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ABSTRACT

We report Lagrangian measurements obtained with a
acoustic Doppler velocimetry technique. From the Doppler fre
quency shift of acoustic waves scattered by tracer particles in
turbulent flow, we are able to measure the full three-compone
velocity of the particles. As a first application, we have studie
velocity statistics of Lagrangian tracers in a turbulent air jet at
Rλ ∼ 320and at various distances from the nozzle. The choice
an air jet is motivated by the fact that jets produce a well char
acterized high level tubulence and open air flows are well suite
to simultaneaously achieve classical hot wire Eulerian measur
ments. Therefore, we are also able to explicitly address the que
tion of the differences between Eulerian and Lagrangian statis
tics. As Lagrangian tracers we use soap bubbles inflated wi
Helium which are neutrally buoyant in air and can be assimi
lated to fluid particles. Velocity statistics are analysed. We sho
that the Lagrangian autocorrelation decays faster in time than it
Eulerian counterpart. Finally we present Lagrangian time veloc
ity increments statistics which, as already reported by previou
work, exhibits stronger intermittency than Eulerian velocity in
crements.
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INTRODUCTION

Experimental and theoretical studies of turbulence has
longly been dominated by the Eulerian approach, where a given
quantity in the fluid is measured with a probe located at a
fixed point in space and is represented as a continuous spatial
field. An alternate point of view is given by the Lagrangian ap-
proach, where the same quantity is measured along the trajec-
tory of a fluid particle and is represented as a function of time
parametrized by the initial position of the considered fluid par-
ticle. One reason for the domination of Eulerian approaches
in turbulence is probably due to technical difficulties inherent
to Lagrangian experiments, which requires the tracking of par-
ticles in strongly fluctuating flows. This has remained out of
reach of experimentalist until very recently, thanks to techno-
logical advances in fast imaging, and ultrasonic technics. Simul-
taneously theoretical advances of stochastic models for turbu-
lence gave a renewed interest to Lagrangian experiments. More-
over many practical situations are naturally described in the La-
grangian framework. This is particularly the case of dispersion
in particle laden flows.

An important advance in Lagrangian measurments have
been done in the nineties by Virant and Dracos [1] who devel-
opped a 3D-Particle Tracking Velocimetry (PTV) technic. They
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used simultaneously 4 video cameras at a frame rate of 25 fps
access the 3D trajectories of several hundreds of particles at onc
Ott and Mann [5] developped a similar technique to study rel
tive dispersion of fluid particles. Because of the low frame rat
particle dynamics could be resolved only for moderate Reynol
numbers, typicallyRλ < 250, whereRλ is defined based on the
Taylor microscale. The first Lagrangian measurements for sing
particles statistics in high Reynolds number regimes (Rλ < 1000)
were obtained by LaPorta et al [2], using silicon strip detec
tors (initially developed for high energy particles detection) a
a frame rate up to 70kHz. They observed a strong Lagrangi
intermittency characterized by strong acceleration events w
non gaussian fluctuations. Recently, Bourgoin et al. [3] have d
veloped a high resolution 3D-PTV facility using ultrafast cam
eras at a repetition rate of 27kHz, which allows the tracking o
several hundred of particles in high Reynolds number regim
(Rλ < 1000). They studied relative dispersion and Lagrangia
structure functions, which also exhibit strong intermittency [18

All the technics mentioned so far are optical and give th
particles position. Particles velocity and acceleration are o
tained by differentiating numerically once and twice the pos
tion. This is a very noise sensitive procedure which requires
important oversampling in order to get a good signal to noise r
tio for the particles velocity and ultrafast optical systems nee
to be used to study highly turbulent flows. An alternate optio
is given by ultrasonic technics. Mordant et al [4] used Dopple
frequency shift of acoustic waves scattered by tracer particles
obtain Lagrangianvelocity in a Von Kármán water flow. The
frequency shift is directly proportional to the particle velocity
no differentiation is required to get the instantaneous velocit
and a single differentiation gives the acceleration of the par
cles. Eventhough the tracers they used were much bigger th
the Kolmogorov length of their flow (acoustic scattering impose
minimal tracer size) their results clearly show strong Lagrangia
intermittency : the probability density functions of velocity in-
crements are Gaussian for large time separation and strongly n
Gaussian for small time separation.

