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Topic B: intermittency and Scaling

•Scaling in Turbulence.A significant characteristic of fully deve-
loped turbulence is scale invariance, i.e., in a wide range of scale
ratiosa, usually known as theinertial range, the moments of order
q > 0 of the increments of the velocity fieldv(x) or of the aggre-
gated dissipation fieldεr(x) behave as power laws with respects
to scale ratios (see e.g., [1]) :{

E( 1
ax0

∫ x+ax0
x

εr(u)du)
q = cq|a|ζε(q),

E|v(x+ ax0)− v(x)|q = c′q|a|ζv(q).
(1)

A key issue in the analysis of turbulence data lies in accurately and
precisely measuring the scaling exponents. This yields two ques-
tions : how can efficient estimators for theζ(q) be defined and
what are their statistical performance ? While the former question
owns classical answers, the latter has been mostly overlooked (cf.,
a contrario, [2]).

In the present work, we address carefully this question. To do
so, we apply the usual multiresolution based estimators for the
ζ(q) to recently proposed multifractal processes used as reference.
We show that they undergo a genericlinearisation effect: there
exists a criticalq value below which the estimators correctly ac-
count for the scaling exponents and above which they significantly
depart from theζ(q) and necessarily behave as a linear function in
q. We also show that this is not a finite observation duration effect.
Applied to actual empirical turbulence data, we observe a compa-
rable linearisation effect and estimate the corresponding criticalq
value. We comment on the implied limitations in the estimation of
scaling exponents and consequences in turbulence.

•Estimation. To perfom the scaling exponentsζ(q) estimation,
one defines multiresolution quantitiesTX(a, t) = 〈ψa,t, X〉 (ag-
gregation, increments or wavelet coefficients), whereψa,t(u) =
1/aψ((u− t)/a) are dilated and translated templates from the re-
ference patternψ and whereX is the process to be analysed. Then,
one computes theq-order structure functions, defined as the time
averages of the|TX(a, t)|q, at scalea :

Sn(a, q) =
1

na

na∑
k=1

|TX(a, tk)|q, (2)

wheren is the process length, andna the number of coefficients
TX(a, tk) available at scalea. WhenX presents scaling as in
Eq. (1), the structure functions follow power laws of the scales :
Sn(a, q) ∼ cq|a|ζ(q). Estimatesζ̂(q, n) are then obtained from
linear regressions in alogSn(a, q) vs log a diagrams. To avoid
technical discussions on estimators fully outside the scope of this
paper (such as the behaviours ofζ̂(q, n) whenq ≤ −1), we res-
trict ourselves to real positive ordersq.

•Multifractal processes.To characterise the performance of the
ζ̂X(q, n) , they are applied to synthetic multifractal processes, with

theoretically perfectly known scaling exponents. Instead of the ce-
lebrated Mandelbrot’s multiplicative cascades (CMC) [3], we use
Compound Poisson Cascades (CPC) recently defined by Barral&
Mandelbrot [4] with improved statistical properties, such as conti-
nuous scale invariance and stationarity, and with a priori prescri-
bed and knownζ(q). The corresponding densityQr, obtained as
the product of positive (mean one) multipliers, is a positive process
that can be used to model dissipation in turbulence.

Following an idea that goes back to Mandelbrot, together from
Qr(t) and from Fractional Brownian MotionBH(t) with Hurst
parameterH, one can build avelocity-likeprocess, called Fractio-
nal Brownian Motion in Multifractal Time [5] (FBM(MT)) :

VH(t) = BH(A(t)), t ∈ IR+, (3)

whereA(t) = limr→0

∫ t

0
Qr(s)ds is the measure process or mul-

tifractal time.
Both processes posses scale invariance properties, with theo-

retically knownζ(q) functions :{
E( 1

aτ0

∫ t+aτ0
t

Qr(u)du)
q = cq|a|ζQr (q),

E|VH(t+ aτ0)− VH(t)|q = c′q|a|ζVH
(q),

(4)

whereζVH (q) = qH + ζQr (qH).
The Legendre transform ofζ(q), defined as :D(h) ≡ 1 +

minq (qh− ζ(q)) will be further used.

