T))Im,v](1−v)m−1dv, such that

|Residm| ≤ Pgen(‖h(1)(x0 +X1,T)‖2 + sup
v∈[0,1]

‖h(1)(vX1
T +(1−v)(x0+X1,T))‖2)

(M0
σ ,µ,λ )(m−1)(2m−1)(∏2(m−1)+1

l=1 Ml
σ ,µ,λ )

m−1
2(m−1)+1

I2(m−1)m
σ

(
2(m−1)+1

∏
l=1

(Ml
σ ,µ,λ

√
T))

m+1
2(m−1)+1 .

(5.4)

Remark 5.5 – We have brought together correction terms in a different waythan
in the case of smooth payoff. Indeed, the hierarchy (in termsof magnitude) is
modified by the smoothness of the payoff. To get an intuitive and clear view of
this hierarchy, one should have in mind the multiplicative case (σ(t,x) = ∆s(t,x),
µ(t,x) = ∆m(t,x), λ ≤ ∆ andM j

σ ,µ,λ = O(∆)) :

Ordi = O((∆
√

T)i),

Residm = O((∆
√

T)m).
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– We stress the fact that the formulaOrdi = E[h(1)(x0 + X1,T)Gi ] is just a conve-
nient representation of the correction term of orderi (in order to control it) but to
compute it explicitly, we proceed as in Theorem 2.1 by decomposingOrdi as a
sum of Greeks in the Merton model.

– Note thatOrd1 does not appear because we use the Merton model as a proxy (this
givesE[(x0 +X1,T)] as the main term).

– The contributionOrd2 = E[h(1)(x0 +X1,T)
X2,T

2 ] coincides with that already com-
puted in the case of smooth payoff (Theorems 2.1 and 5.1).

– For higher contributions, there is no more coincidence withthe smooth case.
– Finally to accommodate irregular payoff, we require extra smoothness properties

on µ andσ .

IDEA OF THE PROOF:
Takem= 2. We use here the same context of multiplicative coefficients (σ(t,x) = ∆s(t,x),µ(t,x) =
∆m(t,x),λ ≤ ∆ and∆ a small real parameter).
Rewriting equation (5.1):

E[h(X1
T)] =E[h(x0 +X1,T)]+E[h(1)(x0 +X1,T)

X2,T

2
]

+E[h(1)(x0 +X1,T)R1,2,T ]+
∫ 1

0
E[h(2)((1−v)(x0 +X1,T)+vX1

T)
(Y1

T )2

2
](1−v)dv.

The difference with the case of smooth payoff yields in the term
∫ 1

0 E[h(2)((1− v)(x0 + X1,T) +

vX1
T)

(Y1
T )2

2 ](1− v)dv becauseh(2) does not necessarily exists anymore. However, using Lemma 5.3,
one has:

∫ 1

0
E[h(2)((1−v)(x0 +X1,T)+vX1

T )
(Y1

T )2

2
](1−v)dv

=
∫ 1

0
E[h(1)((1−v)(x0 +X1,T)+vX1

T)I2,v](1−v)dv.

Finally, since smooth payoffs are dense in the set of vanillaones, we obtain the identity (5.2) for
vanilla options. In the one hand, the Inequality (5.3) yields using the same reasoning like the previous
proof. In the other hand, due to the ellipticity ofσ , the order ofI2,v is obtained by decreasing the order

of (Y1
T )2 =

(
X2,T

2 +R1,2,T)2

2 which is(∆
√

T)4 to (∆
√

T)3 and multiplying it by an ellipticity term of the

shape ∆4

(Iσ )4 (for technical details see Lemma 6.11). Therefore yields the Inequality (5.4). ⊓⊔

The rigorous proof of the above arguments and the general case are tricky, we need
to combine the technical lemma used for Theorem 5.1, and an infinite analysis on
Malliavin calculus. The proof is postponed to the paragraph6.3.

5.3 Binary Options

The payoff for this kind of option, is not necessarily smooth, it is at least inH . The
results below are easy extensions of the case of vanilla options, we left the proof to
the reader.
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Lemma 5.6 Assume (E) and (RN) for N ≥ 5. Let i∈ J1, [N−2
3 ]K,v∈ [0,1]. There exist

three variables Pi ,Qi ,Ti,v ∈ ∩p≥1Lp such that, for any l∈ C ∞
0 (R), one has:

E[l(x0 +X1,T)Pi] =
i

∑
k=1

1
k!

E[l (k)(x0 +X1,T)
Yk,k+i,T

(k+ i)!
],

E[l(x0 +X1,T)Qi ] =
i

∑
k=1

1
k!