In neither of the previous studies a clean comparison b
tween Lagrangian and Eulerian statistics in turbulent flows we
made, either because Eulerian measurements were not avail
[2, 4], or because Reynolds number was too low, so that turb
lence can not be considered as fully developed [1, 5, 6]. In th
present paper, we describe an experimental setup allowing to p
form simultaneous Lagrangian and Eulerian measurements i
turbulent air jet (Rλ ≃ 320). Small helium-filled neutral soap
bubbles are seeded from a position upstream of the nozzle. T
three components of the Lagrangian velocity are obtained
acoustical Doppler effect. First, the detection setup, as well
the tracers are described. Then, we present the signal proces
techniques used to detect the passage of bubbles and to ext
their velocities from the frequency shift. finally we report som
results on the main statistical properties of the velocity signals
2
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EXPERIMENTAL SETUP
The measurements have been conducted in a round air jet,

emerging from a 2.25 cm conic nozzle and expanding freely in
the room. The flow becomes self-similar at a distance of approx-
imately 40 times the nozzle diameter [7]. Measurement has been
done at distances up to 120 diameters.

In all experiments the Reynolds number based on the Taylor
microscale is about 320. Jet characteristics are based on hot-wire
measurements and classical isotropic relations [8,9].

Particle detection
Figure 1 presents the principle of one-component ultrasonic

velocimetry. It is based on the Doppler frequency shift of an
acoustic wave scattered by a moving particle. A transducer emits
a continuous ultrasonic wave at a frequency of 110 kHz≤ ν
130 kHz with a propagating direction~ni towards the jet. The
wave scattered in a specifc direction~nd (θ = (~ni;~nd) is the scat-
ter angle) by particles transported in the flow, is recorded by a
receiver. Because of the paricles motion, the scatterd wave is
Doppler shifted an its frequencyν ′ differs fromν so that

ν ′−ν
ν

=
~V · (~ni − ~nd)

c
= −2

V//

c
sin(θ/2), (1)

wherec is the speed of sound in the experimental conditions.
For a given incoming frequencyν and a given scatter angleθ , the
instantaneaous frequency shiftν ′−ν gives a direct measurement
of the projection,V//, of the tracer velocity along~ni −~nd. Note
that this is an algebraic measurement : the sign ofV// is given by
the sign of the frequency shift.

The electric signal originating from the receiver is digitized
by a HP E1430A card at 65536 Hz after digital heterodyne de-
modulation. Series of 1,048,576 samples are recorded. Within
each series, several isolated particles are successively detected
Transducers are capacitive electro-acoustical circular piston of
Sell-type, with a diameter of 24 cm. They are reciprocal, highly
directive and linear. Thanks to the transducers high directivity,
tracers can only be detected when they are located in the vol-
ume defined by the intersection of the incoming and the detec-
tion transducer beams, which will be called in the following the
“measurement volume”. Its shape is sketched on figure 1. Di-
mensions areLs ≃ 50 cm along the jet axis and 25 cm across the
stream.

One challenge that arises in Lagrangian measurement is to
follow the particle over a long enough trajectory in order to de-
scribe its dynamics up to scales of order the integral scale of the
flow. This means that we seek to record the velocity of a sin-
gle tracer for a timeTs larger than the Lagrangian integral time
scaleTL. A simple order of magnitude calculation gives hints
about ways to achieve this experimentally. It was shown nu-
merically [10] that the Eulerian time scaleTE = LE/u′ is related
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Figure 1. Principle of velocity measurements. Particles can be detected

in the intersection of the emitter and receiver acoustic beams (dashed

lines). In the configuration we used : Ls ≃ 50cm.

to the Lagrangian time scale byTL = 0.78TE (LE is the Eule-
rian integral length scale andu′ is the velocity standard devia-
tion). The maximum time-of-flight in the measurement volume
is Ts≃ Ls/〈u〉 (〈u〉 is the mean velocity). In the turbulent free jet,
the ratiou′/〈u〉 is about 0.25, independent of the position and th
Reynolds number. Therefore,Ts/TL ≃ (Ls/LE)/(4 ·0.78). Max-
imising Ts/TL is then only a matter of maximisingLs/LE, which
is completely independent of the velocity at the nozzle. The Eu
lerian integral scaleLE depends on the distance from the nozzle
and on the nozzle diameter. With the chosen value forLs, Ls/LE

ranges from 8 to 4, respectively for a measurement volume 6
diameters and 110 diameters downstream from the nozzle. T
maximum value forTs/TL is then expected to be between 2.6 and
1.3.

