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Abstract Using Malliavin calculus techniques, we derive an anafjtformula for
the price of European options, for any model including lacdétility and jump Pois-
son process. We show that the accuracy of the formula depenttie® smoothness of
the payoff. Our approach relies on an asymptotic expansiated to small diffusion
and small jump frequency. As a consequence, the calibrafisach model becomes
very fast.
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1 Introduction

The standard Black-Scholes formula (1973) has been deuinddr the assumption
of lognormal diffusion with constant volatility to price k®and puts. However those
hypotheses are unrealistic under real market conditiooaus® we need to use dif-
ferent volatilities to equate different option strikésand maturitiesT. Besides this,
the market data shows that the shape of the implied voiesiliboks like a smile or a
skew.

In order to fit the smile or the skew, Dupire (1994) and Rulaims{1994) use
a local volatility gjoc(t, f) depending on timé and statef to fit the market. This
hypothesis is interesting for hedging because it maintdiascompleteness of the
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market. Only in few cased, [ACGLD1], one has closed formufathe case of homo-
geneous volatility, singular perturbation techniquesehiaeen used to obtain asymp-
totic expression for the price of vanilla options (call,piut[]. Other cases had
been derived using an asymptotic expansion of the heat lkemghort maturity in
[Eab0j)].

But Andersen and Andreasen jn [A400] show that this sole mgsion of local
volatility is not compatible with empirical evidences (fiostance, the post crash of
implied volatility for the S&P500 index). Hence, they dexi/a model with local
volatility plus a jump process to fit the smile (we write it AAagel). They calibrate
this model by solving the equivalent forward PIDE. This safrproblem could be
handled numerically using: an ADI-FFT schemelin [AA0O], iférElement Method
i], an explicit implicit PIDE-FFT method for geméi_évy processes in
[Evod], predictor corrector methods to improve the accyrthe PIDE in [BMO§].
But in the best case, all these methods lead to a time of aesitiorof the order of one
minute (see[[AAQD]). Can we reduce this computational titsé@possible to reach a
time of calibration as short as the computational time oba&tl formula of Merton’s
type [Mer7$]? This is the objective reached in this work.

In order to handle even more general situations, we congidéhe one dimen-
sional underlying state process the solution of the stdthd#ferential equation
(SDE):

dX = 0(t, X )W + i (t, X, )t + A, Xo = Xo. (1.1)

One may think of X ); as the log asset price for instance. H&k&)o<<T is a standard
real Brownian motion on a filtered probability spa@®@,.#, (% )o<t<T,P) with the
usual assumption on the filtratidt¥ )o<t<t and (& )o<t<T is @ compound Poisson
process defined by = zi'ilYi whereN; is a counting Poisson process with constant
jump intensityA and(Y;)jcn+ are i.i.d. normal variables with meap and volatility
Y.

Actually, our further analysis relies on a suitable parameation w.r.ts € [0, 1]:

dXE = £(0(t, X )dW + p(t, X )dt+d3), X§ = xo, (1.2)

so thatx! = X. Our first aim is to give an accurate analytic approximatiarspme
sense) of the expected payoff (fair price of this option)

g(e) =E(h(Xf)) (1.3)

for a given terminal functioh and for a fixed maturityl, at the value o€ = 1.
The approximation can be applied to the following models:

Example 1.1 AA model on the log-asset.
In that case{X!): is the logarithm of the underlyingy its volatility, 4 = A (1 —

y2
e’”*%) — %2 in order to guaranty the martingale property (e?ﬁl)t. For a call exer-

cised at maturity Th(x) = e~ /o r(Wdu(elg (r(W)-a(w)dugx _ )+ wherer is the risk free
rate term andj is the dividend term. This model has been derived in [AAOB]tHe
sequel we mainly focus our discussion on this model.



Example 1.2 Jump diffusion model on the asset.
(X1)t is the forward with maturity, o its volatility, 4 = —A ;. For a call exercised

at maturity Th(x) = e~ /o "WdU(x _k)*. This model aims at modeling the presence of
price jumps in a market with slow movements, where the indpliermal volatility is
traded instead the implied Black Scholes volatility (Jagsmmarkets irf [HKLDQ2]).

Our approach consists in expanding the pr (1.3) witheetsip €. But the ac-
curacy of the expansion is not relatedstbecause the value of interest= 1 is not
small (and this is a significant difference with singulartpdsation techniques). It is
just a tool to derive convenient representations of thevetvies. Actually, using an
asymptotic expansion in the context of small diffusions anwll jump frequency,
we can exhibit estimates of the derivatives, which allowsaumake the contribu-
tion at any order explicit and to control the error. This ifigeed using the infinite
dimensional analysis of Malliavin calculus. The key featof our approach is that
we provide explicit formulas for the terms at any order, @ipupper bounds of the
errors for general forms qf, a. However, the more the parameterss, A are small
or the more the maturity is small, the more the expansion is accurate. On real data,
the accuracy is indeed very good (less tRép for various strikes and maturities).
As a result of these expansions, we prove that the p i1 8)r general model
@) equals to the price in the Merton model plus a combamadif Greeks (still in
Merton’s model). Hence, all these terms are straightfotvt@numerically evaluate,
with a computational cost as cheap as the closed Merton farribe residual terms
(that is the error) is also estimated and their amplitudegdéd on the smoothness of
the payoff. We distinguish three cases: smooth, vanilll, mat) and binary payoffs.
This is our main contribution. Also, we observe from the axmation price that
one may get a volatility smile for short maturities (sincewse Merton’s model as a
proxy) and a volatility skew for long maturities (due to Ibealatility function).

Comparison with the literature. We refer in particular to Hagan and al in
[HKLDOZ] for the SABR model, to Fouque and al ih [FP$00] foochastic volatil-
ity models, or to Antonelli-Scarletti i [ASQ7]. In all thesvorks, as a difference
with our approach, a perturbation analysis w.r.t. the vi@lgtthe mean reversion pa-
rameters or the correlation is performed and this leads i@ whe price as a main
term (essentially a Black-Scholes price) plus an integf&m@eks over maturities.
In the time homogeneous case, the authors succeed on cogputpproximating
this integral, which strongly relies on PDE arguments. Inaase, we do not approx-
imate the underlying PDE (or the related operator) but oviinilalliavin calculus,
we directly focus on the law of the random variam%: given Xy = Xg (and not nec-
essarily on the process for any initial condition). Thus,ave able to handle time
inhomogeneous coefficients and jumps as well, without estfoats.

Outline of the paper. In the following, we give some notations and assumptions
that will be used throughout the paper. The secE|on 2 is aiatguresenting in an
heuristic way our methodology to approximate the expeatstl Rigorous results are
proved in Sectiofi]5 ar{d 6. In Sectifin 3, we derive financial efind consequences
from these formulas. These observations lead to justifypkfiad choices of the local
volatility, to predict the form of all attainable smiles Wwitheir dynamics. In Section
H, we firstly give a methodology to implement the approactwthtila. Secondly,



we show how to efficiently use our formula for calibrationnite using a relevant
algorithm. Finally, we detail numerical applications inlibeation for real market

data using our simplified form of local volatility. In Secm'@, we give a rigorous

sense to our approach of infinitesimal perturbation; théyaisadepends on the kinds
of payoff (smooth payoff in Theorer@.l, vanilla options ihe'brem, binary

options in Theorem 5.7) and we discuss the impact of the pandhe accuracy. The
proofs of Theoremp §[L-3[4-5.7 are postponed to Seglion 8ettior[7, we bring

together useful results to make our expansion explicit.