E[l (k)(x0 +X1,T)Rk,k+i,T ],

E[l(vX1
T +(1−v)(x0+X1,T))Ti,v] =E[

(Y1
T )i+1

i!
l (i+1)(vX1

T +(1−v)(x0+X1,T))],

and they are estimated in the Lp norm by:

‖Pi‖p ≤Pgen

(M0
σ ,µ,λ )i(2i+1)(∏2i

l=1 Ml
σ ,µ,λ )

i
2i

I2i(i+1)
σ

(
2i

∏
l=1

(Ml
σ ,µ,λ

√
T))

i
2i ,

‖Qi‖p+ sup
v∈[0,1]

‖Ti,v‖p ≤Pgen

(M0
σ ,µ,λ )(i+1)(2i+3)(∏2i+1

l=1 Ml
σ ,µ,λ )

i+1
2i+1

I2(i+2)(i+1)
σ

(
2i+1

∏
l=1

(Ml
σ ,µ,λ

√
T))

i+1
2i+1 .

Theorem 5.7 Asymptotic expansion for the price of binary payoff (h∈ H ).
For m≥ 1 assume that(R3m+2) holds. Then one has

E[h(X1
T)] = E[h(x0 +X1,T)]+

m

∑
i=1

Ordi +Residm, (5.5)

where different terms are as follows.

– The contribution for order i∈ J1,mK is Ordi = E[h(x0 + X1,T)Pi] and it is esti-
mated by:

|Ordi| ≤ Pgen‖h(x0+X1,T)‖2

(M0
σ ,µ,λ )i(2i+1)(∏2i

l=1Ml
σ ,µ,λ )

i
2i

I2i(i+1)
σ

(
2i

∏
l=1

(Ml
σ ,µ,λ

√
T))

i
2i .

(5.6)

– The residual for order m is Residm = E[h(x0 + X1,T)Qm] +
∫ 1

0 E[h(vX1
T + (1−

v)(x0 +X1,T))Tm,v](1−v)mdv, such that

|Residm| ≤Pgen(‖h(x0 +X1,T)‖2p + sup
v∈[0,1]

‖h(vX1
T +(1−v)(x0+X1,T))‖2p)

(M0
σ ,µ,λ )(m+1)(2m+3)(∏2m+1

l=1 Ml
σ ,µ,λ )

m+1
2m+1

I2(m+2)(m+1)
σ

(
2m+1

∏
l=1

(Ml
σ ,µ,λ

√
T))

m+1
2m+1 .

(5.7)

The second order for vanilla options and smooth payoff is a first order for binary
options. The residual term in Theorem 2.1 is of order(∆

√
T)2 in the multiplicative

case (instead of(∆
√

T)3 for previous payoffs).
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6 Proofs

For the following, we use the same definitions and notations as in chapter 1 of
[Nua05]. Before giving the proofs for the main theorems, we need to upper bound
theLp norm of the derivativesXε

i,t to state Theorem 5.1, to upper bound also theLp

norm of the Malliavin derivativesD j
t1,··· ,t j

Xε
i,t , and use the key lemma 6.11 in order to

state Theorems 5.4-5.7.

6.1 Expansion Analysis ofXε
T

In this subsection, we give the general form of the derivatives via some polynomials
(Proposition 6.3). After that we give some lemmas in order tostate the recurrence
Inequality from theith to the(i + 1)th derivatives (Corollary 6.6). This preparatory
work leads to Theorem 6.7 which states upper bounds for the derivativesXε

i,t .
We first recall thatε � Xε

t is almost surelyCN−1 w.r.t. ε under assumption(RN).
We need to introduce two kinds of polynomials in order to makethe derivatives of
Xε

t w.r.t. ε explicit.

Definition 6.1 Given n ∈ N, take ψ : [0,T]×R � R of classC0,n+1. P : [0,T]×
Rn+1 � R satisfies the propertyPψ,n (shortly writtenP∈ Pψ,n) if P is a polynomial
of n variablesx1, · · · ,xn of the form :

P(t,x0,x1, · · · ,xn) = ∑
α=(α1,··· ,αn)∈Nn

∑n
j=1 jα j =n+1

cα(t,x0)
n

∏
j=1

x
α j
j ,

such that

∃λα ,0, · · · ,λα ,n+1 ∈ Rn+2, cα(t,x0) =
n+1

∑
j=0

λα , jψ(0,i)(t,x0).

