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Abstract: Advanced signal processing methods are helpful in the context of
diagnostic and fault detection of induction machines. They provide accurate
information about highly nonlinear systems which need complex physical models.
We recall and compare some available methods in modeling and/or detection
of nonlinear and nonstationary signals in the time and frequency domain. We
particularly outline a new method we developed, which is based on a local modeling
of the instantaneous amplitude and frequency of the signal. This method reaches
significant performance especially when signals are embedded in strong noise and
present a high variation of the instantaneous frequency.

Keywords: Non-stationary signal, nonlinear amplitude and frequency
modulations, polynomial phase signal, time-frequency distribution, Spectrogram.

1. INTRODUCTION

Nowadays, in complex industrial systems, sev-
eral machines interact between them at dissimilar
power levels and classical maintenance methods
can be combined with advanced post-processing in
order to increase the reliability of the maintenance
program and to reduce its cost.

These systems provide different observed signals
which can be: nonstationary, with a mixture of dif-
ferent spectral structures, narrow spectral bands
and/or wide spectral bands, multi-components,
nonlinearly modulated in frequency and/or in
amplitude, embedded in different types of noise,
white, colored, Gaussian or impulsive noise. Signal
processing methods in particular yield an addi-

tional help when applied to these observations.

Section 2 outlines some methods based on spectral
and time-frequency analysis.

Section 3 describes a new method already pub-
lished in (M.Jabloun and N.Martin, July 2007)
and based on a local polynomial modeling of both
instantaneous amplitude and frequency of nonsta-
tionary signals.

These methods have applications in a wide range
of fields such as induction machines, mechanics,
radar, sonar, seismic and biomedicine.

A comparison with some classical methods is
shown in Section 4. Finally Section 5 summarizes
our work.



2. OVERVIEW OF SIGNAL
PROCESSING-BASED METHODS

The modeling and estimation of non-stationary
signals from real observations received consider-
able attention and many methods have already
been proposed. We present some of the current
methods which can be easily extended and applied
in the context of diagnostic and fault detection of
induction machines.

In (B.Leprettre and L.Turner, 11-14 June 2007),
the authors propose to model the thermal behav-
iour of an induction motor without considering an
exhaustive identification and without a thermal
sensor. So, they establish an equivalence between
an electrical model, which inputs are motor cur-
rent and voltage, and a thermal model, which
outputs are the stator and rotor temperatures.
The parameter estimation of the electrical model
is then operating via a harmonic detection in the
spectra.

In (F.Perisse and J.P.Lecointe, 13-15 September
2007), the authors present a new monitoring sys-
tem able to detect slight variations of high fre-
quency resonances in the winding of a working
machine fed by an industrial inverter. This sys-
tem works in association with statistical data on
accelerated aging of the magnet wire used to build
the machine.

As in (B.Leprettre and L.Turner, 11-14 June
2007), the interest of (M.Chabert and J.Regnier,
11-14 June 2007) is a sensorless estimation. Prop-
erties of a given time-frequency transform help the
classifying mechanical failures from a monitoring
of the stator. In (A.Catherall, 11-14 June 2007),
a new time-frequency transform which preserves
robustness at low Signal-to-Noise Ratios (SNR) is
able to handle signals more complex than the well-
known spectrogram. Moreover, this transform can
be applied on any signal having a variable instan-
taneous frequency.

Other general methods based on signal process-
ing, and described in (S.Stankovic, 11-14 June
2007; C.Ioana and A.Quinquis, 11-14 June 2007;
F.Castanie, 2006; M.Durnerin, 21 September 1999),
are interesting to be used in condition monitoring
by making some analogies. A mathematical model
classically used in spectral analysis is derived in
(S.Stankovic, 11-14 June 2007), and an estima-
tion of the instantaneous frequency of this model
allows the estimation of the motion of an object in
video sequences. In (C.Ioana and A.Quinquis, 11-
14 June 2007), the authors investigate a time-
phase representation to be able to estimate a

phase delay. They suggest to filter each time-
frequency patterns by a non-unitary time-warping
filter. A continuity constraint is then applied on
the phase of the signal reconstructed to separate
components in the patterns previously extracted.
The method can be applied on any modulated
signals even if they are multicomponent and em-
bedded in a noisy environment.

Two main problems which are related to the signal
nonstationarity definition explain the numerous
methods published in the signal processing liter-
ature. First is the definition of the concept of in-
stantaneous frequency in the case of nonstationary
signals. Second is the reconsideration of the base
functions, the exponential functions, which are
not adapted to model the evolution in the signal.
Moreover, without the stationary hypothesis, the
estimation of the energy distribution of nonsta-
tionary signals is not so well defined. Actually,
a stationary hypothesis makes easier the defini-
tion of the correlation function, function of one
delay only, and of a power spectral density if the
spectrum is continuous. Some developed methods
which addressed the analysis of nonstationary sig-
nals have assumed a local stationary hypothesis or
applied a nonlinear transform in order to make the
signal stationary. Others methods have introduced
time-varying terms in the exponential functions
while others have used more adaptable functions.

