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Message-embedding from a control-theoretical point of view

Many encryption methods involving chaotic dynamics have been proposed in the literature since the early 90's. Most of them mask the confidential information being transmitted through an insecure channel, with a chaotic analog or digital sequence. The recovering of the original information usually calls for reproducing at the receiver side the same chaotic signal as at the transmitter side. The synchronization mechanism of the two chaotic signals is known as chaos synchronization. In this communication, a connection between chaotic and conventional encryption is established via the control-theoretical condition of flatness, with special emphasis on one of the most attractive schemes, namely, message-embedding. The main conclusion can be stated as follows: a message-embedded cryptosystem is equivalent to a conventional self-synchronizing stream cipher under the flatness condition. It follows that both architectures have the same level of security.

Introduction

There are basically two classes of chaotic cryptosystems. The first one amounts to numerically computing a great number of iterations of a discrete chaotic system, using the message as initial data (see [START_REF] Fridrich | Symmetric ciphers based on two-dimensional chaotic maps[END_REF] [START_REF] Schmitz | Use of chaotic dynamical systems in cryptography[END_REF] and references therein). This is basically also the strategy in [START_REF] Szczepanski | Crytographically secure substitutions based on the approximation of mixing maps[END_REF] [START_REF] Amigó | A chaos-based approach to the design of crytographically secure substitutions[END_REF], where periodic approximations of chaotic automorphisms are used to define substitutions (so-called S-boxes) resistant to linear and differential cryptanalysis. The second class, on which we shall actually focus in this paper, amounts to scrambling the message with a chaotic dynamic.

Various cryptosystems, corresponding to distinct ways of masking a message, have drawn the attention of the researchers over the last years. The most important schemes obeying such a principle are additive masking, chaotic switching, discrete or continuous parameter modulation, two-channel transmission, and message-embedding. Additive masking was first suggested in [START_REF] Cuomo | Synchronization of lorenz-based chaotic circuits with applications to communications[END_REF] and [START_REF] Wu | A simple way to synchronize chaotic systems with applications to secure communications systems[END_REF]. Chaotic switching is also referred to as chaotic modulation or chaos shift keying. Such a technique has been mostly proposed in the digital communications context. A description with deep insights can be found in [START_REF] Kolumban | The role of synchronization in digital communications using chaos -part ii: Chaotic modulation and chaotic synchronization[END_REF]. Basically, two kinds of parameter modulations can be distinguished: the discrete [START_REF] Parlitz | Transmission of digital signals by chaotic synchronization[END_REF][8] and the continuous one [START_REF] Fradkov | Adaptive synchronization of chaotic systems based on speed-gradient method and passification[END_REF][14][7] [START_REF] Anstett | Global adaptive synchronization based upon polytopic observers[END_REF]. The message-embedded technique is given different names in the literature: embedding [START_REF] Lian | Synchronization with message embedded for generalized lorenz chaotic circuits and its error analysis[END_REF][21], non autonomous modulation [START_REF] Yang | A survey of chaotic secure communication systems[END_REF] or direct chaotic modulation [START_REF] Hasler | Synchronization of chaotic systems and transmission of information[END_REF]. For a general review on chaotic ciphers and their security, see [START_REF] Alvarez | Some basic cryptographic requirements for chaos-based cryptosystems[END_REF].

In this note we establish a parallelism between some digital chaotic ciphers and conventional stream ciphers. (See [START_REF] Amigó | Theory and practice of chaotic cryptography[END_REF] for an account on the concept of digital chaotic cryptography and implementations.) In doing so, we will restrict our attention to the message-embedding scheme. We will show that, under the control-theoretical condition of flatness on the transmitter, the chaotic messageembedding ciphers and the conventional self-synchronizing stream ciphers are formally analogue and, therefore, they have the same level of security.