Definition 6.2 Givenn∈N, takeψ : [0,T]×R � R of classC0,n. Q : [0,T]×Rn+1 �
R satisfies the propertyQψ,n (shortly writtenQ ∈ Qψ,n) if Q is a polynomial ofn
variablesx1, · · · ,xn of the form:

Q(t,x0,x1, · · · ,xn) = ∑
α=(α1,··· ,αn)∈Nn

∑n
j=1 jα j=n

cα(t,x0)
n

∏
j=1

x
α j
j ,

such that

∃λα ,0, · · · ,λα ,n ∈ Rn+1, cα(t,x0) =
n

∑
j=0

λα , jψ(0,i)(t,x0).
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Proposition 6.3 If X ε
t is solution of the SDE (1.2), then for each i∈ J1,N−1K:

dXε
i,t = dHε

i,t +Xε
i,t−dLε

t ,Xε
i,0 = 0, (6.1)

dLε
t = ε(σ (0,1)(t,Xε

t−)dWt + µ (0,1)(t,Xε
t−)dt), (6.2)

dHε
i,t = δi,1Jt +dRε

i,t + εdZε
i+1,t ,

dRε
i,t = Qσ ,i(t,X

ε
0,t− ,Xε

1,t− , · · · ,Xε
i−1,t−)dWt +Qµ,i(t,X

ε
0,t− ,Xε

1,t− , · · · ,Xε
i−1,t−)dt,

dZε
i,t = Pσ ,i(t,X

ε
0,t− ,Xε

1,t− , · · · ,Xε
i−1,t−)dWt +Pµ,i(t,X

ε
0,t− ,Xε

1,t− , · · · ,Xε
i−1,t−)dt,

whereδ is Kronecker’s delta, Qσ ,i ∈ Qσ ,i−1, Qµ,i ∈ Qµ,i−1, Pσ ,i ∈ Pσ ,i−1, and Pµ,i ∈
Pµ,i−1. Notice that(Xε

i,t)t are continuous process for i≥ 2.

Proof We show the proof by recurrence. Fori = 1, we have

dXε
1,t = dJt +σ(t,Xε

t−)dWt +µ(t,Xε
t−)dt+εXε

1,t−(σ (0,1)(t,Xε
t−)dWt +µ (0,1)(t,Xε

t−)dt),

and putting

Qσ ,1(t,x0) = σ(t,x0),Qµ,1(t,x0) = µ(t,x0),Pσ ,1(t,x0) = 0,Pµ,1(t,x0) = 0, (6.3)

readily givesQσ ,1 ∈ Qσ ,0,Qµ,1 ∈ Qµ,0,Pσ ,1 ∈ Pσ ,0 andPµ,1 ∈ Pµ,0.
Now, suppose that Equation (6.1) is true for somei ≤N−1. By a direct differentiation
of the SDE (6.1), we obtain

dXε
i+1,t = dHε

i+1,t +Xε
i+1,t−dLε

t ,

where
dHε

i+1,t = dRε
i+1,t + εdZε

i+1,t .

The term in factor ofdWt (in dRε
i+1,t) can be written asQσ ,i+1(t,Xε

0,t− ,Xε
1,t− , · · · ,Xε

i,t−)

with Qσ ,i+1 ∈ Qσ ,i. The same observation holds for the other terms and this finishes
the proof. ⊓⊔

The two following lemmas are standard (apply usual stochastic calculus inequalities,
see [Pro90]).

Lemma 6.4 Let (U)t∈[0,T] ( resp.(V)t∈[0,T ] , Yt∈[0,T] and At∈[0,T]) be a continuous
process such that U∗T ( resp. V∗T ,Y∗

T and N∗
T ) has a finite moment of order2p ( resp.

4p).
We define Z by :

Zt = Ut

∫ t

0
Vs(YsdWs+Asds).

Then, for all t∈ [0,T]:

‖Z∗
t ‖p ≤C‖U∗

t ‖2p ‖V∗
t ‖4p

√
t(‖Y∗

t ‖4p+‖A∗
t ‖4p).

Lemma 6.5 Let Uε be the solution of the linear SDE:

dUε
t = Uε

t dLε
t ,Uε

0 = 1,

where Lε is given by the SDE (6.2). First(Uε
t )t does not vanish. Second,(Uε

T)∗ and
((Uε

T)−1)∗ have moments of all order bounded by a generic constant.
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Note thatXε
i,. is solution of a linear SDE. Hence, it can be explicitly represented using

the processUε (see Th. 52 in [Pro90]):

Xε
i,t = Uε

t

∫ t

0
(Uε

s )−1(dHε
i,s−d < Hε

i,.,L
ε
i,. >s). (6.4)

Corollary 6.6 Take p≥ 1. For all i ∈ J1,N−1K, ε ∈ [0,1] and t∈ [0,T], one has:

‖(Xε
i,.)