•Linearisation effect. To study the performance of thêζ(q, n),
we apply them to a large number of replications of FBM(MT)
processes built on CPC cascades. First, we observe that, for each
and every replication, there exists a finite range ofq values, deno-
ted [0, q0], within which ζ̂(q, n) accounts for the theoretical value
ζ(q) for VH(t). But outside this range, i.e., whenq exceeds the
critical orderq0, theζ̂(q, n) necessarily present a linear behaviour
in q (cf. Fig. 1, left column). Moreover, these individual asymp-
totic straight lines are distributed around a mean straight line, that
depends neither on the resolution of the process under study nor
on its observation durationn (this is not a finite size effect) [6] :{

q ∈ [−1, q0], ζ̂(q, n) → ζ(q)

q ≥ q0, ζ̂(q, n) = α̂+
∗ + β̂+

∗ q → α+
∗ + β

+

∗ q
(5)

This genericand systematic effect (observed withall processes
andall estimators, cf. [6]) will be denoted aslinearisation effect
in the sequel. Fig. 1 (right column) shows the Legendre transforms
D̂(h, n) corresponding tôζ(q, n). EachD̂(h, n) is abruptly ended
by an accumulation point,(h0, D0), and accounts forD(h) (cor-
responding to the theoreticalζ(q) function) only whenh ≥ h0.
Furthermore, the accumulation points are spread around the criti-
cal point(h+

∗ , D
+
∗ = 0) (Fig. 1 bottom), defined as the (left) zero
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Fig. 1. Linearisation effect on synthetic data. Theoretical and
estimatedζ(q) (left column) and correspondingD(h) (right co-
lumn), for 10 replications (top raw) and averaged over 1000 re-
plications (bottom raw). FBM(MT) built on CMC cascades, with
n = 219 and24 integral scales.

of the theoretical Legendre transform :h+
∗ / D(h+

∗ ) = 0 = D+
∗ .

Again these results depend neither on the resolution of the process
under study nor on of its durationn.

These results lead us to propose a theoretical definition for the
critical orderq+∗ , beyond whicĥζ(q, n) presents a linear behaviour
in q, and no longer converges toζ(q) :

q+∗ / qζ′(q)− ζ(q) ≥ −1, if q ∈ [0, q+∗ ] (6)

This criterion has been obtained in the literature [7, 8], but only for
the CMC densities. We extend it to other cascade schemes, and to
others processes (FBM(MT))[6], showing that the linearisation ef-
fect is a very generic and systematic effect in the scaling exponent
estimation.

It is worth noting that this criticalq+∗ and hence the lineari-
sation effect is not linked with any statistical moment divergence
issue. Indeed, ifE|TX(a, t)|q = ∞, q ≥ qc, the following une-
quality can be easily shown :q+∗ < qc [6].

•Estimation of q+∗ . The next issue that then rises is, given an ex-
perimental time serie, to estimateq+∗ . A practical procedure for the
estimation ofq+∗ will be given in the extended paper, and numeri-
cally probed on synthetic prossesses.

•Results on turbulence data.We apply theζ̂(q, n) to experi-
mental hot-wire velocity data, obtained in jet turbulence and with
a Taylor-based Reynolds numberRλ ∼ 580 (data collected at
ENSL[9]). Linear fits are performed in the usual inertial range.
Fig. 2 clearly shows that a linearisation effect occurs that is highly
comparable to that obtained on synthetic FBM(MT). Then, we ap-
plied the estimator forq+∗ to the data. This yields the following
average estimate for the critical value ofq : q+∗ ' 9.4± 0.4. This
calls for the following comments. If the turbulent velocity fluc-
tuations were described with two celebrated models [1] that ac-
tually satisfactorily fit thêζX(q, n), namely the log-normal model
— with the commonly accepted value for the intermittency para-
meterC2 ' 0.025 —, and the log-Poisson She-Lévêque model
(with no free parameter), then, the theoretical criticalq+∗ derived
from the criterion (6) would read :

log-normal (C2 = 0.025) She-Ĺevêque
q+∗ ' 8.94 q+∗ ' 12.36
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Fig. 2. Linearisation effect on experimental turbulence (velo-
city) data. Estimatedζ(q) (left column) and correspondingD(h)
(right column) for 10 runs (top raw) and averaged over 69 runs
(bottom raw), withn = 220 and' 60 integral scales per run).

This is in reasonable agreement with the estimation obtained here
directly from the data. Using other experimental data sets, the ex-
tended paper will show that the estimated critical orderq+∗ for
turbulent velocity does not depend on the Reynolds numberRλ,
which is consistent with the fact that the functionζ(q) is expected
to be universal (i.e., independent ofRλ).

As a conclusion, these results tell us that one cannot estimate
ζ(q) when q ≥ q+∗ ' 9.4 for any fully developed turbulence
velocity scalar data, whatever their resolution and observation du-
ration. We again put the emphasis on the fact that larger duration
observations will not modify that value.
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