Notations.

Notation 1.1 Differentiation.
If these derivatives have a meaning, we write:

— ) = g—;:—y"j for every functiony of two variables.

- Xit= %ﬁ le=o . These processes play a crucial role in the sequel.

— Xc,1¢ for the continuous part of .

~ 0y = 0(t,%0), k= H(t,%0), 0" = 0O (t,x0), " = @D (t,%0).

Definitions. The following sets of functions are used to distinguish thgqgsf

functionsh.

Definition 1.3 As usual, we defin&g’(R) as the space of real infinitely differen-
tiable functionsh with compact support (smooth payoffs). A functibrbelongs to
A if |h(x)] < c1e%2X for anyx, for two constants; andc,. In other wordsh has
at most an exponential growth. In practice, the case of kanjtions (call-put) is
associated th € . andh(Y) € #. For binary options, we only requiteto be in
H.

In order to make the approximation explicit, we introduce thllowing family of
operators indexed by maturity.

Definition 1.4 Integral Operator.
The Integral operatan(T) is defined by:
for any integrable functioh w(T)} = /7 I,du, vt € [0, T].
Its n-times iteration is given by:
Ilw(T)IZ'”’

JIn
for any integrable functiond,- - - ,Iy), w(T){l’"'"” =w(T) ,Vte[0,T].
The following notations are useful to give an interpretatio the correction terms.

Definition 1.5 Greeks.
Let Z be a random variable. Given a payoff function h, we definé'th@reek for the
variableZ by the quantity (if it has a meaning) :

Greef(z) = w&:o-

Under appropriate smoothness assumptions, @me also has

Greek(z) = E[h()(Z)].



Assumptions.In order to get accurate approximations, we may assume ¢hat ¢
efficientso, u are smooth enough. In what follows,is an integer greater than 4 and
sometimes 5.

Assumption (Ry). The functiono, u are bounded and of classMow.r.t x and the
derivatives until order N are bounded.

This assumption may be restrictive becaosendpu have to be bounded as well their
derivatives. Actually, this statement is made only to sifgga bit our analysis, but we
can prove that our approximation remains valid if some bednéss requirements
are partially relaxed.

To perform the infinitesimal analysis, we rely on smoothnasgperties which
are not given by the payoff functions, but the law of the uhdeg stochastic models
(this is related to Malliavin calculus). The next assumptia the volatility combined
to (Ry) guaranties these smoothness properties.

Assumption (E). o satisfies an uniform ellipticity condition

Y(t,x) € [0,T] x R, o(t,x) >y

for a real positive numbergl.

2 Smart Taylor Development

Our perturbation approach lies in the framework of smaliudibn and small jump
frequency that iz (t,x) = As(t, x), u(t,x) = Am(t,x) andA < A, with a small pos-
itive numberA. All the next results would remain valid if the jump size weraall

(Ins] andys small) but it is more natural in the AA model to assume few jsrop
arbitrary size than arbitrary number of jumps with smalésiz

Under assumptioriRs), for anyt, X¢ is almost surelyC* w.r.t £ (this is an easy

extension of [Kung4]). If we pux?, = 25, we get
dXfy =0 (t, X5 ) dW + p(t, X2 )dt+d g
+eX- (0 OV X)W+ p OV (€ X )dt), Xfp=0.  (2.1)
From the definitionsX; = %ﬁgzo, at(i)
easily get

= @) (t,x0) and ) = p@(t,x0), we

dXyt =0 dW + pdt+-dg, X10 =0,
dXor =2Xq ;- (G dW + i Vdt), Xo.0 = 0.

Now we use the Taylor formula twice: firstly, fé at the second order w.etaround
Xo, secondly for smooth functiomat the first order w.rx aroundxp + X 1. One gets:

EIh(XY)] —Efh(xo+ Xor + 2T 1]

2
X
=E[h(Xo+ X¢.1)] + E[h® (xo+ X:L,T)%] +..
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Because oK 1 = fOT(thW + i dt) + Jr is a drifted Brownian motion plus a com-
pound Poisson process, the cost can be approximated by aaionrof two terms

— E[h(xo + X1, 7)]: The leading order which corresponds to the Merton price (BS
price whenA = 0) for call or put option.

— E[h®(xo+ X1 1) 2&L]: The correction term which will be made explicit using the
next proposition.

Theorem 2.1 (Main approximation price formula).
Under assumption&Rs), (E), one has:

E[h(X7)] = E[h(xo +Xv7)]

3 3
+ Zai,TGreeI{‘(xo +X07) + ZBi,TGreeW(m +X7+Y),  (2:2)
= =
where

T u®
ULTZ/O [th(T)t dt,
T 6
aor = [ (P + oMt
T, @
aar = [ oPaT)ee"dt,
0
_ T
Bit =AM A ty 7 dt,
T
Bor =2 [ 100 + mara e,

RSGY
&:zAwAtmq dt,

andY is an independent copy of the variablé§); .

The accuracy of the approached formula is stated in Thedbel5.4[5.).

To prove Theore, it remains to show tfigh(® (xo + leT)XZT’T] is equal
to the last two terms of| (4.2). The reader familiar with Malin calculus for the
computations of Greeks (seg [FLLUO1|, [Gob03], ...) mayogmize in the expan-
sion of E[h( (xg +X1,T)XZT'T] the generic form of some derivatives (or Greeks) of
E[h® (xo 4 Xy.1)], derivative which is written as the expectationdt) (xo 4 Xy 1)
multiplied by a random weight. This is indeed our methodgltay explicitly com-
pute the correction terms in the formu@Z.Z). It relies lom following key lemmas,
which are stated for any smooth functibwith compact support and for any square
predictable (resp. deterministic) procésg (resp.(vt), (\)).




Lemma 2.2 One has:
T T T T
B[ uadW)I( | wav)] <[ wudgi® ([ vaw))

In the case of deterministic u, it is equal_fé vtutdtGreeIli(foT vidW).

Lemma 2.3 One has :
T T T T
B[ wierdtl( [ waw] = [ worw(T)¢dtGreek( [ waw)

T T
+/O utm(T){’dtGreeIJ@(/O vedW).

Lemma 2.4 One has:
T T ,
]E[(/O vddt)l (3 )] :)\(r)J/O tudt Greek(Jr +Y')
+yJ/OTtvtdtGreeIJi(JT +Y"),

such that Y is an independent copy of the variabl&})icy.

The proofs of these technical lemmas are postponed to B(ﬂ:tM/e now complete
the proof of Theorerh 2] 1.