Small-scale limitation is mainly related to the tracer size. A
tracers to study fluid particle dynamics, we use helium inflate
soap bubbles (which are density matched with air). At prese
they can’t be made smaller than about 2 mm. This is below th
Taylor microscale (from 4.4 mm to 7.3 mm), but still above the
Kolmogorov scaleη (from 0.12 mm to 0.20 mm). Thus, we ex-
pect the bubble dynamics to reflect a substantial part of the ine
tial range, up to the integral scale, but very small scale dynami
might be filtered due to the particles size (previous work sugges
that tracers should be smaller than about 5η to behave as perfect
fluid particles [11]).

Three-component measurement
It is possible to measure the complete three velocity comp

nents by combining several one-component measurements fr
multiple pairs of acoustic transducers. Four transducers (tw
emitters and two receivers) are placed at the vertices of a squa
tilted so that their axes cross at the same point on the jet axis,
3
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Figure 2. Transducers arrangement for the three-component measure-

ment. D = 24cm, D′ ≃ 50cm. Emitters are referred to as E1and E2, re-

ceivers as R1 and R2. α = 266o, yielding a scattering angle θ = 128o.

a square-based pyramid configuration (figure 2). Distances from
transducers to the intersection with the jet axis are all identical,
ensuring that wave propagation times are all identical. Transduc-
ers are reverse-facing the nozzle, to avoid bubble impacts on their
active surfaces and they are sufficiently apart from each other not
to pertub the flow.

The first emitter E1 generates a continuous wave at fre-
quency ν1 = 110 kHz, scattered by each bubble, and then
recorded in two different directions by the two receivers (resp.
R1 and R2). This gives access to two projections of the tracer
velocity, respectively along vectors~k11 and~k12. Similarly, the
wave emitted by E2, at frequencyν2 = 122 kHz (different from
ν1) is also scattered and then recorded by the two receivers, giv-
ing access to two more projections along vectors~k21 and~k22.
Provided the bubble lies in the intersection of the four acoustic
beams, its velocity can be obtained through four non-orthogonal
projections, which we will denote by (v11, v12, v21, v22). Compo-
nents along and perpendicular to the jet axis (u,v,w) can then be
computed by an simple matrix transformation.

Using multiple transducers is a major improvement not only
because it gives the velocityvector, but also in terms of signal to
nois ratio (SNR). The first characteristic that increases the SNR
is redundancy. The velocity components (u, v, w), can be simul-
taneously obtained from thev11, v12, v21 andv22 by the formulas
(α is defined on figure 2):



s

u =
v11+v12+v21+v22

4cosα
(2)

v =
v12−v21

2sinα
w =

v22−v11

2sinα
. (3)

With the assumption that each projection (v11, v12, v21, v22)
is affected by an independant additive random noise of va
anceσ2, the variance of the noise foru can be estimated as
σ2/4cos2 α ≃ σ2/3.23, which reveals a real SNR enhancemen
for the longitudinal velocity component. This is not the cas
however for the transverse components,v andw, for which the
variance of the noise is given byσ2/2sin2 α ≃ σ2/0.38 and re-
mains higher than the noise for the initial projections.

With working frequencies in the 100kHz-150kHz range
acoustic absorption is far from being negligible. Sound path
have to be as short as possible. A second advantage of the p
midal setup is that transducer separation distanceD′ can be made
very short without perturbing the flow, because of the roun
shape of the jet. For a given scatter angle, acoustic path is th
shorter for the three-component measurement than for the sing
dimensional one.

Despite the transducers high directivity, some acoustic e
ergy still propagates straight from each emitter to each receiv
responsible for a spurious signal at the emitting frequency. As t
wave travels across the turbulent flow, it is phase- and amplitud
modulated (scintillation, [12]). A final advantage of the pyrami
dal setup is that scintillation is greatly reduced. For reasons th
will be discussed below, this increases the accessible veloc
range and eases the signal processing.

