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ABSTRACT 

When physical models are of a high complexity, a signal processing approach is helpful for 

providing accurate information about a system and its failures. The session entitled “Advanced 

Signal Processing and Condition Monitoring” contains papers who propose new advanced signal 

processing methods in the context of condition monitoring, diagnostic and fault detection. The 

methods proposed tackle with the analysis, modelling and/or detection of nonstationary and/or 

nonlinear signals in time, frequency, time-frequency and/or time-scale domains using parametric, 

non-parametric and/or statistical approaches. Tools as optimization techniques can cope with the 

high non-linearity of the system to solve. The methods proposed are successful in decision making 

and bring on a step up in real-life signal processing applications. Signals or considered models come 

from domains such as acoustics, vibroacoustics, mechanics and electrical engineering. This keynote 

address introduces the session papers and gives some insight in spectral and time-frequency 

analysis. 
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II. OVERVIEW OF THE SESSION 

In the session entitled Advanced Signal Processing and Condition Monitoring, each paper proposes 

a new signal processing method adapted to a particular physical problem. This section outlines the 

methods proposed and states their ability to be applied in a wider context. 



Motivated by a reduction of cost but due often to technical constraints, it can be interesting to 

estimate a physical quantity of a system without a dedicated sensor. This type of monitoring brings 

into view the requirement of accurate analysis of current or voltage signals, quantities easily 

available. In [1], for modelling the thermal behaviour of an induction motor without considering an 

exhaustive identification and without a thermal sensor, the authors propose an equivalence between 

an electrical model, which inputs are motor current and voltage, and a thermal model, which outputs 

are the stator and rotor temperatures. The parameter estimation of the electrical model is operating 

via a harmonic detection in the spectra. 

In [3], the authors settle the matter of classifying mechanical failures from a monitoring of the stator 

current only. As in [1], the interest is a sensorless estimation. The strategy consists in benefiting 

from properties of a given time-frequency transform. Results are illustrated thanks to an 

experimental setup. Regard as a signal-processing problem, the algorithm is able to make a 

distinction between amplitude and phase modulation. Consequently the method can be applied in all 

domains where this problem arises. 

In [2], the authors propose a new time-frequency transform able to handle signals more complex 

than the well-known spectrogram does it, while preserving robustness. Moreover, the application 

domain is as wide as that of the spectrogram. Results are given for acoustic echoes of a moving 

object but the method can be applied on any signal having a variable instantaneous frequency. 

In [4], the author investigates the problem of estimating the motion of an object in video sequences. 

By making an analogy between each straight line in an image and a planar propagating wave front 

impinging on an array of sensors, a mathematical model classically used in spectral analysis is 

derived. The motion is then estimated by means of an estimation of the instantaneous frequency of 

this model. 

In [5], the authors are interested by a time-phase representation to be able to estimate a phase delay. 

Going further than [3] which aims at a classification only, the method proposed consists of filtering 

each time-frequency patterns by a non-unitary time-warping filter. Finally a continuity constraint is 

applied on the phase of the signal reconstructed to separate components in the patterns previously 

extracted. The authors present results on modulated signals as phase or frequency shift keying and 

on bioacoustic signals. The method can be applied on any modulated signals even if there are 

multicomponent and embedded in a noisy environment. 

 

III. TREND …. 

A maintenance operation needs a very complex approach, which consists first to have a great 

knowledge of the integral organs of all of the system, then to have a full control of the running 

mechanism, finally to be able to identify the possible defaults, their natures and sources. 

Nowadays industrial systems are complex in the sense that several machines interact between them 

at dissimilar power levels. Excitations can derive from different origins. A default can stem from a 

small part of the system and at a small power level related to the other parts of the system. In this 

case, classical maintenance is unsuccessful. Moreover, forward-looking maintenance requires the 

processing of different types of measures, vibratory and acoustic signals but also currents, tensions, 

velocities, torques, temperatures and so on. A correct approach of the maintenance of such systems 

has to integrate advanced post-processing. 

However, signal processing methods become more and more sophisticated to be effective in 

increasingly broad contexts. 