∗
t ‖p≤C

√
t(‖(Qε

σ ,i,.)
∗
t ‖4p+‖(Pε

σ ,i,.)
∗
t ‖4p+δi,1λ +‖(Qε

µ,i,.)
∗
t ‖4p+‖(Pε

µ,i,.)
∗
t ‖4p),

where Qε
σ ,i,t = Qσ ,i(t,Xε

0,t− ,Xε
1,t− , · · · ,Xε

i−1,t−) and analogously for Qεµ,i,t ,P
ε
σ ,i,t ,P

ε
µ,i,t .

Proof Consider first the casei ≥ 2. We know from Proposition (6.3) and Equation
(6.4) thatXε

i,t =Uε
t

∫ t
0((U

ε
s )−1(Yε

s dWs+Aε
sds)), whereYε

t = Qε
σ ,i,t +εPε

σ ,i,t , andAε
t =

Qε
µ,i,t + ε(Pε

µ,i,t −Yε
t σ (0,1)(t,Xε

t−)). An application of Lemma 6.4 and 6.5 gives the
result for i ≥ 2. The result fori = 1 is straightforward using the same inequalities.
⊓⊔

Theorem 6.7 Take p≥ 1. For all i ∈ J1,N−1K, ε ∈ [0,1]and t∈ [0,T], one has:

‖(Xε
i,.)

∗
t ‖p ≤ Pgen

i

∏
j=1

(M j
σ ,µ,λ

√
t), (6.5)

Proof We need the lemma below.

Lemma 6.8 Consider two sequences of real numbers(an)n and(bn)n such that0 <
a1 ≤ a2 ≤, · · · ,≤ an and b1 ≥ b2 ≥, · · · ,≥ bn. Then

n

∏
j=1

a
b j
j ≤

n

∏
j=1

a
∑n

k=1bj
n

j .

Proof Define the random variablesA andB as follows:P(A = lnai ,B = b j) =
δi, j
n .

Each one is uniformly distributed. Due to the monotonicity properties of the se-
quences(an)n and (bn)n, one has Cov(A,B) ≤ 0. This writes∑n

i=1
bi lnai

n ≤ ∑n
i=1

bi
n

∑n
i=1

lnai
n and passing to the exponential, we get the result.⊓⊔

Theorem 6.7 is proved by strong recurrence.
Initialization of Recurrence. According to Corollary 6.6 and to Equations (6.3), we
have

‖(Xε
1,.)

∗
t ‖p ≤C

√
t(|σ |∞ +0+ λ + |µ |∞ +0).

Then‖(Xε
1,.)

∗
t ‖p ≤ PgenM1

σ ,µ,λ
√

t.
Recurrence.Assume now that Inequality (6.5) holds up to indexi. First, we can
upper bound the coefficientscα of the four polynomialsQσ ,i+1,Qµ,,i+1,Pσ ,i+1,Pµ,i+1

by a constantCMi+1
σ ,µ,λ . Then, upper bound the absolute value of each monomial for

the four polynomials. Each monomial of these polynomials isbounded by
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CMi+1
σ ,µ,λ ∏i

l=1((X
ε
l ,.)

∗
t )

αl , where∑i
l=1 lαl = i or i +1 (according to Proposition 6.3).

Thus, we can deduce by Hölder Inequality (∑i
l=1

1
ip = 1

p)

‖(
i

∏
l=1

((Xε
l ,.)

∗
. )

αl )t‖p ≤
i

∏
l=1

(‖(Xε
l ,.)

∗
t ‖αl ip)

αl .

Using the hypothesis of recurrence, one has:

‖(
i

∏
l=1

((Xε
l ,.)

∗
. )

αl )t‖p ≤ Pgen

i

∏
l=1

(
l

∏
j=1

M j
σ ,µ,λ

√
t)αl .