Tracers
We have first used the acoustic velocimetry technic to stud

Lagrangian statistics of turbulence. This requires to have L
grangian tracers which must match the carrier fluid density
order to cancel buoyancy forces. It is a main concern when loo
ing for Lagrangian tracers for air. Whereas solid particles can
used for liquid, particles filled with light gases be used in air. W
used helium-inflated soap bubbles. Once the soap film has b
made thin enough, the overall bubble density can match the o
of air. Helium-inflated bubbles have also the additional bene
of offering a high contrast of acoustic impedance that increas
the scattered amplitude.

Due to the evaporation of the liquid film, bubbles life time
is around one or two minutes, which is much larger than the tim
needed to travel across the whole measurement volume (less t
.1 s). Bubbles are produced by a dedicated machine to the des
4
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density, and injected just upstream of the nozzle, so as not to dis-
turb the flow. Statistics for bubble diameters have been obtained
with the help of a video camera. It has been found that bubbles
diameter has a very monodispersed distribution (2 mm± 6 %).
This ensures that limitations due to bubble size will be at a con-
stant scale. Production frequency has to be low enough to ensure
that most of the time a single bubble is detected in the measure-
ment volume. Injection rates of about 5 bubbles per second gave
good results.

The acoustic technic can also be used to track non La-
grangian particles, in order for instance to study inertial ef-
fects. This work is in progress at present. First measurments are
planned with heavy bubbles (obtained by thickenning the soap
film and/or by filling the bubbles with a heavier gas, such carbon
dioxyde).

SIGNAL PROCESSING

Channels separation

Figure 3 shows the power spectrum of a typical acoustic sig-
nal recorded on one of the receivers over several second (during
the period of the record, of order 10 particles have travelled suc-
cessively in the measurement volume). One observes two sharp
high-amplitude spikes exactly at the incoming frequencies. They
correspond to direct propagation between emitters and receiver,
as well as echoes. Beside each spike, at lower frequencies, stand
a broader-band bump which corresponds to Doppler frequencies
of the acoustic wave scattered by the particles. The maximum
of the band reflects the average velocity of the particles, while
its width reflects the velocity fluctuations. All time information
is lost in the Fourier space representation of the acoustic sig-
nal. The main point of the processing of the acoustic signals
will be to obtain simultaneously time and frequency information
in order to extract the instantaneous velocity of single particles.
This requires first to filter out the spikes (which correspond to di-
rect acoustic waves propagation and don’t carry any information
on the particles velocity) and to separate the channels for each
emitter-receiver pair. Filtering out the spikes removes a small
part of the Doppler frequencies because of overlapping. This en-
forces a limitation on the smallest velocity that can be extracted.
Two notch filters are applied to remove the spikes, then a de-
modulation followed by a low-pass filtering allow the separation
of the two scattered signals. We emphasize the fact that demodu-
lation is performed by multiplication with a complex exponential
(not a real cosine), yielding an analytic signal. The same opera-
tion is applied to the two signals recorded on the two receivers,
leading to four different frequency-modulatedsignals, which will
be denoted hereafter bys (si . . .sl ).
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Figure 3. Power spectral density of the signal recorder by one of the re-

ceivers. The two spectral lines are the emitter direct frequencies (110kHz

and 122kHz), and correspond to acoustic waves propafating straight be-

tween the emitters and the receiver.

Time detection of tracers
The acoustic signal is recorded as successive aquisition

which are typically 20 seconds long. During each aquisition,
about 100 bubbles travel in the measurement volume. Only th
portions of signal corresponding to the presence of a particl
in the measurement volume are analyzed for extraction of La
grangian velocity. Figure 4 shows the real part of a typicals
signal (only a fraction of order 0.8 second is represented). We
observe that the signal amplitude (computed as the complex ma
nitude) is very close to the enveloppe of the real part, confirming
the analytical property of the signal. The presence of a bubble i
the measurement volume corresponds to high amplitude even
easily identifiable on the figure. When no bubble is present, am
plitude is not strictly zero. This remaining amplitude is mostly
due to sound scattering by the vorticity field (see [13]) and will
be considered as noise here.