Consequently, in order to facilitate more general use of sophisticated methods requiring high signal 

processing skills and to keep the ability of increasing reliability of the maintenance, the methods 

proposed have to be automatic. This point of view gives then evidence of the trend in signal 

processing. Ongoing methods must integrate more than the analysis of the signals acquired. Steps of 

classification, detection, interpretation or decision have to be incorporated. A decision in signal 

processing will be an input for a physical decision. Thereby, signal-processing approaches can be 

developed in more general contexts. 

This task is the job of specialists in signal processing. This signal part of the maintenance has not to 

be merged with the physical part. Signal processing yields an additional help. 

Signal processing methods will act from observations of the system. System outputs are more often 

compound of complicated or hybrid structures: they can be nonstationary, a mixture of different 

spectral structures, narrow spectral bands and/or wide spectral bands, multicomponents, nonlinearly 

modulated in frequency and/or in amplitude, embedded in different types of noise, white, colored, 

Gaussian or impulsive noise. Whatever the physical meaning of theses structures a signal processing 

approach is of utmost importance and has to be taken into consideration. The strength of a signal 

approach has to be exploited in the same way than the physics of the phenomenon observed. 

In the session presented, the whole of the approaches suggested are based on spectral analysis or 

time-frequency analysis, which are leading methods in the domain of surveillance. Papers [1] and 

[3] are good examples of the trend described above. 

 

IV. ADVANCED SPECTRAL ANALYSIS 

To illustrate this section another example based on spectral analysis is shortly described. Spectral 
analysis is well known since a very long time. Several methods have been published since the 

Forties. We can cite the paper of Bartlett in 1948 [6] and the well-known book of Jenkins and Watts 

in 1968 [7]. Since the Eighties, parametric methods, which include model of the signal, have 

emerged. Synthesis chapters and references can be found in [8]. Parametric methods have the 

advantage to provide direct estimation of signal parameters, such as frequency, amplitude or phase. 

When using a nonparametric approach, perhaps easier to implement and set the parameters, the 

problem of interpretation the results, that is to say the spectrum, is not trivial. This is why further 

investigation has been done in that way to satisfy the trend mentioned above. 

The project called TetrAS has been partly published in [9-12]. TetrAS is a new concept for 

Analysis. Interpretation is a part of its job and experience is inside. The « super spectrum analyzer » 

TetrAS is a self-governing analyzer designed to help. The system applies spectral analysis methods 

with adapted parameters, compares different estimations and calls most of statistical properties of 

the estimators. TetrAS decides how to do it and extracts the characteristics of each spectral pattern 

of the signal. 

In a first step, basic properties of the signal analysed are controlled [12] by means of several tests 

such as a Shannon test, periodicity tests, a global signal to noise estimation, a correlation support 

estimation, stationarity tests in time and in time-frequency [11]. 

Afterwards, a full classification strategy described in [9] and [10] is applied in order to conclude on 

a description as an Identity Card about each spectral pattern of the spectrum. To do this, several 

methods based on the Fourier transform are matching up in order to benefit of the best properties of 

each of them. A non-linear n-pass filter combining a median filter and a detection test provides an 

estimation of the noise spectrum. A hypothesis testing based on Neyman-Pearson criterion taking 

into account the estimated-noise statistic is applied at each peak of each estimated spectrum. Finally, 



an iterative adjustment between each peak detected and the spectral window related to the spectral 

estimator yields a classification of all of the peaks. 

The system needs only one click to be run. The user has no choice to carry out. All is automatic and 

the system has been designed such that no random choice or no a priori choice is carried out by the 

system. Figure 1 highlights some results when applying TetrAS on two real acoustic signals, the first 

being acquired in the passenger cell of a vehicle in slow motion and referred to Acoustic signal 1 

and the second one in the same vehicle with a mechanical structure modified and referred to 

Acoustic signal 2. 