Proof We define the new function of two variableG(x,y) = h(x+y+Xo+ [y dt).
Using that the seft € [0, T], Xyt # Xy, } is of measure zero (sefe [St99]), one has:

XoT

X T
B[ (xg+ X 7)] = E[EGW)(/O ardW, Jr)]

2

T (gD Wgmato [T
—EI( [ XaroMawe+ Wd))GH( [ adwar).
Becauselr is independent oW ) o 1] and by Lemm4 2]2, one has:

X1 (1) T 20 [T
BIZZE0 00+ X)) = El( | i X0, d)G2( [ orawi, )]
T o), [T
FEI(| W Xad)G 20 [ odw,3r)
T o 20) [T
+E[( | ooV 262 [ oaw,3r)
T 1o [T
+EI([ WM aanc0( [ oaw,3r))
Apply lemmaq 2]3 anfl 3.4 and use Definit[or] 1.5 of Greeks tafgetesult. O

Remark 2.5The above approximation of the price is a summation of theeag:



E[h(xo + Xy,7)]: The leading order which corresponds to the price when the pa
rameterss, 1 are deterministic. We know that in this case, there is a didse
mula : Merton closed formula for call(put), or by FFT tools &my other payoff
because the characteristic function)@fr is explicit. For instance, the formula
for a call in the Merton model (se76]) on the log asset is

y2
20(/\T) —AT—Jg r( duCa”BS<exo+jo q(u)du+A (1- e‘7.]+7)T+I(nJ+V2) KT
. || P
1=

\/./o UZ(T )dt—i—lyz)

whereCallgs(S,K, T,v) is the Black-Scholes price for a call on an underlyfihg
with initial conditionSy = S, with strikeK, volatility v and exercised at maturity
T, where the risk free rate and the dividend yield are set to 0%.

2. zi?’:l ai’TGreeI{'(xo + Xy.7): The volatility and drift correction term which de-
pends on the first derivatives pfando. This term can be computed as easily as
the main term.

3. 32, B 1Greel (xo+X1.1 +Y’): The jump correction term which depends on the
first derivatives ofu, o and on the jump parameters. Sint‘as also Gaussian and
independent oX; 1, the computation of theses Greeks are similar to the previou
ones, by adding to the mefﬂ L dt and variancqoT ofdt the quantitiesy; and

4P

Remark 2.6In the AA model on the log-asset, one has:
arr _2/ RV dt+2 (€5 — 1) / taraiVt,
dot 7,5/ o2 (T)eo" dtf/\(e”ﬁr,l)/ toigVdt,
0
asT —/ oFw Vdt,
Bt =—/\'7J/ too dt,
’ 0
G
Bt :A(nrm/o toioydt,
NG
Bs1 :)\VJ/O topop dt.

Thus, the computation of these constants simply reducdm’atantfoT toy at<1)dt and
Js oa(T)Pe  dt.

We mention that we could perform higher order approximafamulas, still ex-
plicit. The only difference is that the number of random ahtés used as argument
for the Greeks will increase at each order, and it is in th€X$ef +Y; +--- + Y/ )ien.
We refer to [Mir] for higher order terms.



3 Financial Modeling Consequences

For simplicity, we consider the AA model on the log-assetdaalogous statement
would be available for the jump diffusion model on the asset)

The standard Gaussian framework as developed by Blackk&c(i973), Merton
(1976) is realized by making the volatility functiom constant (the result is still
available for a function dependent on time only). In ordentnage on fixed income
(without jump) Andersen and Andreas@n [AA02] take a paraimgrm for o, Piter-
bargt [] also uses the same shape for Power Reverse Dualr@yrssvaps in
order to handle the skew for the FX:

a(t,x) = v(t)ePO-LX (3.1)

wherev (t) the relative volatility functionf(t) is a time-dependent constant elasticity
of variance.

Because ofu = A(1— e’“*é) — %2 the approximation formulﬂ.Z) depends
only on a(t,xo), @Y (t,x0),A,n3,ys. The volatility given in equation[(3.1) may
generate all possible values of the following time-depabdenctionso(t,xp) =
v(t)elBO-Dx g0t x5) = (B(t) — 1)v(t)elP-1% because it has two degrees
of freedomv(t), B(t). So this kind of volatility may create all attainable pridas
this class of models, and thus all attainable Black Schatgkes. This justifies the
interest for the volatility[(3]1).

Attainable Black Scholes smiles of the modelCan we predict what is the gen-
eral form of the smiles generated by this model?

— For short maturity: according to our approach, the modeldsecto the Merton
model related tog + X1 7. So the shape of implied volatilities forms a smile cen-

tered in a point close to the money, which is at the left when é > 0 (at the

right whennj + é <0).
Formal Proof: Using the approximation formula, the corriectterms are Qv/T).
Sowhen T decreases to zero, the price converges to the Mmiten The second
statement is easy to check. One can follow the approach aoff&ait02 [Mat0p]
using characteristic functions, or can prove it directlyingssome derivations of
the Merton formula[[Mer76].

— For long maturity: the smile becomes a skew which is due tddbal volatility
function (because the smile for the Merton model flattensdiog maturity).

Smile’s Dynamics.According to [HKLDO02], the smile created by a given model
would be compatible with real market if it had the same dymanais the forward.
Is this property fulfilled in this context? The model has thertddn model as a good
proxy. The implied volatilities for the Merton model are irasing and depend only
on the ratio between the forward and the strike. Thereforesmile should move in
the same direction as the forward.

L If opy is the local volatility used i5] ant(t) = elorW-aw)du one hag(t,x) = opi (t, L e).
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4 Numerical Experiments

In this section, we give details of the implementation fag ipproximation[(2]2).
After that, a generic bootstrap algorithm for calibratiamgose is derived. Finally, a
numerical application of this algorithm is applied to marttata (Index Option).

4.1 Numerical Implementation

The case of homogeneous parametgtsxo), o(%Y (t, xo), (t, %o), U@V (t, xo) gives
us the coefficients, B exactly. This result is still valid for higher orders.

In addition, when these parameters are time-dependen, &he two cases.

Either the data are smooth. In which case, we use a Gausswlegeurvature for-
mula (see[[PTVFF]) for the calculus of the termsp.

Or the data are piecewise constant. In this case, we can xjlieieexpressions of
a, B as function of the piecewise constantdata. Tet 0< Ty < --- , < T, =T such
that a(t,xo), 0@ (t,x0), u(t,xo), U@V (t,x0) are constant at each interval, T 1]

and are equal respectively wﬁﬂ,aﬁ)l,uml,u%ljl. Before giving the recurrence

relation, we need to introduce the following function; = a)(t)gz, oy = w(t)}.

Proposition 4.1 Recurrence calculus.
For piecewise constant coefficients, one has:

(T T2
@17y =+ (o~ T, e+ T )

o7,y =07 + (T =T (Y oy + om0 o)
(T1-T)?, » @ 1
T (Gmlﬂéjl + “Twlamlaéjl)’
1) ~ Tiy1—T)? 1
ast,, =037 + (Tip1— -|_i)0'l'i+10'|('i+)1wl,Ti + (Iﬂ% %+1O-'|('i+)1’

(T2, -T2
Bit,, =Bim+Any LZI ”%131,

(T3=T2) ) &)
Pot =PBor +A———5——(yskr, +M0T,,07,),
T-2 7T-2
Bawi., =Bam +A WLZI)G-EJAG'I%L’

W1,y =+ (Tipr— Ti)UTZHF
@,Tiﬂ :@,Ti + (Ti+l - Ti)uTiH-
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Proof According to Theorerh 2.1, one has:

u@

alml—/ Hth|+1t“ dt+/ proo(Tip)f dt
U “<1)
—ar+ [ wof o [ o, of o

u® Ti Tiv1 u®
—ap oM [ wdtr [ ot d

- Tiy1—Ti)?
a7+ (T - Ty + Ty )

The other terms are calculated analogously

4.2 Algorithm of Calibration

For this kind of model (AA model on the log asset or on the aisself), calibration is
still challenging as this model has no analytical formul&. ®¥n still do a numerical
calibration using the forward PIDE as explained|[in [AAOQ}t the time of calibra-
tion remains quite long (about one minute). With our apphoaee can shorten the
duration of calibration to be less than one second. We cahatdy a simple boot-
strapping algorithm using the path dependent formula.