Automatic detection of bubbles is achieved by a threshold
ing operation. Time intervals are determined by the following
algorithm :

– Low-pass filtering of the signal amplitude (∼ 4000 Hz) ;
– Computation of the median of the former, as an estimation
of noise level ;
– Selection of time intervals where filtered amplitude is
above twice the noise level ;
– Rejection of intervals shorter than 10 samples ;
– Merging of intervals separated by no more than 5.3 ms
(350 samples) ;
– Rejection of intervals shorter than 30 ms (2000 samples).

This operation is applied independently on each of thes signals.
5
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acoustic signal (s).

For the velocity vector to be computed, the bubble should be de-
tected at least on three signals simultaneously. Another selection
procedure is thus applied to keep only intervals that have a com-
mon part on the four channels.

Signal to noise ratio maximisation
As explained before, the signal of interest is the wave scat-

tered by the bubble. Noises include

i) wave propagating straight between emitter and receiver
and echoes;
ii) scattering by the vorticity field;
iii) overall electronic noise;
iv) turbulent acoustical noise.

In practice, iii) and iv) are of little concern. Acoustical ampli-
tude can be made sufficiently large so that noise iii) is negligible.
Noise iv) has only frequencies below 10kHz, which is far from
the band of study (100kHz-150kHz).

Once noise iii) has been overcome, increasing emitting
power does not improve SNR, because signal and remaining
noises i) ii) are all proportional to the incoming sound amplitude.
No way to reduce noise i) has been found so far.

Reducing noise ii) can be achieved by adjustement of the dif-
fusion angles and of the working frequency. When the frequency
increases, the scattered amplitude decreases (see [13]). Similarly,
for a 90o diffusion angle, the scattered amplitude vanishes. Ex-
periments have shown that bubble scattering cross section does
not drop in the accessible frequency range, so that increasing the
frequency increases the SNR. Above 130 kHz, sound absorption
raises significantly, making noise iii) more and more important.
As a consequence, time intervals detected shorten (because the
beginning and the end of segments are hidden by noise).
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The final setup (θ = 128 degrees, frequencies betwee
110 kHz and 130 kHz) is the result of a compromise betwe
the following constraints :

– Longest measurement volume (largestθ )
– Lowest noise on the transverse components (smallestθ )
– Lowest vorticity scattering amplitude (highest frequenc
θ nearπ/2)
– Lowest sound absorption (smallestθ , lowest frequency)

One can appreciate a typical SNR on figure 4.

Extracting velocity from acoustic signal
In order to extract the instantaneous velocity of the indivi

ual tracers, we have to combine the spectral and the time re
setantions of the acoustic signal. Indeed, the spectral represe
tion loses all time information and can only give time-averag
information such as the mean velocity of the bubbles (which c
responds to the peak of the Doppler shift) and the time repres
tation is well suited to detect in time individual tracers travellin
in the measurement volume but it doesn’t give any informati
on their velocity. The determination of the instantaneous velo
ity of the tracers relies on an estimation of the instantaneous
quency of the acoustic signal. Cohen class energetic estima
are classical tools for this purpose. We chose the Choı̈-Willia
distribution, for its moment-preserving property ( [14]). Ifx is
a complex-valued signal, its Choı̈-williams distributionCx is de-
fined by:

∀t, f Cx(t, f ) =̂
∫ ∞

−∞

∫ ∞

−∞

δ
|τ|

e−2δ 2(s−t)2/τ2

x
(

s+
τ
2

)
x∗

(
s−

τ
2

)
e−2iπ f τ dsdτ (4)

δ is a parameter. We usedδ = 1.
A sample result is shown on figure 5. Frequency is alo

the vertical axis, time along the horizontal. Grayscale leve
quantifies the energy level. Two crooked lines are visible, th
correspond to two distinct bubbles. The lines where the sig
energy is concentrated reflect the time evolution of the insta
taneous Doppler frequency shift. The time-frequency transf
mation (4) gives a 2D representation from which the instan
neous frequency shiftν ′(t) is extracted as the frequency averag
weighted by the energy distributionCs :

∀t, ν ′(t) =

∫ ∞

−∞
fCx(t, f )d f

∫ ∞

−∞
Cx(t, f )d f

(5)
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Figure 5. Time-frequency representation. Two bubble signals are visible.

Then, equation (1) directly gives the corresponding velocity
component.