 

 

Table 1: Results of TetrAS - Number of peaks detected by class for the 2 acoustic signals of 4.88 s sampled at 20 491 Hz. PF is for 

Pure Frequency and NB for Narrow Band 

 Acoustic signal 1 Acoustic signal 2 

Class PF 23 16 

Class PF/ doubt 

Noise 

14 8 

Class 

PF / Noise 

Class N / doubt PF 70 

107 

41 

65 

Class PF / doubt NB 55 51 

Class NB / PF 21 11 

Class NB / NB 

Class NB 44 

120 

23 

85 

 

 

Table 1 sums up the number of peaks detected by class. In a first glance and before looking at the 

details of the results, this table shows clearly that the number of peaks has strongly decreased in the 

Acoustic signal 2. A more detailed observation in the band 600-800 Hz corroborates locally this 

different spectral behaviour. In the Acoustic signal 1, 18 peaks were detected in this band with a 

mean time-amplitude of 42.3 whereas, in the Acoustic signal 2, only 5 peaks were detected with a 

mean time-amplitude of 10.5 only. 

A zoom of each spectrum (first line of figure 1) shows the richness of the signals. A reading of all 

the peaks should need a lot of time and know-how. On the contrary, with one click, TetrAS yields 

the characteristics of all the peaks. For instance, once the peaks are detected, it is easy to group them 

in harmonic families. Two main families were observed, one at fundamental 26.64 Hz and the other 

at 99.99 Hz. The tracking of the amplitude shows that the modification of the mechanical structure 

has no effect on the first family (second line of figure 1) but an important effect on all harmonics of 

the second family (third line of figure 1). 

The tables at bottom of figure 1 show the details of the Identity Cards of the 12 first peaks of this 

family for both signals. 

 



____________________________________________________________________________ 
Acoustic signal 1      Acoustic signal 2 

Spectrum zoom at TetrAS output 

 

Tracking of harmonic amplitude for fundamental equal to 26.64 Hz 
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The 12 first Identity Cards computed by TetrAS for the harmonic family with fundamental 99.99 Hz 

Stability Frequency Amplitude Class PFA Local RSB   Stability Frequency Amplitude Class PFA 
Local 
RSB 

100 99,991 41,20 PF 10-6 24,7 HH0 100 99,99 25,53 PF 10-6 24,3 

100 199,873 47,45 NB 10-6 19,3 HH1 80 199,97 37,26 NB 10-6 19,5 

59 299,974 5,00 NB 10-6 12 HH2 58 299,94 18,11 NB / doubt PF 10-6 16,6 

100 399,98 9,64 PF / doubt NB 10-6 12 HH3 100 399,98 27,78 PF / doubt NB 10-6 20,6 

80 499,94 7,71 PF / doubt NB 10-6 12,5 HH4 78 499,94 11,59 PF / doubt NB 10-6 12,5 

75 599,244 13,47 PF / doubt NB 10-6 22 HH5  Not detected 0,00    

 Not detected 0,00    HH6  Not detected 0,00    

 Not detected 0,00    HH7  Not detected 0,00    

 Not detected 0,00    HH8 75 899,86 8,67 PF / doubt NB 10-6 22 

76 999,959 1,52 PF / doubt NB 10-6 15 HH9 78 999,85 9,74 PF / doubt NB 10-6 19,7 

100 1099,919 5,49 PF / doubt NB 10-6 13,6 HH10 100 1099,84 17,39 PF / doubt NB 10-6 21,6 

78 1199,91 2,93 PF / doubt NB 10-6 16,9 HH11 80 1199,80 6,64 PF / doubt NB 10-6 22,3 

Figure 1. TetrAS applied on the 2 acoustic signals of 4.88 s sampled at 20 491 Hz, each column is for one signal. Fist line is a zoom 

of each spectrum on the range 0-2000 Hz (Welch method with Blackman window and no average). The peaks colored correspond to 

the peaks detected and classified by TetrAS. Second line is the tracking of harmonic amplitude for fundamental equal to 26.64 Hz. 

Third line is the same but for a fundamental equal to 99.99 Hz. The two tables are the identity cards of the 12 first peaks of the family 

at 99.99Hz. PF is for Pure Frequency and NB for Narrow Band. 