Thus, we get that each monomial of the four polynomialsQσ ,i+1,Qµ,,i+1,Pσ ,i+1,Pµ,i+1

is bounded inLp-norms by

PgenM
i+1
σ ,µ,λ

i

∏
j=1

(M j
σ ,µ,λ

√
t)

∑i
l=1 lαl

i ≤PgenM
i+1
σ ,µ,λ (Mi

σ ,µ,λ
√

T)∑i
l=1 lαl−i

i

∏
j=1

(M j
σ ,µ,λ

√
t)

≤PgenM
i+1
σ ,µ,λ

i

∏
j=1

(M j
σ ,µ,λ

√
t),

where we used for the first upper bound Lemma 6.8 (M1
σ ,µ,λ ≤ ·· · ,≤ Mi

σ ,µ,λ and

∑i
l=1 αl ≥ ·· · ≥ ∑i

l=i αl ) and for the second upper boundM j
σ ,µ,λ ≤ Mi

σ ,µ,λ , t ≤ T and

∑i
l=1 lαl − i ≥ 0, and the third upper bound∑i

l=1 lαl − i ≥ 0. Using Corollary 6.6, we
obtain immediately the result. ⊓⊔

Proof of Theorem 5.1 (Smooth payoff).One has

E[h(X1
T)] = E[h(x0 +X1,T)]+

[ m
2 ]

∑
k=1

1
k!

E[h(k)(x0 +X1,T)(Y1
T )k]

+
∫ 1

0
E[

(Y1
T )[

m
2 ]+1(1−v)[

m
2 ]

([m
2 ])!

h([ m
2 ]+1)(vX1

T +(1−v)(x0+X1,T))]dv

= E[h(x0 +X1,T)]+
[ m

2 ]

∑
k=1

1
k!

E[h(k)(x0 +X1,T)(
m

∑
i=2k

Yk,i,T

i!
+Rk,m,T)]

+
∫ 1

0
E[

(Y1
T )[

m
2 ]+1(1−v)[

m
2 ]

([m
2 ])!

h([ m
2 ]+1)(vX1

T +(1−v)(x0+X1,T))]dv

= E[h(x0 +X1,T)]+
m

∑
i=2

[ i
2 ]

∑
k=1

1
k!

E[h(k)(x0 +X1,T)
Yk,i,T

i!
]

+
[ m

2 ]

∑
k=1

1
k!

E[h(k)(x0 +X1,T)Rk,m,T ]

+

∫ 1

0
E[

(Y1
T )[

m
2 ]+1(1−v)[

m
2 ]

([m
2 ])!

h([ m
2 ]+1)(vX1

T +(1−v)(x0+X1,T))]dv

= E[h(x0 +X1,T)]+
m

∑
i=2

Ordi +Residm,
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where we used a Taylor expansion twice for the two first identities (notice thatYk,i,T =
0 for i ≤ 2k−1), and we interchange the summations for the last one. Besides this,
we have :

Yε
k,i,T =

∂ i((Yε
T )k)

∂ε i = ∑
α=(α0,··· ,αi)

∑i
j=1 α j j=i

ck,α

i

∏
j=0

(Yε
1, j ,T)α j .

Using Theorem 6.7 and sinceM j
σ ,µ,λ is an increasing function w.r.t.j, one can deduce

for eachj ∈ J1, iK, for anyp≥ 1,ε ∈ [0,1] that

‖Yε
1, j ,T‖p ≤ ‖Xε

j ,T‖p ≤ Pgen(
i

∏
l=1

(Ml
σ ,µ,λ

√
T))

j
i .

Then, using Holder Inequality, one has

‖Yε
k,i,T‖p ≤ Pgen

i

∏
l=1

(Ml
σ ,µ,λ

√
T),

and necessarily

‖Rk,m,T‖p ≤ Pgen

m+1

∏
l=1

(Ml
σ ,µ,λ

√
T).

BecauseY1
T = X2,T + R1,2,T and sinceM j

σ ,µ,λ is an increasing function w.r.t.j, one
has

‖Y1
T‖p ≤ ‖X2,T‖p+‖R1,2,T‖p ≤ Pgen(

m+1

∏
l=1

(Ml
σ ,µ,λ

√
T))

2
m+1 .

Therefore

‖(Y1
T )[

m
2 ]+1‖p ≤ Pgen

m+1

∏
l=1

(Ml
σ ,µ,λ

√
T),

which finishes the proof.

6.2 Malliavin Expansion Analysis ofXε
T

Corollary 6.9 Assume (RN) for N ≥ 2. Then for any t∈ [0,T], Xε
t belongs toDN,∞.

Regarding the j-first Malliavin derivatives of Xεt , one has the following estimates for
any p≥ 1 and j∈ J1,NK:

sup
(t1,··· ,t j )∈[0,T] j

‖(D j
t1,··· ,t j

Xε
. )∗t ‖p ≤ PgenM

0
σ ,µ,λ . (6.6)

For any i≤ N− 1, Xε
i,t belongs toDN−1−i,∞ for any t∈ [0,T]. Regarding the j-first

Malliavin derivatives of Xεi,t , for j ∈ J1,N−1− iK, one has

sup
(t1,··· ,t j )∈[0,T] j

‖(D j
t1,··· ,t j

Xε
i,.)