This velocity extraction is applied to eachs signal, on the
selected intervals. Coordinate transformation yields lots of small
(2000 to 8000 points) velocity signals which will be called “ve-
locity segments” in the following. No time continuity exists be-
tween velocity segments, they all correspond to different bub-
bles. Such a procedure leads to a large set of independent real
izations of Lagrangian velocities. Thej-th point (time) of the
i-th segment (realization) will be denoted by~vi( j).

RESULTS
Data set

As already discussed, in order to resolve not only the small
scale dynamics but also the large scale dynamics of the particles
we need the measurement volume dimensions to be comparable
to the integral scale of the flow. Therefore, we carried the ex-
periments in an air jet with a small nozzle (2.25 cm in diameter)
compared to the transducers diameter. As a consequence, only
moderate Reynolds number (up toRλ = 320) were achievable.
Series of recordings were made at four distances (D) from the
nozzle. Every measurement corresponds to the same Reynolds
number, as it is constant along the jet, but to different integral
length scales [7–9]. The measurement volume was centered on
the jet axis, to preserve cylindrical symmetry as much as possi-
ble.

Table 1 lists the main parameters of the different measure-
ments. The number of velocity segments exceeds 1000 for all
measurements, ensuring good statistical convergence. Measure
ment volume length is several times larger than the Eulerian in-
tegral length scale (Ls/LE), and the ratio of the maximal time-
of-flight to the expected Lagrangian integral time scale (Ts/TL)



D N LE [cm] TL [ms]
Ls

LE

〈Ts〉

TL

Ts

TL

58 3552 6.2 35 8.1 1.48 2.6

80 9584 8.8 60 5.7 1.22 1.8

93 7444 10.3 80 5.0 1.20 1.6

111 1358 12.3 120 4.2 1.02 1.3

Table 1. Experimental parameters at different distances D from the noz-

zle and the center of the measurement volume. D is measured in multi-

ples of the nozzle diameter. N is the number of velocity segments.

is everywhere above one. This estimation is in good agreem
with the experimental ratio〈Ts〉/TL, which involves themean
time-of-flight and the measured Lagrangian integral time sca
Values of〈Ts〉/TL decreases with increasing nozzle distance,
expected.

Probability density function
The normalized velocity probability densty functions (PDF

for the longitudinal velocity component measured at differe
distance from the nozzle are represented on figure 6. No s
nificant change in shape can be seen between the four curves
dicating that the variation ofLs/LE does not break self-similarity.
The same remark is true for transverse components (figure 7).
curves are Gaussian, but small departures exist. For the long
dinal component (figure 6), PDF edges are largely sub-Gauss
due to limitations of the velocity extraction algorithm and has n
physical meaning. For transverse components (figure 7), ed
are over-Gaussian because of noise introduced by the velo
extraction algorithm. Previous studies by [4] have also show
that the Lagrangian velocity PDF in a Von-Kármán flow has
Gaussian shape.

Figure 8 shows the comparison of the Lagrangian PD
(P(u)) with the corresponding Eulerian one (the hot-wire wa
located near the center of the Lagrangian measurement zone
reasonable agreement is found. A slightly higher mean veloc
is found in the Eulerian case (5 % higher), and the standard de
ation is higher for the Lagrangian velocity. These effects resu
from the inhomogeneity of the flow inside the acoustic measu
ment volume, which tend to under estimate the Lagrangian me
velocity on the axis and over estimate its fluctuations but isn
visible on the Eulerian measurement which is carried at a fix
point.

Figure 9 shows isocontours of the joint PDFP(u,v) of lon-
gitudinalu and transversev Lagrangian velocity. A slightly ellip-
tical shape is visible, indicating that no large-scale isotropy e
ists (horizontal and vertical coordinates are identical). Standa
deviation of the longitudinal component is higher than the corr
7
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Figure 6. Longitudinal velocity PDF with zero mean and unity variance.

Corresponding Gaussian curve is plotted in dashed line.
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Figure 7. Transverse velocity PDF with zero mean and unity variance.

Corresponding Gaussian curve is plotted in dashed line.

sponding one for the transverse component, by a factor ranging
from 1.1 to 1.25, depending on the position along the jet (resp.
farthest and nearest from the nozzle). A similar behaviour exists
for Eulerian velocity components (see [7]) This non-constant ra-
tio can also be explained by the variation of the ratio between the
lateral size of the measurement volume and the local transverse
integral length scaleLE.