Bootstrap algorithm for piecewise data .Suppose that we want to fit option
prices forn maturitiesTo = 0< Ty < --- < T, andm strikesKy, - -- ,Kr,. First, we
search the best fitted parametkrsp,w Ateach mterva]T. 1, T, the datas, o),

U, H(o,1) are constant, equal respectivelyds, aT » T uT ) and depending on the
vectorxi = (V(Ti), B(Ti)) (see formul'l) Startlng at 1 we express the coeffi-
cienta and as a function ofy; using Proposition[(4.1). We apply a minimization
algorithm (for instance, the Levenberg-Marquardt as desdrin [PTVH]) in order
to fit the implied volatilities for all strike&s, - - - , Ky at maturityT; using our approx-
imation ). Once the vectgg is found, we go to the next step- 1, updatexr and

B and compute; 1.

4.3 Numerical application
4.3.1 Accuracy of the approximation

Here, we give a short example of the performance of our mefhiogl jump parame-
ters have been set td:= 30% nj = —8%, y; = 35%. These parameters are not small
ones, especially for the intensity of the Poisson prodesand the volatility of the
jump y5. The piecewise constant functionsaandf are equal respectively at each in-
terval of the form[55, ﬂ] to 25%—ix 0.11% 1—i x 0,75%. The spot, the risk free
rate and the dividend yield are set respectively to, 20 0%.

We observe in the table below that the errors of implied Bl&ckoles volatilities
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between our approximation and the price calculated usiri@& Phethod do not ex-
ceed? bp for a large range of strikes and maturities. The computatitme of our
formula is less than 4 milliseconds on &62GHz Pentium PC. The accuracy of our
formula turns to be excellent.

Table 4.1 Error in implied Black Scholes volatilities (in bp) betwettve approximation formula and the
PIDE method expressed as function of maturities in fraatibyears and relatives strikes.

T/IK 70% 85% 100% 120% 150%
3M 0.02 -0.03 -0.92 -0.07 -0.12
1Y 0.04 0.06 0.15 -0.11 0.01
3Y 0.22 -0.23 0.11 0.41 0.31
5Y 1.39 1.06 -0.01 1.85 1.76

4.3.2 Calibration issues
Here, we calibrate the EURO STOXX 50 Index. The surface ofigadB-S volatility
is given in the tabl¢ 4]2.

Table 4.2 Implied B-S volatilities for the EURO STOXX Index expressasl function of maturities in
fraction of years and relatives strikes. The risk free ratequal to 08%.

TIK  95% 97.5% 100% 102.5% 105%

3M  20.88% 19.47% 18.13% 16.91% 15.85%
6M  21.12% 20.07% 19.26% 18.55% 17.70%
9M  21.30% 20.47% 19.86% 19.33% 18.65%
1Y 21.39% 20.67% 20.16% 19.71% 19.11%
15Y  21.46% 20.90% 20.61% 20.40% 19.92%
2Y  21.89% 21.41% 21.18% 21.02% 20.61%

The jump parameters for the calibrated model are 28.52%,n; = —31.32%
andy; = 5.11%. The diffusion parametevsandp for the calibrated model are given
in the tabl. These values are realistic. The errorsdmikhe implied volatilities
generated by the calibrated model and the market data ae githe tabl4.

Table 4.3 Calibrated values of the piecewise constant functioasid3.

T Y B

3M 21.48% 94.36%
6M 18.73% 95.63%
9M 21.46% 93.81%
1Y 21.41% 93.39%
1.5Y 18.06% 96.60%

2Y 18.15% 98.38%
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Table 4.4 Errors between implied B-S volatilities for the EURO STOXE Bidex and those calculated
within the calibrated model (in bp) expressed as functiomefurities in fraction of years and relatives
strikes. The risk free rate is equal t®M8%.

TIK  95% 97.5% 100% 102.5% 105%
3M 9 25 14 -16 54

M 2 -5 1 7 -13

oM 8 -6 -3 5 -8

v 22 1 -2 2 -13
15Y 22 -4 -4 4 -15

2Y 30 2 -2 2 -20

The errors show that our model is a good model for the Index @I3ROXX 50.
Within our relevant algorithm, we are able to fit a& grid of quoted prices of Index
options in less thad00 milliseconds

5 Infinitesimal Perturbation

In the following, we make some notations that will be usedtighout the theorems
and the proofs. Then, we perform a general expansion of the @f1) at any order,
making explicit the order of magnitude of each term. Aftetailang some formal
calculus for smooth payoff, we show how to extend this reultipschitz payoffs
(case of call, put) under suitable conditions related tcethipticity of o. Finally, we
extend the result to irregular payoffs (case of binary opgt)ainder similar suitable
conditions. We discuss the form of the accuracy of the thnedyais.
Notations.

Notation 5.1 LetneN,i €N, ,lIz,---,ln€ €' (R),ac R* andyy, --- , ¢ € €' (R?),
we set;
M|

1dn T max(llij)lwf" 7||'§1])|°°aj <),

[ 0,] 0,j o
M, .. gna = MW o, |V |, <),
Notation 5.2 —if (Z)ic[o,7] is & cddlag process, we defing By Z' = sup|Zs|,Vt €
' s<t

[0,T].
— The L, norm of a proces$Z)co.1) at time t is denoted as usually B[, =

E[(|Z:])°THP.

Notation 5.3 Generic Constants and Polynomials.

We keep the same notation C for all non negative non decrgasinstant depending
on anumber p> 1 arising in L, estimates, 0f0]w, |U|w, |0OY|w, |1V 0, A, (03],
ya3, T and on universal constants.

We denote byfnany polynomial whose coefficients are generic constantsuruge

i i .
variables are(M; | )j-

Notation 5.4 General Differentiation.
If these derivatives have a meaning, we write:



di £ ai YE k
- XE=Z%, YE=XE—(0+&XaT), Y1 = sl it =Yo7

Ly @2 AidA
- Ry = Wi
5.1 Smooth Payoff

Theorem 5.1 Asymptotic expansion for the price of smooth payoff ( h € 65°(R)).
For m> 2 assume thatRn,2) holds. Then one has

E[h(X#)] = E[h(xo + X1.1)] + iomi + Resigh,

where different terms are as follows.

— The contribution for order & [2,m] is : Ord; = ZENE[ h® (x0+ X1.7) k4T and
it is estimated by

|Ord| < Poer 7 r| (M), V).
1=

— The reS|duaI forordermis : Resfd:E[zk 1h (xo+XlT)
fo 2D (vxd 4 (1 v)(xO+x1T)>(1—v)[7Jdv],suchthat

m+1

IResidh| < Pyer2) I_I](M(Jw/\\/f)
J

Remark 5.2Multiplicative case (o (t,x) = As(t,x), p(t,x) = Am(t,x) andA < A)
In that casel\/law\ O(A). Thus, one has for alle [2,m] :

Ord; = O((AVT)),
Resigh = O((AVT)™).

For example, at the second order the price can be approxdritatee multiplicative
case by:

XL;] +0((AVT)?).

We recall that the second term is explicitly computed in Teed2.1. For higher
terms, see[[Mifi.