∗
t ‖p ≤ Pgen(

i

∏
k=1

Mk
σ ,µ,λ )t

(i− j)+

2 . (6.7)
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Remark 6.10We can make better approximation than we do here for the Malliavin
derivatives, but this is sufficient for our purpose. The reader could show more re-
finements for other purposes, using the same principle as forthe proof in Theorem
6.7.

Proof The upper bound for the Malliavin derivatives of Xε
t .

Begin by j = 1 , for t1 ∈ [0, t] using formula (2.59) in [Nua05] p.126, one has

Dt1Xε
t = σ(t1,X

ε
t1)e

∫ t
t1

ε(σ (0,1)(s,Xε
s− )dWs+µ(0,1)−ε (σ(0,1))2

2 )(s,Xε
s− )ds)

= σ(t1,X
ε
t1)

Uε
t

Uε
t1

.

So supt1∈[0,t] ‖(Dt1Xε
. )∗t ‖p ≤ PgenM0

σ ,µ,λ . The result for j ≥ 2 is easily obtained by
recurrence.
The upper bound for the Malliavin derivatives of Xε

i,t .
We prove the result by a strong recurrence oni (like in Theorem 6.7). The casei = 0
has been established above. Consider nowi ≥ 1. We take the notationΓ ε

t = Dt1Xε
i,t .

From Proposition 6.3 and by Malliavin differentiation, onehas :

Γ ε
t1 = εXε

i,t−1
σ (0,1)(t,Xε

t−1
)+Qε

σ ,i,t1 + εPε
σ ,i,t1,

and fort ≥ t1

dΓ ε
t = Dt1(Q

ε
σ ,i,t)dWt +Dt1(Q

ε
µ,i,t )dt+ ε(Dt1(P

ε
σ ,i,t)dWt +Dt1(P

ε
µ,i,t)dt)+

+Γ ε
t dLε

t + εXε
i,tDt1(X

ε
t−)(σ (0,2)(t,Xε

t−)dWt + µ (0,2)(t,Xε
t−)dt).

Besides this, by the recurrence assumptions, one gets:

‖Dt1(Q
ε
σ ,i,.)

∗
t ‖p ≤ Pgen(

i

∏
k=1

Mk
σ ,µ,λ )t

(i−2)+

2 .

The same Inequality can be done analogously forDt1Pε
σ ,i,t ,Dt1Qε

µ,i,t ,Dt1Pε
µ,i,t . We also

have

‖εXε
i,t−1

σ (0,1)(t,Xε
t−1

)+Qε
σ ,i,t1 + εPε

σ ,i,t1‖p ≤ Pgen(M
1
σ ,µ,λ (

i

∏
k=1

Mk
σ ,µ,λ )t

i
2 +(

i

∏
k=1

Mk
σ ,µ,λ )t

i−1
2 ),

and

‖(εXε
i,.Dt1(X

ε
. )(|σ (0,2)(t,Xε

. )|+ |µ (0,2)(t,Xε
. )|))∗t ‖p ≤ Pgen(

i

∏
k=1

Mk
σ ,µ,λ )t

i
2 .

These estimates are sufficient to prove the announced resultby using results analo-
gous to Corollary 6.6.
For higher derivatives ofXε

i,t , we proceed in the same way. We left the details to the
reader. ⊓⊔

To make control for vanilla options, we need this technical lemma related to integra-
tion by parts formula.
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Lemma 6.11 Let p and k be two positive numbers and Z be inDk,∞. Assume (E) and
(Rk+1). For any v∈ [0,1], there exists Zvk such that for any l∈ C ∞

0 (R), one has

E[l (k)(vX1
T +(1−v)(x0+X1,T))Z] = E[l(vX1

T +(1−v)(x0+X1,T))Zv
k],

and it is estimated in the Lp norm by

‖Zv
k‖p ≤ Pgen

(M0
σ ,µ,λ )k(2k+1)

I2k(k+1)
σ

√
Tk

‖Z‖k,2p.

Proof Step 1:Show thatFv = vX1
T +(1− v)(x0+ X1,T) is a non degenerate random

variable.
Since the coefficientsσ andµ are bounded withk+1 bounded derivatives w.r.t. the
space variable, we deduce thatFv is in Dk+1,∞ (Theorem 2.2.2 of [Nua05]). Besides
this, using formula 2.59 in [Nua05] p.126, one has:

γFv =

∫ T

0
(DsFv)

2ds=

∫ T

0
(vσ(s,X1

s )U1
T(U1

s )−1 +(1−v)σ(s,x0))
2ds.