 

 



V. A FEW FACETS OF TIME-FREQUENCY 

The theoretical foundations of spectral analysis are unambiguous. Beginning with deterministic 

signals and the harmonic analysis by Fourier series, it was extended to continuous signals with the 

Fourier integral and to random signals with the Fourier-Stieltjes integral. A stationary hypothesis 

makes easier the definition of the correlation function, function of the delay only, and of a power 

spectral density if the spectrum is continuous. Without the stationary hypothesis, the estimation of 

the energy repartition of such a nonstationary signal is not so well defined. Two main problems 

occur. First is the definition of the concept of frequency, which implicitly induces an infinite 

temporal wave. Second is the reconsideration of the base functions used in the stationary case, the 

exponential functions, which are not adapted to show up an evolution in the signal, whatever this 

evolution is. This explains the numerous methods proposed in the literature. 

 

A part of them introduce variable terms in the exponential function or replace them by more 

adaptable functions. Others assume a local stationary hypothesis or apply a nonlinear transform in 

order to make the signal stationary. My purpose in this paper is not to present an overview of that 

subject but only to point out some of them given that time-frequency analysis is used in almost all 

the papers of the session presented. 

The most older, the spectrogram or sonogram, [ ],SPECT n k  at time index n and frequency index k, of 

a discrete signal [ ]s n  of length N assumes a local stationarity over length N and writes 

 [ ] [ ] [ ]
2

2

1

,
π−

=

= −∑ w

mkN j
N

m

SPECT n k w m n s m e , (1) 

with [ ]w n  a time window of length wN . [ ],SPECT n k  is an energy distribution and can be 

improved by a Short Time Fourier Transform, [ ],STFT n k , a complex transform, which also gives 

information about the phase of the signal and writes 

 [ ] [ ] [ ]
2

1

,
π−

=

= −∑ w

mkN j
N

m

STFT n k w m n s m e . (2) 

The reading of the phase needs an unwrapping, that is somewhat difficult to handle. 

The Wigner-Ville distribution [ ],WV n k  is a bilinear transform of the signal defined for discrete 

time as 

 [ ] [ ] [ ] 4

1

, 2
π−∗

=

= + −∑
mkN j
N

m

WV n k s n m s n m e , (3) 

with * stands for the conjugate. [ ],WV n k  is the Fourier transform of a quadratic form of the signal, 

which has the property of transforming each linear modulation in a constant frequency. 
Consequently, the Wigner-Ville distribution has a perfect localization on linear chirp signal. On the 

contrary, multicomponent signal generates interferences. Both time and frequency smoothing were 

introduced to reduce interferences, what results in a reduction of the resolution [13].  

For that matter, interferences are not always embarrassing given that they display information of the 

signal. In [3] of the session presented, the authors use the interference of the Wigner-Ville 

distribution to distinguish an amplitude modulation from a frequency modulation. 



 

________________________________________________________________________________
  Academic signal 1      Academic signal 2 

  

Figure 2. Spectral and time-frequency analysis of the 2 academic signals of 4 s sampled at 256 Hz, each column is for one signal. 

Academic signal 1 is noise-free, signal to noise ratio of Academic signal 2 is equal to 15 dB. First line is the modulus of the Fourier 

Transform. Second line is the Spectrogram (Hanning window of 64 points for Academic signal 1 and 32 points for Academic signal 

2)Third line is the Smoothed (Hanning window with 64 points for Academic signal 1 and 32 points for Academic signal 2) and 

Pseudo (Hanning window with 128 points for Academic signal 1 and 256 points for Academic signal 2) Wigner-Ville distribution. 

Fourth line is Wigner-Ville distribution. 

 

Figure 2 shows the analysis of two academic signals 

 [ ] ( )( ) ( )( )( )sin 2 / sin 2 sin 2 /π π ν µ πλ= + +i i i i s i i i ss n a b f n F n F , (4) 

where 
[ ]
[ ]

1 1 1 1 1 1 1

2 2 2 2 2 2 2

10 0 0 50 10 1

10 3 4 50 5 8

s n a b f Hz Hz Hz Hz

s n a b f Hz Hz Hz Hz

ν µ λ
ν µ λ

= = = = = =

= = = = = =
. 

Academic signal 1 referred to [ ]1s n  is a noise-free signal with sinusoidal-frequency modulation and 

constant amplitude. Academic signal 2 referred to [ ]2s n  is also a sinusoidal-frequency modulated 

but with a sinusoidal-amplitude modulation. Furthermore, this second signal is embedded in a white 

noise of 15 dB and the modulation parameters are such that the analysis by the methods mentioned 

is not acceptable. We shall see in the following section that others methods have to be considered 

for this signal. 