IDEA OF THE PROOF:
LetA be a small positive number parameterizing the functipp and the size of the jump frequency
A o(t,x) = As(t,x), p(t,x) =Am(t,x) andA < A.
Under assumptiofRm, 2), X is C™* w.r.te. From Equatlon.l) the first derivative satisfies:

E[h(X})] = E[h(Xy 1)] + E[h® (X 7)

dXE, = A(S(t, XE AW +m(t, XE )dt) +dd +A(eXF (8O (8, XE )dW +m @V (t, XE )dt)), XE o =0.
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Then, it is not difficult to show that the first derivative isthe order ofA+/T: foranyp > 1,

sup [[Xfrllp=O(AVT).
£€[0,1]

We can also prove similar results for the second and thirvateres :

S:l[l(i)rill\xf.ﬂlp— O((AVT)?), SuIO X1 llp=O((AVT)?).

Then, the residudRy 2 T is of order of(A f)
Using a Taylor expansion twice (see the beginning of Se&)onne has:

Elh(X)] =Efh(xo + Xor + 27 4 Ryo7)]

2
~Elh(x,7)] + E[hY (xo+x1,T)XL2‘T]

X
1 (BT +Rup1)?

+EhY (%0 + X1 7)R12.7] +/ 2((1=V)(Xo+Xo.7) +VXF) 5

1(1=v)dv
(5.1)

=Elh(xo+X7)]+ Eh" (%0 +xl‘T)X27‘T] +0((AVT)3).

Therefore, the main term of the priceli$h(xo + X1.7)] and the first correction term &h(% (xo +

XiT) ZT] which is already of ordefA/T)2.

The advantage of the multiplicative case is to give a cleam\dn how computations should be carried.
Nevertheless, this is a simplified setting because in gettezalerivatives of functions, u may be
not of the same magnitude than the functions themselvesxample|g©) |, i t necessary of
the same magnitude thaa|..). We show in the postponed proof in the paragr| 6.1 thabrtier

(AVT)' has to be replaced ky}_; (M) A V/T) in the general case.O

5.2 Vanilla Options

The payoffh for this kind of option is not necessarily smooth, it is altnegerywhere
differentiable and belongs to the spa#é. Therefore we introduce some new vari-
ables in order to represent higher contributions only ubihg(and not higher order
derivatives).

Lemma 5.3 Assume (E) and (R for N > 4. Letie [1,[M$2]],v € [0,1]. There exist
three variables G S, liy € Np>1Lp such that for any E °(R), one has

Yi ki —
o
E[lY (04 X1.7)S Z k' % (x0 4 X1.7)Reki—1.7),

1D (vXE + (1 - v)(x0+X11))],

B0 + (L) 0+ X0 )] —E[ )'!
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and they are estimated in thg borm by:

0 i—2)(2i—3) (2(—1) gl ez |
HGin<ngen(lvlmu’/\)(I - )(Hl_zl Mav“’/\)a D 20 1) i

2(i-1)(i-2) ( I_! (Mﬂvu,/\ \/1_'))@7
lg =

. i—1
MO (i-1)(2i-1) 29’1)+1M' 2(-1)+1
IS5+ 0P ullp < Pror 2222 Ty~ Mool

[0,1] 1 20-20
) (o)

vef

2(i-1)+1

( D (M. \/-T))Z(ii—;l%ﬁl.

Theorem 5.4 Asymptotic expansion for the price of vanilla payoff (h € 27 and
h e 7).

For m > 2 assume thatRsy,_2) holds. Then one has

Elh(X#)] = E[h(xo + X1.1)] + iomi + Resigh, (5.2)

where different terms are as follows.

— The contribution for order € [2,m] is Ord = E[hM) (xo+ Xy 7)Gi] and it is esti-
mated by:

0 (i—2)(2i-3) (1 20=1) pgl %
|Ordi|SF’geth(l)(Xo+X1,T)||2(MU’“’/\>I | (HI.:l M)

| 20-1)(-2)
g

(T Mo V)T (5.3)

— The residual for order m is Resig= E[h™M) (xo+X1.1)Sn] + Jo E[h® (vXE + (1 —
V) (X0 + X1.7))Imyv] (1 — V)™ 1dv, such that

|Resigh| < Pyen( | (0 +Xo.7)l|2+ sup [N (VX + (L= V)(x0+XoT))2)

ve([0,1]
— — 2(M=1)+1 p 4| Jml -
(MO ‘/\)(m 1)(2m l)(l—h:l M ‘)\)Z(m 1 2(m-1)+1 Cm
o, U, e o, U, ( |—l (Mla,[,l,)\ \/-T))2<m71)+1.
lo .
(5.4)

Remark 5.5 — We have brought together correction terms in a different tiay
in the case of smooth payoff. Indeed, the hierarchy (in teosfmagnitude) is
modified by the smoothness of the payoff. To get an intuitive elear view of
this hierarchy, one should have in mind the multiplicatisse ¢ (t, x) = As(t, x),
u(t,x) = Am(t,x), A <AandM; |, =O(4)):

Ordi = O((AVT)),
Resigh = O((AVT)™).
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— We stress the fact that the formulrd; = E[hY(xo + Xy 7)Gi] is just a conve-
nient representation of the correction term of orid@n order to control it) but to
compute it explicitly, we proceed as in Theorfm 2.1 by deaosimmOrd; as a
sum of Greeks in the Merton model.

— Note thatOrd; does not appear because we use the Merton model as a praxy (thi
givesE[(xo + X1.7)] as the main term).

— The contributiorOrd, = E[h(® (xo + X1 1) 23] coincides with that already com-
puted in the case of smooth payoff (Theordmp 2.1[arjd 5.1).

— For higher contributions, there is no more coincidence tithsmooth case.

— Finally to accommodate irregular payoff, we require extrenethness properties
onu ando.

IDEA OF THE PROOF:
Takem= 2. We use here the same context of multiplicative coeffisiémft,x) = As(t,x), u(t,x) =
Am(t,x),A < A andA a small real parameter).
Rewriting equationl):

EIn(G)] =Bl + X))+ B (x0 + X07) 72T

()2

1
+E[h® (x0+ X0 7)Ru2.7] + /0 E[h? ((1-v) (%0 +X07) + V) J(1-v)dv
The difference with the case of smooth payoff yields in thentqol]E[h@((lfV)(X0+X1,T) +
2

v)@%)@](l— v)dv becausé® does not necessarily exists anymore. However, using Le@)a 5
one has:
(Y$)?

2

/011‘*3[h‘2><<1—v><m+x1:>+v><%> J(1-v)dv

_ /()1]E[h<1)((17v)(x0+X1,T) )z (1 - v)dv

Finally, since smooth payoffs are dense in the set of vaoifias, we obtain the identit.Z) for

vanilla options. In the one hand, the Inequality (5.3) ysalding the same reasoning like the previous

proof. In the other hand, due to the ellipticity @f the order of,, is obtained by decreasing the order
X1 2

of (¥#)2 = L2721 \which is (A/T)* to (A/T)? and multiplying it by an ellipticity term of the

shape% (for technical details see Lemr@.ll). Therefore yieldédtiequality @). O

The rigorous proof of the above arguments and the generalarastricky, we need
to combine the technical lemma used for Theoferh 5.1, and fariténanalysis on
Malliavin calculus. The proof is postponed to the parag@h

5.3 Binary Options

The payoff for this kind of option, is not necessarily smqdatis at least ins#. The
results below are easy extensions of the case of vanillamgtive left the proof to
the reader.
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Lemma 5.6 Assume (E) and (® for N > 5. Let i€ [1,[Nz2]],v € [0,1]. There exist
three variables RQ;, Tiy € Np>1Lp such that, for any E €5°(R),

one has:
Yick+i
E[l X0+ X4.7)P zk, 900+ Xar) gl
Efl (%0 +X1,1)Qi] = zk' ¥ (%0 + Xa.1)Rekei 1],

Y,
B+ (1 v) (ko + Xr)) T =BV Tf 1D+ (L) (ko +X07),
and they are estimated in thg bhorm by:

(Mg,y,/\)i(z“ (

|_|I 1 ou)\ Z 2
|20+ l_!