In view of Assumption (E),γFv is positive and one hasγ−1
Fv

≤ (
√

TIσ )−2((U1
T)−1(U1

. )∗T)2,

which gives thatγ−1
Fv

belongs to anyLp. In addition, for anyp≥ 1, one obtain

‖γ−1
Fv

‖p ≤C(
√

TIσ )−2.

Step 2:Using Proposition 2.1.4 and Proposition 1.5.6 in [Nua05], one gets the exis-
tence ofZv

k in Lp with

‖Zv
k‖p ≤C‖γ−1

Fv
‖k

k,2k+1p‖DFv‖k
k,2k+1p‖Z‖k,2p.

Step 3:Upper bound of‖DFv‖k,q,‖γ−1
Fv

‖k,q for q≥ 1.

Due to the first part of Corollary 6.9, we immediately obtain‖DFv‖k,q≤PgenM0
σ ,µ,λ

√
T.

Analogously and after long computations, we obtain

‖γ−1
Fv

‖k,q ≤ Pgen

(M0
σ ,µ,λ )2k

(Iσ )2(k+1)T
.

These two estimates complete our proof.⊓⊔

6.3 Proof of Lemma 5.3

One has :

Yε
k,i+k−1,T =

∂ i+k−1((Yε
T )k)

∂ε i+k−1 = ∑
α=(α0,··· ,αi+k−1)

∑i+k−1
j=1 α j j=i+k−1

ck,α

i+k−1

∏
j=0

(Yε
1, j ,T)α j .
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Using Corollary 6.9, one deduces for eachj ∈ J0, i + k−1K and anyε ∈ [0,1] that
Yε

1, j ,T ∈ Dk−1,∞ (becausei +k−1+k−1≤ N). In addition,

‖Yε
1, j ,T‖k−1,p ≤ Pgen

j

∏
l=1

(Ml
σ ,µ,λ

√
T) ≤ Pgen(

2(i−1)

∏
l=1

(Ml
σ ,µ,λ

√
T))

j
2(i−1) ,

becauseM j
σ ,µ,λ is an increasing function w.r.t.j and j ≤ i + k−1≤ 2(i −1). Then,

using the Holder Inequality for the spacesDk−1,∞ (see Proposition 1.5.6 in [Nua05]),
one hasYε

k,i+k−1,T ∈ Dk−1,∞, and

‖Yε
k,i+k−1,T‖k−1,p ≤ Pgen(

2(i−1)

∏
l=1

(Ml
σ ,µ,λ

√
T))

i+k−1
2(i−1) . (6.8)

Then, Lemma 6.11 insures the existence ofGi in Lp. Its Lp norm is estimated using
Lemma 6.11 and Inequality (6.8):

‖Gi‖p ≤ Pgen

i−1

∑
k=1

(M0
σ ,µ,λ )(k−1)(2k−1)

I2k(k−1)
σ

√
Tk−1

(
2(i−1)

∏
l=1

(Ml
σ ,µ,λ

√
T))

i+k−1
2(i−1)

≤ Pgen

i−1

∑
k=1

(M0
σ ,µ,λ )(k−1)(2k−1)(∏2(i−1)

l=1 Ml
σ ,µ,λ )

k−1
2(i−1)

I2k(k−1)
σ

(
2(i−1)

∏
l=1

(Ml
σ ,µ,λ

√
T))

i
2(i−1)

≤ Pgen

(M0
σ ,µ,λ )(i−2)(2i−3)(∏2(i−1)

l=1 Ml
σ ,µ,λ )

i−2
2(i−1)

I2(i−1)(i−2)
σ

(
2(i−1)

∏
l=1

(Ml
σ ,µ,λ

√
T))

i
2(i−1) .

ForSi andIi,v, we proceed analogously.

Proof of Theorem 5.4 (Vanilla options)In the one hand, one has for smooth function
h:

E[h(X1
T)] =E[h(x0 +X1,T)]

+
m−1

∑
k=1

1
k!

E[h(k)(x0 +X1,T)(
m

∑
i=k+1

Yk,k+i−1,T

(k+ i −1)!
+Rk,k+m−1,T)]

+
∫ 1

0
E[

(Y1
T )m(1−v)m−1

(m−1)!
h(m)(vX1

T +(1−v)(x0+X1,T))]dv

=E[h(x0 +X1,T)]

+
m

∑
i=2

1
k!

i−1

∑
k=1

E[h(k)(x0 +X1,T)
Yk,k+i−1,T

(k+ i −1)!
]

+
m−1

∑
k=1

1
k!