Message-embedding

In message-embedding the information m k is directly injected (or, as it is also usually said, embedded) at the transmitter side in a chaotic dynamic f θ with states x k . The resulting system turns into a non-autonomous one since the information acts as an exogenous input. Injecting m k into the dynamic can be considered as a "modulation" of the phase space. Only a function of m k and x k , called the "output" and denoted by y k , is conveyed through the public channel. The output y k is usually low dimensional and should be unidimensional in the ideal case. In what follows, we will assume that y k is a scalar (dimension 1), the transmitter being thus a so-called Single Input Single Output (SISO) system. The nonlinear function describing the chaotic dynamics as well as the output function are both parametrized by a vector θ which is intended to act as the secret key.

We consider two classes of messsage-embedding. The first one corresponds to systems governed by the state equations

x k+1 = f θ (x k , m k ) y k = h θ (x k , m k ) , (1) 
while the second class corresponds to

x k+1 = f θ (x k , m k ) y k = h ′ θ (x k ) . (2) 
The systems (1) and ( 2) differ from each other by their relative degree.

Definition 1. ( [START_REF] Isidori | Nonlinear control systems. Communications and control engineering series[END_REF] p.139) The relative degree of a system with respect to the quantity m k is the required number r of iterations of the output y k so as y k+r depends on m k which actually appears explicitly in the expression of y k+r . Two mechanisms have been proposed in the literature to recover m k : the inverse system approach [START_REF] Feldmann | Communication by chaotic signals :the inverse system approach[END_REF] and the unknown input observer approach [START_REF] Inoue | Chaos communication using unknown input observers[END_REF][5] [START_REF] Millérioux | Unknown input observers for message-embedded chaos synchronization of discrete-time systems[END_REF] [20] [START_REF] Millérioux | Chaos in Automatic Control, chapter Polytopic observers for synchronization of chaotic maps[END_REF]. The transmitter exhibits an output behavior that depends both on the internal chaotic state vector x k and on the input signal m k . The role of the receiver is to reproduce the input m k given the only available data y k (and possibly their iterates). Hence, it really acts as an inverse system. A main problem arising in the inverse approach lies in that the inverse system is likely to have bad performance properties in a noisy context. In such a case, this drawback must be redressed and a refinement of the design is needed. This leads naturally to some schemes called Unknown Input Observers (UIO).

The generic equations governing an inverse system or a UIO for (1) (or (2)) are xk+r+1 = fθ (x k+r , y k , . . . , y k+r ) mk+r = g(x k+r , y k , . . . , y k+r ) ,

with g such that mk+r = g(x k+r , y k , . . . , y k+r ) = m k when xk+r = x k .

A delay equal to the relative degree r must be introduced for causality sake. The existence of an inverse system or an UIO is guaranteed under the assumption that the system (1) (or (2)) is left invertible. Looking into left invertibility is out of the scope of the present communication, thus we shall assume hereafter that these conditions are fulfilled.

The functions fθ and g must be chosen so as the so-called synchronization with unknown input can be ensured, that is

∀x 0 ∈ U and ∀m k , lim k→∞ x k -xk+r = 0 (6) or ∃k f < ∞ : ∀x 0 ∈ U, ∀m k and ∀k ≥ k f , x k -xk+r = 0 (7)
where U is a non empty set of initial conditions. ( 6) corresponds to an asymptotic synchronization with unknown input, while [START_REF] Dedieu | Identification of chaotic systems based on adaptive synchronization[END_REF] corresponds to a finite time synchronization with unknown input. Message-embedding is very attractive insofar as the synchronization ( 6) or ( 7) can be guaranteed without any restriction on the rate of variation of m k .

Comparative Study

Stream ciphers

In the case of stream ciphers, the plaintext is broken up into blocks of the same length, called symbols and denoted by m k . A major distinction with respect to the block ciphers lies in that the encryption function e can change for each symbol because it depends on a time-varying key K k , the keystream. Generally, keystreams are generated iteratively by feedback shift registers since they produce pseudo-random sequences in a very efficient way.