MO (i+1)(2i+3) 2|+1M| §||+T1
1Qillp+ sup [[Tivllp Spgen( ) 2(i+2()|(7|+l) i)
ve([0,1] b=

IRl <Pgen

au)\
1

2i+1

<||]<M'aw/f>>%*+—ll.

Theorem 5.7 Asymptotic expansion for the price of binary payoff (h € 7).
For m> 1 assume thatRan,2) holds. Then one has

E[h(X3)] = E[h(xo + Xo.7)] + _iomi + Resigh, (5.5)

where different terms are as follows.

— The contribution for order i [1,m] is Ord = E[h(xo + X1 7)R] and it is esti-
mated by:

(MO, ) @AM, )F 2 i
|Ordi| < Pger|N(Xo+ X1.1) [ 2—5 (0D - (H(M'(,Mx/f))z.
2 _

(5.6)

— The residual for order m is Resit= E[h(Xo + X1.7)Qm| +f01]E[h(vX%+ (1-
V) (X0 + X.7)) Tmy] (1 —Vv)™dv, such that

|Resigh| <Pgen(||n(Xo+X1,7)||2p + S[Up]|‘h(VX%+(1*V)(X0+X1,T)>H2p)
ve[0,1]
1
S i (g el S /\)%1 L L
2w ( B (Mg, A VT)) 7.
(5.7)

The second order for vanilla options and smooth payoff isst firder for binary
options. The residual term in Theordm|2.1 is of or(ier/T)? in the multiplicative
case (instead ofA+/T )3 for previous payoffs).
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6 Proofs

For the following, we use the same definitions and notatiansnachapter 1 of
[Nua03]. Before giving the proofs for the main theorems, wedto upper bound
theLp norm of the derivativeX, to state Theorerp §.1, to upper bound alsoltpe

norm of the Malliavin derivative@tjl’_,_,tj X&. and use the key lemnja 6]11 in order to
state Theoren|s §[4-5.7.

6.1 Expansion Analysis ofé

In this subsection, we give the general form of the deriestivia some polynomials
(Proposition[ 6]3). After that we give some lemmas in ordestaie the recurrence
Inequality from thei'" to the (i + 1)™" derivatives (Corollar@G). This preparatory
work leads to Theore@.? which states upper bounds for thmlieesxft.

We first recall that — X is almost surelfN~1 w.r.t. € under assumptio(Ry).

We need to introduce two kinds of polynomials in order to mtdesderivatives of
XE w.r.t. € explicit.

Definition 6.1 Givenn € N, take ¢ : [0,T] x R » R of classC%™. P : [0,T] x
R™1 - R satisfies the propert§y » (shortly writtenP € Py ) if P is a polynomial
of nvariablesxy, - - - ,xn of the form :

n
o
P(t,X0, X1, ,Xn) = > Ca(t,Xo) ”X,—‘,
a=(a1,,an)eN =
Siiiaj=n+1

such that

n+1 _
ElAG,Ov e 5)\G,n+l S Rn+27 CG (tvxo) = Z)Aa,j lp(QI)(thO)
j=

Definition 6.2 Givenne N, takey : [0, T] x R - R of classCo". Q: [0, T] x R™1
R satisfies the property n (shortly writtenQ € Qyn) if Q is a polynomial ofn
variables«, - - - , X, of the form:

n
Q(t,XO,X]_,"' ,Xn): z Ca(t,XO) I_IIX?Ja
a=(aq,,0n)€N" 1=
Siadaj=n

such that

n .
Na0, s Aan ER™ML cq(t,x) = Z{)Aa,jw‘o")(t,m)-
j=
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Proposition 6.3 If X¢ is solution of the SDH (1.2), then for each [[1,N — 1]:
dXf = dHE + X5 dLE, %% =0, (6.1)
dLf = g(0 @V (t,XE )dW + pOY (£, XE )dt), (6.2)
dH = 813 +dR +edZf 44,
AR = Qo (t, X5 Xi s+ s X g JAWE+ Qi (8, X5 Xy, X 4 )it
dzf = Pa,i(taxog,tfvxft* o vxiil,r)dW + Pu,i(tvxcitf axlg,t*v"' vxiil,r)dtv

whered is Kronecker’s delta, @ € Qg i—1, Qui € Qui-1, Poj € Pgji_1, and R €
P,i—1. Notice that(X% ); are continuous process foei 2.

Proof We show the proof by recurrence. Hot 1, we have
dXfp =dd+ 0 (t, X AW+ p(t, XE )dt+eXE (0 (8, X )dW+p @ (8, XE )dt),
and putting

Qq1(t,%0) = 0(t,%0),Qua(t,X0) = U(t,%0),Poa(t,X0) = 0,Pya(t,x0) =0, (6.3)

readily givesQg 1 € Qo.0,Qu.1 € Qu.0,Ps1 € PopoandPy, 1 € Py .
Now, suppose that Equatidn (5.1) is true for saraeN — 1. By a direct differentiation
of the SDE [6.1), we obtain

dX 1 = dHE  + X5 dLE,
where

dHf  =dR,  +edZf 4.

The term in factor ofiW (in R, ; ;) can be written aQqi+1(t, X5, X{ -+, X5 )

with Qg i+1 € Qg,i. The same observation holds for the other terms and thihéais
the proof. O

The two following lemmas are standard (apply usual stoéghaatculus inequalities,
see [Prodo)).

Lemma 6.4 Let (U)icjor) (r€sp- (V)iejo1) » Yeor] @nd Acjo)) be a continuous
process such thatJ( resp. \f,Y{ and N) has a finite moment of ord@p ( resp.

4p).
We define Z by :

Z=U /0 V(Y6 + Agds).
Then, for all te [0, T]:
1Z¢11p < ClIU Nl2p I lap VA llap+ 1A [1ap)-
Lemma 6.5 Let U¢ be the solution of the linear SDE:
dUf = UfdLE, UE =1,

where [ is given by the SDE(§.2). Fir§U¢); does not vanish. Secon@)£)* and
((U£)~1)* have moments of all order bounded by a generic constant.
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Note thatX is solution of a linear SDE. Hence, it can be explicitly regeneted using
the proces)¢ (see Th. 52 in[[Pro$0]):

t
X5 =UE [[(U8) H(dHE —d < HELLE o) (6.4)

Corollary 6.6 Take p> 1. Foralli € [1,N—1], € €[0,1] andte [0, T], one has:
10658 lp < CVAAI(QG,i )i lap+11(P5 ) llap+ .24 + 11 (Qi. )i llap+1I (P ) llap),
where Qf,i,t =Qui (t,xosr,xft,,--- ,Xi{lt,) and analogously for Q’i,t, Pg’i,t, P;j’i’t.

Proof Consider first the case> 2. We know from Propositior@ 3) and Equation
@) that§ = UF [o((US) 1 (YEAWE + Alds)), whereY = QF ; +£P5, andAf =
£ir T E(PE —YEa @D (t, X )). An application of Lemm@4 ar{d b.5 gives the

[TRA:
result fori > 2. The result fori = 1 is straightforward using the same inequalities.

a

Theorem 6.7 Take p> 1. For alli € [1,N —1], € € [0,1]and t€ [0, T], one has:

106 s < Poan ] M3, V0 (6.5)

Proof We need the lemma below.