In this paper, we just point out some of the
methods: spectrogram, Wigner-Ville distribution,
the S method and the new method proposed in
(M.Jabloun and N.Martin, July 2007).

2.1 Spectrogram

The most older time-frequency method, the spec-
trogram (or sonogram) denoted by 8[n, k] at time
index n and frequency index k, of a discrete signal
s[n] of length N is based on a Short Time Fourier
Transform 8TFT[n, k]. The spectrogram assumes
a local stationarity over length N,, and writes

S[n, k] = 8TFT[n, k]|, (1)
Ny
STFTIn, k| = Y s[m +njwim]e 2™ ¥ | (2)

where w[m] is a time window of length N,,. The
spectrogram is positive and can be considered
as an energy distribution without cross terms.
However, 8[n, k| suffers from a lack of resolution
due to the Heisenberg-Gabor inequality.



2.2 Wigner-Ville distribution

The Wigner-Ville distribution WV[n, k] is a bi-
linear transform of the signal defined for discrete
time n as:
N
WV[n, k] = 2 Z s[m +n] s*[m +n]e *"I B
m=1

(3)
where * denotes the complex conjugate. WV[n, k]
is the Fourier Transform of the instantaneous
correlation s[m + n| s*[m + n|. The Wigner-Ville
distribution has a perfect localization on linear
chirp signal. On the contrary, multicomponent
signal generates cross terms. Both time and fre-
quency smoothing were introduced to reduce in-
terferences, what results in a reduction of the
resolution (L.Stankovic, Jan 1994).

2.3 S method

The S-method introduced in (L.Stankovic, Jan
1994) and used in (S.Stankovic, 11-14 June 2007)
was defined by:

Ny
SM[n, k] =
m=1
(4)
where 8TFT[n, k] is defined in (2) and w[m] is a
time window. The S-method is a time-frequency
distribution where cross terms are reduced com-
paring to the Wigner Ville distribution. An ap-
propriate selection of the window w[m| can make
the S-method cross term free.

3. LOCAL POLYNOMIAL MODELING OF
FREQUENCY AND AMPLITUDE

In (M.Jabloun and N.Martin, July 2007), we pro-
pose a new flexible method for modeling and
estimating nonstationary signals. We recall the
principle of this method.

Therefore, let us consider the observed noisy sig-
nal y[n] defined as follows

yln]=s[n] +e[n], for 0<n<N-1, (5)
s[n] = Aln] ?®", (6)

where s[n] represents the noise-free signal and
e[n] a white complex Gaussian noise with zero
mean and unknown variance o2. N is the total
sample number and j is the complex number
verifying j2 = —1. A[n| and ®[n| are the Instan-
taneous Amplitude (IA) and phase respectively.
The Instantaneous Frequency (IF) is defined by a
numerical derivation of ®[n]

w[m] 8TFT[n, k+m] STFT*[n, k—m]

TA and IF are both time-varying functions and
IF verifies 0 < F[n] < £& in relation to Shan-
non’s theorem, F being the sampling frequency.
To remove the ambiguity in the definition of the
amplitude and phase of the signal model (6), we
assume ®[n] is non-discontinuous and A[n] is real
and positive (L.Cohen and D.Vakman, 1999).
The modeling and estimation of both the instan-
taneous amplitude A[n] and phase ®[n]| are the
objective of the method.

Unlike (S.Peleg and B.Friedlander, 1995) which
considered phase polynomial models requiring a
large number of parameters to approximate the
entire phase, we use a local approach. We as-
sume that the signal non-stationarity could be
piecewise modeled by low-order polynomials on
short-time windows called segments. We apply a
strategy for extracting short-time segments from
a long-time signal. This extraction is not ordered
through time, the length the position and the
number of segments are estimated using any non-
negative Time-Frequency Distribution (Spectro-
gram for example). To reduce the estimation er-
ror, the first segment corresponds to the highest-
energy part of the signal. Then a segmentation
process was followed in positive or negative time
progression in order to estimate the next high-
energy part of the signal. Readers can refer to
(M.Jabloun and N.Martin, July 2007) for more
details.