Statistical estimation of correlation
Lagrangian statistics tend to be biased towards the lower ve-

locities, because slowest particles spend more time in the mea-
surement volume (this is the same phenomenon that biases laser
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Figure 9. Isocontours of joint Lagrangian velocity PDF. Contour values,

from the center outward, are 10−3.5, 10−4, 10−4.5, 10−5, 10−5.5,

10−6.5.

Doppler velocimetry measurements). This bias is a particula
issue when correlation functions are to be estimated, becau
values for the longest time lags can only be computed with th
longest segments, which corresponds to the slowest particles.
order to compensate fot this bias, the velocity correlation func
tion is estimated with the following formula :

∀l∀k, Rll (k) =̂
1

(~σ)2
l ∑i/Li>k Li −k

·

∑
i/Li>k

Li−k

∑
j=1

[(~vi( j))l −〈~v〉l ] [(~vi( j +k))l −〈~v〉l ] .(6)
8
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-

whereLi is the length of segmenti, ~v>(k)l and~σ>(k)l are the
mean velocity and standard deviation for the l-th component of
the velocity, estimated from segments longer thank only :

∀k = 1..max
i

Li , ~v>(k) =̂
∑i/Li>k ∑Li

j=1~vi( j)

∑i/Li>k Li
(7)

∀k, l , (~σ>(k))l =̂

√√√√∑i/Li>k ∑Li
j=1 (~vi( j))2

l

∑i/Li>k Li
− (~v>(k))2

l (8)

Correlations
Figure 10 shows the autocorrelation function of the La-

grangian velocity components and the Eulerian longitudinal ve-
locity for a measurement performed at 80 diameters from the
nozzle. The two curves for Lagrangian transverse components
are almost identical, in accordance with the cylindrical symme-
try of the flow. The longitudinal component exhibits a slightly
longer time scale.

We denote in the following the longitudinal and transverse
Lagrangian integral time scales byT l

L andTt
L respectively. These

values are computed by fitting an exponential curve on the auto-
correlation. Corresponding values for Eulerian components are
denoted byT l

E andTt
E. Only T l

E can be readily obtained from
measurements:T l

E =̂ Ll
E/σ l

E, whereLl
E is the Eulerian integral

length scale (obtained from the autocorrelation and Taylor hy-
pothesis), andσ l

E is the standard Eulerian longitudinal standard
deviation. As no measurement of transverse Eulerian velocity
has been performed,Tt

E is estimated from the longitudinal value,
assuming thatLl

E/Lt
E ≃ 2.3 andσ l

E/σ t
E ≃ 1.2 (as found in [7]).

All these values are listed in table 2 for the different posi-
tions of the measurements. We note that the transverse integra
time scales are smaller than the longitudinal. In the Eulerian
case, the ratioT l

E/Tt
E is constant as a consequence of the pre-

vious hypotheses. On the contrary, we observe that ratioT l
L/Tt

L
tends to increase with the distanceD from the nozzle. Several
reasons may be responsible for that. On the one hand, the jet
self-similarity can be broken. [7] have shown that self-similarity
can be violated for distances as large as 100 nozzle diameters
depending on the quantity considered, in which case actual mea-
surements of Eulerian time scales would lead to similar results.
On the other hand the velocity profile varies linearly with the
distance to the nozzle, while the measurement volume size is
constant, so that the flow homogeneity in the measurement vol-
ume depends on the position in the jet. AsT l

L/Tt
L increases when

D increases, this indicates that large-scale isotropy either does
not exist whatever the distance, or is recovered very slowly. La-
grangian timesTL can be considered as a rough measure of eddy



life-time, whereasTE is related to the eddy turnover time. These
results show that whatever the component considered, both tim
are very close, the turnover time being slightly longer. Obtaine
ratios are compatible with the predicted value of 1/0.78≃ 1.28.

A simple phenomenological analysis leads toTL ≃ TE [15].
A larger Eulerian time scale can be explained by sweepin
effects. The advection of the internal scales by the energ
containing scale leads to broadening of the Eulerian autocorre
tion in comparison with the Lagrangian one [16]. This explain
the increase of the Eulerian integral scale.