Lemma 6.8 Consider two sequences of real numbiggn and (bn)n such thatd <
ag<ap<,---,<apandb >by>,---,>bpn. Then

n n 2E1

A=<

Proof Define the random variablesandB as follows:P(A = Ina,B = bj) = ..
Each one is uniformly distributed. Due to the monotonlcny;martles of the se
quencegan)n and (bn)n, one has CofA,B) < 0. This writesy]! ; "”a* <sn 19

Sty '”na“ and passing to the exponential, we get the resuit.

Theore? is proved by strong recurrence.
Initialization of Recurrence. According to Corollarf 6]6 and to Equatiofs {6.3), we
have

I(XE )i lp < CVA(|G]e0 +0+ A + || +0).

Then||(X{ )¢ [lp < PgerlM5 5 VE.

Recurrence. Assume now that Inequalltm 5) holds up to indexirst, we can
upper bound the coefficientg of the four polynomial€g i1, Qu,it+1, Poi+1,Pujit1

by a constan@M'+1 . Then, upper bound the absolute value of each monomial for
the four polynomlals Each monomial of these polynomialsognded by
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CMy L ) Mz ((X€)f)™, whereg|_; la =i ori+ 1 (according to Propositiop §.3).
Thus, we can deduce by Holder Inequall}}ul v l)

II(U((NS,.).*)"' Jellp < rl(ll(xf.)t*llmip)"'-

Using the hypothe5|s of recurrence, one has:

||(||J((X| )1 Mellp < Pgenr! I_IIM‘””‘

Thus, we get that each monomial of the four polynom@@ys. 1, Qu,i+1, Poi+1, Puji+1
is bounded ier—norms by

1 z I i a —
Pge”M;&/\ B(Méul\\/—) au/\( U“)\ﬁ)2|:1| B(Méw\\/—)

<PgerMy 1 ) |‘|1(M3,M\f ),
Jf

where we used for the first upper bound Lemma m3 68 [, <. < M}, ., and

Z| Lo > > Z| i ap) and for the second upper bouM{II < M'O, un < T and
yi_ila —i> 0, and the third upper bourg|_, la; —i > 0. Usmg Corollar;@G, we

obtain immediately the result. O

Proof of Theorerfi 51 (Smooth payof@)ne has
(2]

EIO)] = Elh(o+Xur)] + 3 BN (xo-+ X ) (W)X
k=1"

1 1\[9] RV )
N /O 0DV 09140) (e (1 v) (o X 7))V

= B0+ X))+ 5 BN -+ Xar)( 3 4T + i)
i=2k

1 DT+ WS
+/ E[(YT) 2T (1-v) {21+ (vt 4 (1 v) (x0+ Xo.7))]dv
o !

)Yle]

=E[h(xo+X11)] Jrzzk' ¥ (x0+ X0 |

+z 2 ¥ (%0 +X1.7)Rem]

&3

Y 9+ )\l m
+ / g (D m . YLE 4 (0 4 (1) (xo-+ X )]V
2

= Elh(xo+ X0.1)] + Zomi + Resigh,
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where we used a Taylor expansion twice for the two first idiest(notice tha¥; T =
0 fori < 2k— 1), and we interchange the summations for the last one. B sits,
we have :

J((Y5)9) N YE
Y= il = Ca [](YLjm)"-
. o€ a.(ag--,ai) JI:L '
lezlaij:i

Using Theoren 67 and sinckcj,‘u , iIsanincreasing function w.r{, one can deduce
for eachj € [1,i], foranyp > 1,¢ € [0,1] that
i

i
IVEj 7llp < [IXErllp < Pgenq'!(M'a,,,,A VT)T.
=

Then, using Holder Inequality, one has
i

|
[Yei7llp < Pgen H(Ma,u,)\ vT),
|=

and necessarily
1

m+-
|
HRk,m,T”p < Fgen ”(MG,H,A ﬁ)
If

BecauseY{ = Xp 1 + Ry 27 and sinceM
has

o 1S @nincreasing function w.r.{, one

mi1 ,
IVF1lp < X2 7llp+ IRe27|p < Pyen( H(Mla,u,)\ VT))miL.

Therefore

m m+l
1O p < Pgen [ (Mla,u,)\ V),

which finishes the proof.

6.2 Malliavin Expansion Analysis off

Corollary 6.9 Assume (R) for N > 2. Then for any tc [0, T], Xf belongs taDN~>.
Regarding the j-first Malliavin derivatives offXone has the following estimates for
any p>1land je [1,N]:

sup H(Dtjl,---,tj X llp < PgerMg 1 5- (6.6)
(tz,+ ) €[0,T)]
For any i < N — 1, X§ belongs taDN~-1- for any t € [0, T]. Regarding the j-first
Malliavin derivatives of X, forje[1,N-1-i], one has
(i=p*

) i
sup  [[(D .. ;X5 )¢ Ilp < Poen( [TMs a2 - (6.7)
(ty, tj)e[o,T] K=1
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Remark 6.10We can make better approximation than we do here for the &atli
derivatives, but this is sufficient for our purpose. The eracbuld show more re-
finements for other purposes, using the same principle athéoproof in Theorem

B3,

Proof The upper bound for the Malliavin derivatives of X£.
Begin byj =1, fort; € [0,t] using formula (2.59) in[[Nua5] p.126, one has

5(0.1))2
("

Ol £ (0,1) ( .
Dy, X¢ —a(tl,xt) ftl J(sXE )dW+p@D —¢ )($XE)ds)

= G(tl,X{i)W.

S0 sup cpoq I(Dy X llp < Pgenl\/IGM The result forj > 2 is easily obtained by
recurrence.

The upper bound for the Malliavin derivatives of Xf

We prove the result by a strong recurrence (@ike in TheorerT.?) The case=0
has been established above. Consider nowl. We take the notatiof{* = Dy, X%.
From Propositio@B and by Malliavin differentiation, dmas : '

(0,1)
I-tl = £X|£t* t xt +QO’ ity + ng',i,tla

and fort > t;

d,_tg - Dtl(Qg,i,t)dW + Dtl( Wi t)dt7L g(Dtl(Pg i t)dW + Dtl( ﬁ,i,t)dt)Jr
+ REALE + eXEDy (%) (0192 (6, X2 )dW + p @2 (1, XE )d
Besides this, by the recurrence assumptions, one gets:

' <| 2+

HDtl(Qg,i,.)t*Hp < F)gen I_l ULU\

i & & &
'rl]'he same Inequality can be done analogousiioPy ; , Dy, Qj, ;1. Dy, Py ;- We also
ave

01
Hg |t’ txt +Qg|tl+fpg|tl|‘p<Pgen( o,U,A |_|Mau)\ t2+ rllMau)\

and

1(€XE Dy, (X) (|02 (1, XE) | + | @D (1, X )|))t*|pépgen(l!LIIM:|;,u,)\>t2

These estimates are sufficient to prove the announced Bsuking results analo-
gous to Corollary 6]6.