Beyond the diverse time-frequency representations, these results highlight a different aspect 

between a global analysis, showed by the modulus of the Fourier Transform in the first line of figure 

2, and a time-frequency one, all the other lines of figure 2. Both are of interest but the interpretation 

has to be done carefully. 



The S-transform introduced in [14] and used in [4] in the session presented was established from the 

observation of the following relation 

 [ ] [ ] [ ]
1

, 2 , ,∗

=

= + −∑
N

m

WV n k STFT n k m STFT n k m , (5) 

obtained by combining a pseudo transform of (2), i.e. with a frequency smoothing or a time 

weighting, and (3). By this consideration, the S-method [ ],SM n k  was proposed in its discrete form 

as 

 [ ] [ ] [ ] [ ]
1

, , ,∗

=

= + −∑
PN

m

SM n k P m STFT n k m STFT n k m , (6) 

where [ ]P m  is a window of length NP. The introduction of this window is a way to reduce 

interferences mostly if the window width is adapted to the signal content in order to consider only 

one component at a time in the summation in (6). Two crossing components cannot be considered 

by this method, which has the advantage of a low computing time. 

 

VI. A HIGH RESOLUTION METHOD IN A NUTSHELL 

In all the methods mentioned above and belonging in fact to the Cohen class, the resolution is 

limited by the Heisenberg incertitude. To get away from this constraint and to be able to estimate 

nonlinear modulated signals with a better resolution need to add some hypothesis mostly if the 

signal analysis is of short duration. 

A classical and general model [ ]x n  of a complex signal writes 

 [ ] [ ] [ ] 2, 2
j n

x n a n e n N N
ϕ= = −  (7) 

where the amplitude a[n] is strictly positive, the phase [ ]nϕ  is differentiable and shows no 

discontinuity. The constraint on the amplitude and the phase guaranties the unicity of the model. A 

way of modelling the signal with a better accuracy is to increase the number of parameters to 

describe it without be over the point number of the signal. [15-16] propose a polynomial modelling 

of the amplitude a[n] and of the frequency f[n] , which yields then the phase [ ]nϕ  by an integration 

up to 2π . This approximation writes 

 

[ ] [ ]

[ ] [ ]

[ ] [ ] [ ]

0

0

0

0

2 2

,

,

2 ,

a

f

M

m m

m

M

m m

m

n

k N k N

a n a p n

f n f p n

n f k f kϕ ϕ π

=

=

=− =−

=

=

 
= + − 

 

∑

∑

∑ ∑

 (8) 

where Ma and Mf are the approximation orders and 0ϕ  stands for the initial phase of the signal in (7). 

The set [ ]{ } ( )0,max ,a f
m m M M

p n
=

 stands for a polynomial base, which can be computed from a 

discretization of continuous-time base such as the canonical polynomial base or the orthogonal 



polynomial bases such as Legendre, Tchebychev or Hermite. However the orthogonal property is 

lost when discretizing these functions. The orthogonal property is fundamental to guarantee the 

independence between the parameters estimated. Therefore, a discrete base derived in [18] 

corresponding to the application of the Gram Schmidt procedure in discrete-time directly is used. 

Expressions of this base are given in [16]. 

Finally the parameters to estimate can be gathered in a vector V of dimension M equal to 

(Ma+Mf+3), which writes 

 0 0 0

T

Ma Mfa a f f ϕ =  V K K K . (9) 

Dimension M of V has to be lower than N, the length of the signal. In addition to the choice of the 

base, the choice of modelling the frequency instead of the phase and the centring of the polynomial 

at the signal middle to ensure a minimum variance, the idea of the method proposed in [15-16] was 

to also consider only small approximation orders. Ma and Mf are less than or equal to 3. This rule 

does not induce a constraint since the signal analysed is by assumption short enough to be adapted to 

this approximation. We would say that the signal duration should at least contain one or two periods. 

In [18-19], the method was extended to a signal whatever its length and modulation by considering a 

local approximation on nonsequential parts of the signal. 