D T l
L Tt

L
T l

L
Tt

L
T l

E Tt
E

T l
E

Tt
E

T l
E

T l
L

Tt
E

Tt
L

58 35 26 1.35 48 25 1.92 1.37 0.98

80 62 49 1.27 98 51 1.92 1.58 1.04

93 79 59 1.34 129 69 1.92 1.63 1.16

111 117 75 1.56 205 98 1.92 1.75 1.30

Table 2. Eulerian and Lagrangian time scales in milliseconds. T l
L , Tt

L
and T l

E measured. Tt
E computed from T l

E (see text).

Cross correlations of transverse Lagrangian componen
(v,w) are shown on figures 11. All curves are very close to zer
(noise floor is about 0.05), showing that no correlation exist be
tween the lagrangian velocity components, despite the high inh
mogeneity of the flow in the measurement volume. This suppor
one-dimensional modeling of fluid particle large-scale motion
Large-scale decorrelation is also ana posteriorivalidation of our
measurement setup: if measurements of the four velocity pr
jections (i,j,k,l) were made on a non-regular pyramid, a residu
cross-correlation would exist.

Velocity increments and intermittency
We define the velocity increments signal for a given time la

τ as

δ~v(τ,t) =~v(t + τ)−~v(t). (9)

Figure 12 represents the longitudinal Lagrangian velocity in
crements PDF for different time lagsτ. We note that large scale
increments PDF is gaussian and that it deviates from the gauss
asτ decreases, developing tails close to exponential. This beha
ior reflects the strong Lagrangian intermittency already reporte
in previous works [11,17,18]. Particularly, the small scale incre
ments reflects particles acceleration and the exponential tails a
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Figure 11. Cross correlation of Lagrangian velocities (v,w).

characteristic of very high acceleration events which occur with
a probability higher than gaussian.

Figure 13 represents the kurtosis (fourth moment of the PDF
normalized by its variance) of the velocity increments as a func-
tion of the time lag, for Lagrangian and Eulerian longitudinal
velocity. For large increments, both the Eulerian and Lagrangian
kurtosis tend to a value equal to 3, what corresponds to a gaus-
sian PDF as expected for large scales. As we look at smaller
scales increments, the flatness increases, what reflects the inter-
mittency as the PDF develops non gaussian tails. Both Eulerian
and Lagrangian statistics are intermittent, but the Lagrangian in-
termittency appears to be significantly stronger. It is also worth
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Velocity increments normalized by the velocity standard deviation

Figure 12. Longitudinal Lagrangian velocity increments probability den-

sity functions normalized to variance equal to 1. The time lag τ in-

creases as indicated by the arrow from 0.3 ms to 90 ms (τη = 1.8 ms,

TL ≃ 60ms).

Figure 13. Kurtosis of the longitudinal Lagrangian (◦) and Eulerian (×)

velocity increments. (Measurements at different positions from the nozzle

have been superposed).

noticing that even if the finite size of our tracers might filter par
of the small scales Lagrangian dynamics, the measured interm
tency is still very robust.

CONCLUSION
Lagrangian measurements in a free turbulent air jet we

performed using acoustical Doppler effect. This method i
10
t
it-

re
s

adapted to collecting large data sets without tremendous memory
requirement, contrary to visualisation method. A single tracer at
a time can be detected, with the time- and space- dynamics of
the measurements comprising a large part of the inertial scales,
comparable to previously-obtained results ( [4]). Simultaneous
Eulerian measurements were performed.

We show that the Eulerian integral time is larger than the La-
grangian one, what can be a consequence of the Eulerian statis
tics sensitivity to sweeping effects, which instead do not affect
Lagrangian statistics. This result holds for distances in the jet
ranging from 60 nozzle diameters up to 110 nozzle diameters.

The analyze of velocity increments exhibits strong La-
grangian intermittency, with highly non gaussian fluctuations at
small scales, reflecting the existence of strong acceleration events
along the particles trajectory.

The acoustic technique is now being adapted to study two
phase flows ladden with inertial particles. The first experiments
aim to explore Stokes number dependance of individual particles
dynamics, with a particular focus on the effect of particles finite
size and of the particle to fluid densities ratio.
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