For higher derivatives oX%, we proceed in the same way. We left the details to the
reader. O '

To make control for vanilla options, we need this technieatina related to integra-
tion by parts formula.
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Lemma 6.11 Let p and k be two positive numbers and Z b®¥¥. Assume (E) and
(Re+1)- Forany ve [0, 1], there exists Zsuch that for any E €5°(R), one has

BN (WX + (1Y) (0+X17))Z] = Bl (W4 + (1= V) (%0 X17))Z),
and it is estimated in thednorm by
(MO Jk(Zk+1)

ey =112

| gk(k+l) \/T_k

Proof Step 1: Show that~, = vXT1 + (1—V)(Xo+ X1 7) is a non degenerate random
variable.

Since the coefficients andu are bounded wittk+ 1 bounded derivatives w.r.t. the
space variable, we deduce tiigtis in D1 (Theorem 2.2.2 of [Nua5]). Besides
this, using formula 2.59 i [Nuap5] p.126, one has:

1Zi]lp < Pyen

k.2p-

—/.T(D R)%ds= /‘T(vo(s HutUudH) 4+ (1-v)o(s x))%ds
M:v _. 0 stv - Jo 7XS T\Ms , X0

In view of Assumption (E)y, is positive and one hag " < (vT o) ~2((U$) "1 (U)5)?,
which gives thaly;v1 belongs to any.p. In addition, for anyp > 1, one obtain

I tle <C(VTlg) ™2
Step 2:Using Proposition 2.1.4 and Proposition 1.5.6[in [NJaO&E gets the exis-
tence ofzZy in Lp with

—1k k
12815 < CIYEHIE v I DR g1 Z 2

Step 3:Upper bound of| DFy||ig, || v, kg for a > 1.
Due to the first part of Corollafy .9, we immediately obtiDF, ||k g < PgerM , , VT
Analogously and after long computations, we obtain '

0 2k
(Ma,u,/\)

(|G>2(k+1)'|"

16, Ik < Pyen

These two estimates complete our proof

6.3 Proof of Lemm§ 5|3

One has:

0i+k71((Y_|§)k) i+k—1 _
Yéitk-1T = T getk1 Z Ck.a I_L (Vi)
a=(0ao,,Aj1k-1) 1=
3 ey =ikt
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Using Corollary[69, one deduces for each [0,i + k— 1] and anye € [0,1] that
Yf, 1 € DK (because+k— 1+k— 1< N). In addition,

. j | 2(i-1) | i
1YL rllk-1p < Pgenl_!('v'g,u,)\ VT) < Pyen( r! (MU“/\\/T))%H),
= =
becauseMJ LA is an increasing function w.rf.andj <i+k—1<2(i—1). Then,
using the Holder Inequality for the spad@$ 1= (see Proposition 1.5.6 ifi [Nug05]),
one hasr§ 1 € D1, and

. 2(i-1) | k1
[IYicik—1,7 [Ik—1,p < Pgen( l_l (Mg A VT)) 200, (6.8)
|

Then, Lemm4 6.31 insures the existencé&pfn Lp. Its L, norm is estimated using

Lemma[6.1]L and Inequality (§.8):

i-1 (Mg " A)( D(2k-1) 2(%i-1) T et
1Gillp < R ([T M T))2n
Hp genkzl ng(k 1)\/_m ll:! o,U,A
k-1
i-1 (MO )(k—l)(Zk—l)(l-l 201\l )2i-1 2(i-1) i
<P o,UA =1 o,UA ( (Ml ﬁ))ﬂ
ge“k; |2k(k 1) D o,H,A
(M2 )(i=2 ( )25';23 2(i-1)
o,UA |_|I l a Al — | s
< Pyen [20-1)i-2) ( ﬂ (Mau)\ﬁ))z‘ .
o =

For S andl;y, we proceed analogously.

Proof of Theorerfi 5|4 (Vanilla optiongj the one hand, one has for smooth function
h:

E[h(X7)] = [h(Xo +Xy7)]

m
Yikti—1,T

i=ki1 (k+i—1) + Riktm-17)]

+ Z k, ¥ (x0+X7)(

-1
+/() E[%hm(vx%—i—(1—V)(X0+X1,T))]dv

=E[h(xo+X1,7)]
+-sz1! 2 E[h(k’mxm%1
+ Z kl XO+X1T)Rkk+m lT]

| E[T—Wh<m><vx%+<1—v><xO+xlT>>1dv
Jo (m—1)! ’
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=Eln(o+Xur)] + 3 EINY (o +Xu7)G]

+E[h™ (%0 +X0.7)Sn)
+ [ B 06+ (1) + X)) (L-9)™

where we used a Taylor expansion in the first identity, weraiiange the summations
in the second equation, and use the Le 5.3 in the lastiequ&b yields the
identity (5.2) for smooth payoff.

In the other hand, using Lemnja 5.3, it is straightforwardHove the inequalities
(6.3) and [B14).

It remains to extend the resu.2) to vanilla optionst@asl of smooth function
h). We use a standard density argument (§ee [GMO }) Denot@ the measure
defined byf,, g(x)1(dX) = E(g(X})) + E(g(x0+X01)) + Jg E(QWE + (1) (xo+
X17)))dV. Since there exists a sequer{bg)ncy 0f smooth functions converging to
hin Lo(f1) as well as its first derivative (sef [Rudi66] for instance), emsily get
Equality ) in the case of vanilla payoffs.

7 Technical results related to explicit correction terms

In this section, we bring together the results (and theiofgowhich allow us to
derive the explicit terms in the formulﬂlz.Z).

In the sequel(u; )(resp.(vt), (v)) are square predictable (resp. deterministic) process
andl is a smooth function with compact support.

Lemma 7.1 For any continuous (or piecewise continuous) function fy aontinu-
ous semimartingale Z vanishing at t=0, one has:

T T
_ f
/0 F(t)Zdt = /0 w(T) dz.

Proof this is an application of the 1td formula to the prodm(t'l')tfzt. a

7.1 Proof of Lemm4 2]2
We first give the proof in a particular case wheandv are equal to 1. By a usual

integration by parts formula, one has:

2

\/_

For the general proof: apply the duality relationship of é&in calculus (see Lemma
1.2.1 in [NuaQB]), identifying 1td's integral and Skorahoperator for adapted inte-
grands.

IE[I(\/\fr)\/\fr]:/jol(\/fx)\/_ dx /TI (VT Edx=TEI® Wy )].
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7.2 Proof of Lemm§ 2|3

Applying first Lemmg 7]1 tof (t) = v andZ = X1, one has:
T T T T
BI( [ weasdOl( | v =B [ w(TVdXaol([ o)

— ([ (T (0w + i) ([ vaw)

T

= ([ waromansa® [ vaw)

0

+ (/T (T dt)E|l (/OTvth\()],

Jo
and we have used Lemrha]2.2 for the last equality.

7.3 Proof of Lemm4 2}4

Using the independence of incrementsJpone has:
EKATWJMNUﬂb=ATwHJWh—&+deh=ATwEUUT—&Hm.

Using a conditioning argument and sinzﬁlei is a Gaussian variable, one has:

1(x) = E[Ql(x+ )]

k k
= P = K\E Yil Y,
kGZN* (Nt ) [JZl bt =1 )
K k
= ke%* P(Nt = k)k(nJE“ (X+ JZlYI)] + VJE“ (1) (X+ JZlYI)D
k+1 ki1
= Z AtP(N: = K) (naE[l (x+ Z Y+ V.]E[l(l)(x+ Z )
keN & 2,

= M(MIE[ X+ + Y]+ yE[ID (x+ X +Y,

such thaty’ is a random variable independent from the varialfg.n+ with the
same law a¥;.
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