Let us come back to the approximation of a short signal. One possible method is to consider the 

maximisation of the likelihood function which is equivalent to a minimization of the least square 

function ( )LSl V  when the error can be assumed to be a Gaussian noise. This minimization writes 

 ( )argmin
M

LS
V R

l
∈

=V V
)

, (10) 

with  

 ( ) [ ] [ ]
2

2

2

N

LS

n N

l s n x n
=−

= −∑V , (11) 

where [ ]s n  is the observation and [ ]x n  the model defined in (7). The error between the observation 

and the model, namely the difference [ ] [ ]( )s n x n− , represents both the noise, in which the 

deterministic signal we want to estimate is embedded, and the model error. We verify a posteriori 

that this error is distributed as a Gaussian law. 

Direct minimization of (11) is extremely difficult due to the high non-linearity of the function and 

the parameter number. Classical optimization techniques such as gradient descent, Gauss-Newton 

and EM algorithm do not ensure convergence to the global minimum when local minima are 

numerous. This problem can be overcome by meta-heuristic approaches, and in particular, by 

simulating annealing. Simulating annealing has an analogy with thermodynamics where metal cools 

and anneals. In the same way, after an initialization of the parameter vector to estimate, an iterative 

loop controlled by a scalar referred to as a temperature generates a new candidate of the vector that 

minimize the cost function, namely the least square function ( )LSl V . A statistical significance test 

relied on the assumption that the error is normally distributed stops the algorithm. 

In lieu of a likelihood maximum approach, estimation of (9) can be investigated upon Bayesian 

point of view. In that case, parameter V and variance of the error [ ] [ ]( )s n x n− , namely 2σ , are 

viewed as random variables. After having assigned a prior distribution to each of this random 



variable referred to as ( )2, pp IσV , Ip being the prior information, a joint posterior distribution 

conditionally to the observation vector S and the prior information Ip, namely ( )2, , pp IσV S  writes 

as 

 ( ) ( ) ( )
( )

2 2

2
, , ,

, ,
p p

p

p

p I p I
p I

p I

σ σ
σ =

S V V
V S

S
 (12) 

where ( )2, , pp IσS V  is the likelihood function and ( )pp IS  is the probability of the observation S 

conditionally to the prior information Ip. This last probability would be consider as a constant. 

The likelihood function is get from the fact that the error is assumed to be Gaussian. 

Given that we assume independence between all the parameters to estimate, the prior distribution 

( )2, pp IσV  is a product of the prior of each parameter. This prior is set to the uniform distribution 

for the elements of vector V and is set to the Jeffrey distribution for 2σ . 

Taking account of all of these hypotheses and, after having integrated over 2σ , the joint posterior 

distribution writes, up to normalisation constant, 

 ( ) [ ] [ ]
( )1

2
22

2

, ,

N
N

p

n N

p I s n x nσ
− +

=−

 
∝ − 
 
∑V S . (13) 

This posterior distribution is highly nonlinear. We propose to use a Metropolis-Hasting MCMC 

algorithm to sample from this distribution. Once this distribution estimated, the parameters are 

estimated by a Minimum Mean Square Error method. 

In [15-16] are given all the details of the algorithms. Figure 3 shows the results given by Simulating 

Annealing when applied on the Academic Signal 2 defined in the previous section. The method 

proposed is of course more complex and needs more computer time than the classical methods 

presented in the previous section. Nevertheless, in the case of more complex signals such as 

Academic Signal 2, the results obtained defend this complexity. 

The method has been extended to multicomponent signals [20], [21]. 

 

 

VII. CONCLUSIONS 

Beginning with a brief presentation of the papers of the structured session entitled “Advanced Signal 

Processing and Condition Monitoring Session”, this keynote address gives some insights in the 

ongoing trend of spectral and time-frequency analysis. 
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Figure 3. Academic signal 2 processed by a high-resolution method. Fist curve is the instantaneous frequency in red for the 

theoretical one, in blue for the estimated one. Second curve is the instantaneous amplitude in red for the theoretical on, in blue for the 

estimated one. Third curve is a reconstruction of the model from the amplitude and frequency estimations. 
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