There are two classes of stream ciphers: the synchronous stream ciphers (SSC) and the self-synchronizing stream ciphers (SSSC).

The equations of the transmitter for the SSC are:

K k = σ s θ (K k-1 ) c k = e(K k , m k ) . (8) 
The keystream K k is generated by a function σ s θ parameterized by θ, the parameter θ acting as the secret static (or master) key. The ciphertext c k is available at the transmitter output and conveyed through the channel.

The transmitter of the SSSC is described by the recursions

K k = σ ss θ (c k-l , . . . , c k-l-M ) c k = e(K k , m k ) , (9) 
where σ ss θ is also a function parameterized by θ that generates the keystream {K k } and l a nonnegative integer. Unlike SSC, K k does not depend now on an internal dynamic but only on a fixed number of past values of c k . The quantity M is called the delay of memorization. As before, c k is generated by the encryption function e depending on a time-varying key K k .

For both SSC and SSSC, the reconstruction of the plaintext requires the synchronization of the two sequences {K k } and { Kk } produced at the transmitter and the receiver sides, respectively. The inherent determinism allows their synchronization as explained next.

In the SSC case, the decryption is specified at the receiver side by Kk = σ s θ ( Kk-1 ) mk = d( Kk , c k ) [START_REF] Fliess | Flatness and defect of non-linear systems: introductory theory and examples[END_REF] and, in the SSSC case, by

Kk = σ ss θ (c k-l , . . . , c k-l-M ) mk = d( Kk , c k ) . (11) 
In both cases, the decryption function d is such that

mk = d( Kk , c k ) = m k when Kk = K k . ( 12 
)
For the SSC, the keystreams {K k } and { Kk } result from autonomous recurrences. It turns out that the unique way of achieving the synchronization is to initialize the key of the generators σ s θ at both sides at the same value ( K0 = K 0 ). Therefore, K 0 is part of the secret static key.

As for the SSSC, θ is the parameter vector of the function σ ss . If the parameters are identical at both sides, the respective keystreams synchronize automatically because σ ss θ operate, at both sides, on the same quantities, namely the past values of c k . The ability to self-synchronizing constitutes one of the main advantages of such cryptosystems. Indeed, they are resistant against bit slips on the transmission channel without any additional synchronization flags or interactive protocols for recovering lost synchronization [START_REF] Menezes | Handbook of Applied Cryptography[END_REF].

Message-embedding and flatness

The results stated in this section are based on the notion of flatness (see [START_REF] Fliess | Flatness and defect of non-linear systems: introductory theory and examples[END_REF] for an introductory theory) Definition 2. (Flatness) A system with dynamic f , input e k and state vector z k of dimension n is said to be flat if there exists a set of independent variables y k , referred to as flat outputs, such that all system variables can be expressed as a function of the flat output and a finite number of its backward and/or forward iterates.

In particular, for Single Input Single Output systems, there exist two functions F and G which obey

z k = F(y k+kF , . . . , y k+k ′ F ) e k = G(y k+kG , . . . , y k+k ′ G ) . ( 13 
)
where k F , k ′ F , k G and k ′ G are integers. Remark 2. Regarding the computational aspects, let us mention that the search of the functions F and G can be done by elimination techniques [START_REF] Wang | Elimination theory, methods and practice[END_REF]. Maxima4 is a powerful computer algebra software implemented in Lisp, that can be used to tackle this problem.

Proposition 1. The message-embedding cryptosystem (1) (or (2)) is equivalent to a conventional self-synchronizing stream cipher if the nonlinear dynamic f θ with output y k and input m k is flat.

) is likely to be high and we are better off if the computation is carried out in a recursive way through a state space approach.