E[h(k)(x0 +X1,T)Rk,k+m−1,T ]

+

∫ 1

0
E[

(Y1
T )m(1−v)m−1

(m−1)!
h(m)(vX1

T +(1−v)(x0+X1,T))]dv
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=E[h(x0 +X1,T)]+
m

∑
i=2

E[h(1)(x0 +X1,T)Gi ]

+E[h(1)(x0 +X1,T)Sm]

+
∫ 1

0
E[h(m)(vX1

T +(1−v)(x0+X1,T))Im,v](1−v)m−1dv,

where we used a Taylor expansion in the first identity, we interchange the summations
in the second equation, and use the Lemma 5.3 in the last equation. So yields the
identity (5.2) for smooth payoff.
In the other hand, using Lemma 5.3, it is straightforward to show the inequalities
(5.3) and (5.4).
It remains to extend the result (5.2) to vanilla options (instead of smooth function
h). We use a standard density argument (see [GM05]). Denote byµ̃ the measure
defined by

∫

R g(x)µ̃(dx) = E(g(X1
T))+E(g(x0+X1,T))+

∫ 1
0 E(g(vX1

T +(1−v)(x0+
X1,T)))dv. Since there exists a sequence(hn)n∈N of smooth functions converging to
h in L2(µ̃) as well as its first derivative (see [Rud66] for instance), weeasily get
Equality (5.2) in the case of vanilla payoffs.

7 Technical results related to explicit correction terms

In this section, we bring together the results (and their proofs) which allow us to
derive the explicit terms in the formula (2.2).
In the sequel,(ut)(resp.(vt),(νt )) are square predictable (resp. deterministic) process
andl is a smooth function with compact support.

Lemma 7.1 For any continuous (or piecewise continuous) function f , any continu-
ous semimartingale Z vanishing at t=0, one has:

∫ T

0
f (t)Ztdt =

∫ T

0
ω(T) f

t dZt .

Proof this is an application of the Itô formula to the productω(T) f
t Zt . ⊓⊔

7.1 Proof of Lemma 2.2

We first give the proof in a particular case whenu andv are equal to 1. By a usual
integration by parts formula, one has:

E[l(WT)WT ] =

∫ ∞

−∞
l(
√

Tx)
√

Tx
e
−x2

2√
2π

dx=

∫ ∞

−∞
T l(1)(

√
Tx)

e
−x2

2√
2π

dx= TE[l (1)(WT)].

For the general proof: apply the duality relationship of Malliavin calculus (see Lemma
1.2.1 in [Nua05]), identifying Itô’s integral and Skorohod operator for adapted inte-
grands.
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7.2 Proof of Lemma 2.3

Applying first Lemma 7.1 tof (t) = νt andZt = Xc,1,t , one has:

E[(

∫ T

0
νtXc,1,tdt)l(

∫ T

0
vtdWt)] = E[(

∫ T

0
ω(T)ν

t dXc,1,t)l(
∫ T

0
vtdWt)]

= E[(

∫ T

0
ω(T)ν

t (σtdWt + µtdt)l(
∫ T

0
vtdWt)]

= (

∫ T

0
vtσtω(T)ν

t dt)E[l (1)(

∫ T

0
vtdWt)]

+ (

∫ T

0
µtω(T)ν

t dt)E[l(
∫ T

0
vtdWt)],

and we have used Lemma 2.2 for the last equality.

7.3 Proof of Lemma 2.4

Using the independence of increments forJ, one has:

E[(
∫ T

0
νtJtdt)l(JT)] =

∫ T

0
νtE[Jt l(JT −Jt +Jt)]dt =

∫ T

0
νtE[ι(JT −Jt)]dt.

Using a conditioning argument and since∑k
j=1Yi is a Gaussian variable, one has:

ι(x) = E[Jt l(x+Jt)]

= ∑
k∈N∗

P(Nt = k)E[
k

∑
j=1

Yi l(x+
k

∑
j=1

Yi)]

= ∑
k∈N∗

P(Nt = k)k(ηJE[l(x+
k

∑
j=1

Yi)]+ γJE[l (1)(x+
k

∑
j=1

Yi)])

= ∑
k∈N

λ tP(Nt = k)(ηJE[l(x+
k+1

∑
j=1

Yi)]+ γJE[l (1)(x+
k+1

∑
j=1

Yi)])

= λ t(ηJE[l(x+Jt +Y′]+ γJE[l (1)(x+Jt +Y′],

such thatY′ is a random variable independent from the variables(Yi)i∈N∗ with the
same law asY1.
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