In the strategy proposed, we start by finding
short-time segments whose lengths are suitable for
approximating locally both the IA and IF by low-
order polynomial models. The lengths vary from
one segment to another and segments can overlap.
On each segment, the following polynomial mod-
els are assigned to the local time variation of the
TA and IF:

Aln] = Z Am gm[n],
gt ®
Fln] =Y fu gmln],

m=0

for n belongs to the Segment considered. p and ¢
are the polynomial approximation orders of local
Aln] and F'[n] respectively and g,,,[n] is a discrete
polynomial of order m. The real coefficients of
the decomposition of local A[n] and F[n] on the
discrete polynomial base (g [k])m—o,... max(p,q) a1€
am and fp, respectively. The local phase related to
the segment considered is calculated by numerical
integration up to 27 of the local frequency and this
local phase is referenced to the segment center in
order to reduce the estimation error (D.Rife and
R.Boorstyn, 1974). Therefore, on each segment,
we have to estimate for each local model a vector



of p 4+ g + 3 parameters
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where ¢y denotes the initial phase referenced to
the segment center and T is the transpose. To
reduce the number of parameters to be estimated
for each segment the polynomial approximation
orders p and q are limited. The segment length is
selected in (M.Jabloun and N.Martin, July 2007)
such as p and ¢ satisfying

0:[aOaala"'7ap59007f07f15"'

0 < min(p, ¢) < max(p,q) < 3. (10)

In (M.Jabloun and N.Martin, July 2007), we
calculated an orthonormal discrete polynomial
base gm[n] by applying the Gram-Schmidt pro-
cedure. The comparison with other polynomial
bases shows that the orthonormality property en-
hances the estimation efficiency by significantly
reducing the parameter coupling.

The local model parameters (8) are estimated
using a maximum-likelihood procedure known to
possess optimality property. This is equivalent to
minimization of the Least-Square (LS) function
for Gaussian noises and thus results in the follow-
ing multivariate nonlinear equation

0= 32%199%&5(9)’ (11)
withfs(0) = > |yln] —s[n]]”. (12)

neSegment

Direct minimization of (11) is extremely difficult
due to the high non-linearity of the cost func-
tion (12) and the parameter number, a stochastic
optimization technique based on the simulated
annealing method is used. Simulating annealing
has an analogy with thermodynamics where metal
cools and anneals. In the same way, after an ini-
tialization of the parameter vector to estimate,
an iterative loop controlled by a scalar referred
to as a temperature generates a new candidate
of the vector (9) that minimizes the cost function,
namely the least square function (12). A statistical
significance test relied on the assumption that the
error is normally distributed stops the algorithm.

Finally the estimated segments are then merged
in order to reconstruct the whole amplitude, fre-
quency, phase and signal.

The method proposed is of course more complex
and needs more computing time than the classical
methods presented in section 2. Nevertheless, in
the case of more complex signals with highly
nonlinear amplitude and frequency, the results
obtained defend this complexity (see results in

Section 4). The method has been extended to
multicomponent signals (M.Jabloun et al., 2005).

4. SIMULATION RESULTS AND
COMPARISON

We consider an academic noise-free signal s[n]
with a time-varying frequency modulation and
sinusoidal amplitude defined by:

A[n] =10+ 1 sin(

=) (1)

6mn n);(14)

1 14
Fln] =50 +5 sin(——) + 10 sin( T

S S

F is the frequency sampling and is equal 256 Hz.
The sample number is 1024. s[n] is embedded in
noise of 20 dB. The variation of the instantaneous
frequency F'[n] are such that the analysis by the
methods mentioned in Section 2 is not acceptable
except for the S-method. From, the spectrogram
we can thought that two modulated component
are present in the signal which is not the case.
The S-method give the behaviour of the frequency
modulation but the estimation errors are impor-
tant. Figure 1 shows the noise-free signal super-
posed to estimation error of s[n| obtained using
the local approach proposed in (M.Jabloun and
N.Martin, July 2007). Figures 2(a), (b), (c) and
(d) display the results given by the spectrogram,
the Wigner-Ville distribution, the S-method and
the local approach proposed in (M.Jabloun and
N.Martin, July 2007) respectively.

5. CONCLUSION

We give some insights in time-frequency analysis.
Particularly, modeling of highly nonstationary sig-
nals having both non-linear amplitude and non-
linear frequency modulations is considered and
illustrated on academic signals.
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Fig. 1. (a) An academic signal () processed by the proposed approach based on a piecewise modeling
of the signal nonstationarity by low-order polynomials on short-time segments. (b) The residue (:)
obtained on the estimation of s[n].
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Fig. 2. An academic signal processed by some time-frequency analysis methods: the spectrogram, Wigner-
Ville distribution and S-method compared to the approach based on a piecewise modeling of the
signal nonstationarity using low-order polynomials on short-time segments.
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