Example

This simple and academic example illustrates the aforementioned connection between the message-embedding and self-synchronizing cryptosystems. We consider a message-embedded cipher with dynamic f and output function h ′ of the form

x k+1 = Ax k + Bν(x k , m k ) y k = Cx k , (19) where (a 
) x k = (x (1) k , x (2) k , x (3) 
k ) is a 3-dimensional vector, (b) A, B and C are matrices of adequate dimensions and integer entries ranging between 0 and 255, and (c) all operations are performed modulo 256. Numerically, the matrices read

A =   38 1 0 7 0 1 4 0 0   , B =   1 0 0   , C = 1 0 0 .
The function ν is chosen to be a bitwise XOR (denoted ⊕) between the components of x k and the plaintext m k :

ν(x k , m k ) = x (1) k ⊕ x (2) k ⊕ x (3) k ⊕ m k ≡ u k , where x (i)
k and m k are meant here to be the corresponding 8-bit representation and u k the result expressed again as an integer between 0 and 255.

The secret static key is the vector θ = (38, 7, 4), which is the first column of A. Observe that A is written in companion form.

It can be shown [START_REF] Isidori | Nonlinear control systems. Communications and control engineering series[END_REF] that for systems with the structure [START_REF] Menezes | Handbook of Applied Cryptography[END_REF], the relative degree corresponds to the smallest integer r such that CA r-1 B is different from 0. Here, since CB = 1, the relative degree of the system is 1. Thus, in accordance with the notation used in the general part, we will write f 1 θ for the dynamic.

Along the lines mentioned in Remark 2, we obtain the first equation of ( 16) with F 1 θ given as

     x (1) k = y k x (2) k = 7y k-1 + 4y k-2 x (3) k = 4y k-1 (20) 
and, moreover,

u k = y k+1 -38y k -7y k-1 -4y k-2 . (21) 
Equations ( 20) and ( 21) clearly corroborate that the system is flat. Besides, they provide the values k

F 1 θ = 0, k ′ F 1 θ = -2, k G 1 θ = 1 and k ′ G 1 θ = -2.
Being the relative degree 1, we must compute y k+1 :

y k+1 = CAx k + CBu k = 38x (1) 
k + x (2) k + x (1) k ⊕ x (2) k ⊕ x (3) k ⊕ m k = l h ′ ,f 1 (x k , m k ) (22)
From the proof of Proposition 1, part ii), the system ( 19) is equivalent to a self-synchronizing stream cipher (9) with secret static key θ = (38, 7, 4) and the correspondences key generator σ ss θ ≡ F 1 θ given by Eq. ( 20)

-running key K k ≡ x k -ciphertext c k ≡ y k -encryption function e ≡ l h ′ ,f 1 given by Eq. (22) -delay of memorization M ≡ |k F 1 θ -k ′ F 1 θ | = 2.
Retrieving m k requires to compute [START_REF] Lian | Synchronization with message embedded for generalized lorenz chaotic circuits and its error analysis[END_REF]. Here the function g(x k , y k ) is an XOR between the components of x k and u 

k = ν(x k , m k ), that is, g(x k , u k ) = u k ⊕ x (1) k ⊕ x (2) k ⊕ x

Conclusion

We have compared the architectures of the chaotic message-embedding cipher and the conventional stream ciphers, thereby establishing a formal parallelism. The main conclusions are the following. a) If the transmitter of a message-embedding cipher is non-flat, the plaintext is recovered only asymptotically (via an inverse system or an observer). In other words, finite-time synchronization (and hence decryption) is achieved only if the transmitter implements a flat dynamics. In this case, the resulting chaotic cipher is equivalent to a self-synchronizing stream cipher, the correspondence having been identified in Sect. 3.2. b) We conclude that both architectures have the same level of security.
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  and u k are meant to be the corresponding 8-bit representation similarly to the function ν. Indeed, u k ⊕ x m k . Being the system flat, x (i) k can be expressed in terms of delayed outputs as indicated by the function F 1 θ . Hence, one hasm k = (y k+1 -38y k -7y k-1 -4y k-2 ) ⊕ y k ⊕ (7y k-1 + 4y k-2 ) ⊕ 4y k-1 .
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